SYMMETRIC CONFERENCE MATRICES OF ORDER $p q^{2}+1$

RUDOLF MATHON

Introduction and definitions. A conference matrix of order n is a square matrix C with zeros on the diagonal and ± 1 elsewhere, which satisfies the orthogonality condition $C C^{T}=(n-1) I$. If in addition C is symmetric, $C=$ C^{T}, then its order n is congruent to 2 modulo 4 (see [5]). Symmetric conference matrices (C) are related to several important combinatorial configurations such as regular two-graphs, equiangular lines, Hadamard matrices and balanced incomplete block designs [1;5; and 7, pp. 293-400]. We shall require several definitions.

A strongly regular graph with parameters (v, k, λ, μ) is an undirected regular graph of order v and degree k with adjacency matrix $A=A^{T}$ satisfying

$$
\begin{equation*}
A^{2}+(\mu-\lambda) A+(\mu-k) I=\mu J, \quad A J=k J \tag{1.1}
\end{equation*}
$$

where J is the all one matrix. Note that in a strongly regular graph any two adjacent (non-adjacent) vertices are adjacent to exactly $\lambda(\mu)$ other vertices. An easy counting argument implies the following relation between the parameters v, k, λ and μ;

$$
\begin{equation*}
k(k-\lambda-1)=(v-k-1) \mu \tag{1.2}
\end{equation*}
$$

A strongly regular graph is said to be pseudo-cyclic (PC) if $v-1=2 k=4 \mu$. From (1.1) and (1.2) it is readily deduced that a $P C$-graph has parameters of the form $(4 t+1,2 t, t-1, t)$, where $t>0$ is an integer. We note that the complement of a $P C$-graph is again pseudo-cyclic with the same parameters as the original graph (though not necessarily isomorphic to it), i.e. both A and $A^{c}=J-I-A$ satisfy (1.1).

$$
\begin{equation*}
A^{2}=t(J+I)-A, \quad A J=2 t J \tag{1.3}
\end{equation*}
$$

A symmetric block design with parameters (v, k, λ) is a collection of $v k$-subsets, called blocks, of a set of v elements, referred to as points, which has a pointblock incidence matrix A satisfying

$$
\begin{equation*}
A A^{T}=A^{T} A=(k-\lambda) I+\lambda J, \quad A J=J A=k J \tag{1.4}
\end{equation*}
$$

In a symmetric block design any two distinct points (blocks) are incident with exactly λ blocks (points). Again, as before, a simple counting argument yields

[^0]a condition on the parameters v, k and λ;
\[

$$
\begin{equation*}
k(k-1)=\lambda(v-1) \tag{1.5}
\end{equation*}
$$

\]

A symmetric block design is said to be skew-Hadamard $(S H)$ if $v-1=2 k, A$ has a zero diagonal and $A^{T}=A^{c}=J-I-A$. From (1.4) and (1.5) it follows that an $S H$-design has parameters of the form ($4 t-1,2 t-1, t-1$), $t>0$ and both A and $A^{T}=A^{c}$ satisfy (1.4), i.e.

$$
\begin{equation*}
A A^{T}=A^{T} A=t I+(t-1) J, \quad A J=J A=(2 t-1) J \tag{1.6}
\end{equation*}
$$

A given $P C$-strongly regular graph with parameters $(4 t+1,2 t, t-1, t)$ and adjacency matrix A can be uniquely extended to a conference matrix of order $n=4 t+2$.

$$
C=\left(\begin{array}{cc}
0 & j^{T} \tag{1.7}\\
j & B
\end{array}\right), \quad B=2 A-J+I
$$

where j is the all one vector of order $4 t+1$. This is a consequence of the fact that

$$
\begin{aligned}
& 0+j^{T} j=n-1, \quad 0 j^{T}+j^{T} B=o^{T} \\
& j 0+B j=o, \quad j j^{T}+B^{2}=J+(2 A-J+I)^{2}=(4 t+1) I
\end{aligned}
$$

Conversely, a $P C$ graph can be obtained from a C-matrix by normalizing it to contain one's in the i th row and column except for $c_{i i}=0$ and by deleting this row and column from C. The resulting matrix B yields a $(0,1)$-matrix $A=$ $(B+J-I) / 2$ satisfying (1.3). We note that by choosing different rows for normalization we may obtain different nonisomorphic $P C$-graphs of order $4 t+$ 1. The set of all $P C$-graphs derivable from a particular conference matrix C forms a so-called switching class of graphs [5]. It is readily observed that the entire switching class can be recovered from any of its members via the corresponding C-matrix.

The existence of C-matrices is implied by the existence of $P C$-graphs associated with C (see [5] and [7, p. 294]).

Theorem 1.1. A necessary condition for the existence of a PC-graph of order $v=4 t+1, t>0$ is that v is a sum of squares of two integers.

Hence a $P C$-graph does not exist if the square-free part of $v=4 t+1$ contains a prime congruent to $3(\bmod 4)$.

There are very few constructions for $P C$-graphs and for symmetric conference matrices [7, pp. 313-319].

Theorem 1.2 (Paley). For an odd prime power $v=p^{r}$, let a_{1}, \ldots, a_{v}, be the elements of $G F(v)$ numbered so that $a_{v}=0, a_{v-i}=-a_{i}, i=1, \ldots, v-1$. Define $B=\left(b_{i j}\right) b y$

$$
\begin{equation*}
b_{i j}=\chi\left(a_{j}-a_{i}\right), \quad 1 \leqq i, j \leqq v, \tag{1.8}
\end{equation*}
$$

where χ is the quadratic character of $G F(v)$, i.e. $\chi(0)=0, \chi(x)=1$ if $x=y^{2}$, for some $y \in G F(v)$ and $\chi(x)=-1$ otherwise. Then

$$
\begin{equation*}
B B^{T}=v I-J, \quad B J=J B=0 \tag{1.9}
\end{equation*}
$$

and $A=(B+J-I) / 2$ is the adjacency matrix of a $P C$-graph if $v \equiv 1(\bmod 4)$ and the incidence matrix of an SH-design if $v \equiv 3(\bmod 4)$.

The only other known method for constructing $P C$-graphs employs Kroneckerproducts of $(-1,0,1)$-matrices associated with $P C$-graphs and $S H$-designs [$\mathbf{6}]$.

Theorem 1.3 (Turyn). If v and ware the orders of a PC-graph and SH-matrix respectively, then v^{k} and $w^{2 k}$ are orders of $P C$-graphs for any integer $k>0$.

So, for example, it is easily verified that if V is a symmetric or skew-matrix of order v satisfying (1.9), then

$$
\begin{equation*}
W=V \otimes V+I \otimes J-J \otimes I \tag{1.10}
\end{equation*}
$$

is a symmetric matrix of order v^{2} also satisfying (1.9). The smallest $P C$-graph of non-prime power order, given by formula (1.10) has 225 nodes and is based on a skew-Hadamard design of order 15 (see [3]).

This paper is concerned with the construction of a new class of conference matrices of order $p q^{2}+1$, where $q=4 t-1$ is a prime power and $p=4 t+1$ is the order of a $P C$-graph. The construction is based on certain block-regular matrices, formed from the cyclotomic classes of $G F(q)$.
2. Feasible block-regular matrices. The fact that a product of orders of a finite number of $P C$-graphs is congruent to $1(\bmod 4)$ and satisfies Theorem 1.1 suggests the possibility of extending Turyn's construction from powers to products of $P C$-graphs. The aim of this Section is to derive necessary conditions for such an extension.

Let v_{α} and v_{β} be the orders of two $P C$-graphs with parameters $(4 \alpha+1,2 \alpha$, $\alpha-1, \alpha),(4 \beta+1,2 \beta, \beta-1, \beta)$ and adjacency matrices $A_{\alpha}=\left(a_{i j}{ }^{\alpha}\right), A_{\beta}=$ $\left(a_{i j}{ }^{\beta}\right)$ respectively. Then $(16 \alpha \beta+4 \alpha+4 \beta+1,8 \alpha \beta+2 \alpha+2 \beta, 4 \alpha \beta+\alpha+$ $\beta-1,4 \alpha \beta+\alpha+\beta$) is an admissible parameter set for a $P C$-graph of order $v_{\alpha \beta}=v_{\alpha} v_{\beta}$. Let $A=\left(A_{i j}\right), 1 \leqq i, j \leqq v_{\alpha}$ be a block matrix, with blocks $A_{i j}=$ $\left(a_{k l}{ }^{i j}\right), 1 \leqq k, l \leqq v_{\beta}$ consisting of regular (0,1)-matrices. Partially motivated by the Kronecker-product construction of Theorem 1.3 we assume that

$$
A_{i j} J=J A_{i j}= \begin{cases}2 \beta & \text { if } i=j, \tag{2.1}\\ x & \text { if } i \neq j \text { and } a_{i j}{ }^{\alpha}=1, \\ y & \text { if } i \neq j \text { and } a_{i j}{ }^{\alpha}=0 .\end{cases}
$$

For A to be the adjacency matrix of a $P C$-graph it is necessary that $A=A^{T}$ satisfies relations (1.3). The regularity condition in (1.3) requires that

$$
\begin{equation*}
2 \beta+2 \alpha x+2 \alpha y=8 \alpha \beta+2 \alpha+2 \beta \tag{2.2}
\end{equation*}
$$

which implies

$$
\begin{equation*}
y=4 \beta+1-x=v_{\beta}-x \tag{2.3}
\end{equation*}
$$

In order to exploit the quadratic equation in (1.3) we make use of the following elementary fact. If X and Y are both $v \times v(0,1)$-matrices such that $X J=x J, Y J=y J$, then row sums in the product $Z=X Y, Z=\left(z_{i j}\right)$ are all equal to

$$
\begin{equation*}
r(Z)=\sum_{j=1}^{v} z_{i j}=x y, \quad i=1, \ldots, v . \tag{2.4}
\end{equation*}
$$

From the underlying block-degree structure of A, dictated by the $P C$-graph with adjacency matrix A_{β} (see (2.1)), we deduce that

$$
\begin{equation*}
r\left(\left(A^{2}\right)_{i i}\right)=r\left(\sum_{k=1}^{v_{\alpha}} A_{i k} A_{k i}\right)=\sum_{k=1}^{v_{\alpha}} r\left(A_{i k} A_{i k}\right)=(2 \beta)^{2}+2 \alpha x^{2}+2 \alpha y^{2} . \tag{2.5a}
\end{equation*}
$$

If $i \neq j$, then if $a_{i j}{ }^{\alpha}=1$

$$
\begin{equation*}
r\left(\left(A^{2}\right)_{i j}\right)=\sum_{k=1}^{v_{a}} r\left(A_{i k} A_{k j}\right)=2(2 \beta x)+(\alpha-1) x^{2}+2 \alpha x y+\alpha y^{2}, \tag{2.6a}
\end{equation*}
$$

and if $a_{i j}{ }^{\alpha}=0$

$$
\begin{equation*}
r\left(\left(A^{2}\right)_{i j}\right)=\sum_{k=1}^{v_{a}} r\left(A_{i k} A_{k j}\right)=2(2 \beta y)+\alpha x^{2}+2 \alpha x y+(\alpha-1) y^{2} . \tag{2.7a}
\end{equation*}
$$

On the other hand, since by (1.3) $A^{2}=t(J+I)-A$, where $t=4 \alpha \beta+\alpha+\beta$, we obtain
(2.5b) $\quad r\left(\left(A^{2}\right)_{i i}\right)=r\left(t(J+I)-A_{i i}\right)=(4 \alpha \beta+\alpha+\beta)(4 \beta+2)-2 \beta$.

Similarly, if $i \neq j$ then
$r\left(\left(A^{2}\right)_{i j}\right)=r\left(t J-A_{i j}\right)=(4 \alpha \beta+\alpha+\beta)(4 \beta+1)- \begin{cases}x & \text { if } a_{i j}{ }^{a}=1, \\ y & \text { if } a_{i j}{ }^{a}=0 .\end{cases}$
A comparison of relations (a) with the corresponding relations (b) together with (2.3) lead to three identical quadratic equations for x :

$$
\begin{equation*}
x^{2}-(4 \beta+1) x+(4 \beta+1) \beta=0, \tag{2.8}
\end{equation*}
$$

the roots of which are

$$
\begin{equation*}
x_{1}=x=\frac{1}{2}\left(v_{\beta}-\sqrt{v_{\beta}}\right), x_{2}=y=\frac{1}{2}\left(v_{\beta}+\sqrt{v_{\beta}}\right) . \tag{2.9}
\end{equation*}
$$

Consequently, the order v_{β} is a square.
Theorem 2.1. A necessary condition for A, defined by (2.1), to be the adjacency matrix of a PC-graph of order $v_{\alpha} \cdot v_{\beta}$ is that $v_{\beta}=q^{2}$ is a square and that $x=$ $q(q-1) / 2, y=q(q+1) / 2$.

We remark that the conditions of Theorem 2.1 generalize to product matrices of the form (2.1) based on strongly regular graphs with $k=2 \mu$. This fact is employed in constructions for other families of regular two-graphs to be reported on elsewhere.
3. Cyclotomic block-matrices. In this section we shall exhibit a family \mathscr{A}_{q} of regular $(0,1)$-matrices serving as building blocks in the construction of $P C$-graphs. As suggested by Theorem 2.1 each matrix in \mathscr{A}_{q} will be of order q^{2} with row (and column) sums either $\left(q^{2}-1\right) / 2$ or $q(q-1) / 2$, or $q(q+1) / 2$. In order to utilize the theory of Galois fields we shall assume that q is a prime power.

For a prime power $q=4 t-1, t>0$, let a_{1}, \ldots, a_{ℓ} be the elements of $G F(q)$ numbered as in Theorem 1.2. Define

$$
P\left[a_{k}\right]=\left(p_{i j}{ }^{k}\right), \quad p_{i j}^{k}= \begin{cases}1 & \text { if } a_{j}-a_{i}=a_{k} \tag{3.1}\\ 0 & \text { otherwise },\end{cases}
$$

where $1 \leqq i, j, k \leqq q$. From the properties of $G F(q)$ it follows that:
(i) $P\left[a_{k}\right]$ are permutation matrices, $1 \leqq k \leqq q, P\left[a_{q}\right]=I$.
(ii) If $k \neq l$ and $p_{i j}{ }^{k}=1$ then $p_{i j}{ }^{l}=0$. Consequently, $P\left[a_{1}\right]+\ldots+$ $P\left[a_{q}\right]=J$.
(iii) The matrices $P\left[a_{k}\right]$ form an abelian group under multiplication $P\left[a_{k}\right]$.

$$
P\left[a_{l}\right]=P\left[a_{m}\right], a_{m}=a_{k}+a_{l} .
$$

For example, to prove (iii) we assume that for some $s, p_{i s}{ }^{k}=p_{s j}{ }^{l}=1$, which implies $p_{i j}{ }^{m}=1$. From (3.1) we have $a_{s}-a_{i}=a_{k}, a_{j}-a_{s}=a_{l}$ and $a_{j}-a_{i}$ $=a_{m}$. Eliminating a_{s} from these equations we get $a_{m}=a_{k}+a_{l}$. In fact, the $P\left[a_{k}\right]$'s form a so-called cyclotomic association scheme (cf. $[\mathbf{2} ; \mathbf{4}]$). Let E and F be matrices of order q and degree $(q-1) / 2$ defined by:

$$
\begin{align*}
& E=\left(e_{i j}\right), \quad e_{i j}= \begin{cases}1 & \text { if } \chi\left(a_{j}-a_{1}\right)=1 \\
0 & \text { otherwise },\end{cases} \tag{3.2}\\
& F=\left(f_{i j}\right), \quad f_{i j}= \begin{cases}1 & \text { if } \chi\left(a_{j}-a_{i}\right)=1 \\
0 & \text { otherwise }\end{cases} \tag{3.3}
\end{align*}
$$

From Theorem 1.2 it follows that F is the incidence matrix of an $S H$-design and therefore satisfies (1.6). With help of E and F we are ready to introduce the matrix family \mathscr{A}_{q} consisting of

$$
\begin{align*}
& A_{d}=\left(A_{i j}{ }^{d}\right), \quad A_{i j}{ }^{d}= \begin{cases}O \text { if } i=j \\
I+F & \text { if } i \neq j \text { and } f_{i j}=1 \\
J-F & \text { otherwise },\end{cases} \tag{3.4}\\
& A_{k}=\left(A_{i j}{ }^{k}\right), \quad A_{i j}{ }^{k}=F P\left[g^{2 k}\left(a_{i}+a_{j}\right)\right], \quad 1 \leqq k \leqq 2 t-1, \tag{3.5}\\
& A_{2 t}=\left(A_{i j}{ }^{2}\right), \quad A_{i j}{ }^{2 t}=E P\left[a_{i}\right], \tag{3.6}
\end{align*}
$$

where O is the all zero matrix, g is a primitive element of $G F(q)$ and $1 \leqq i, j \leqq q$. The matrix A_{d}, based on the Kronecker product construction (1.10), corresponds to a $P C$-graph of order $q^{2}=4 \beta+1, \beta=2 t(2 t-1)$. The blockmatrices A_{k} consist of blocks which are various permutations of F (or E) governed by the quadratic residues of $G F(q)$.

In the rest of this section we shall investigate products of elements in \mathscr{A}_{q}.
Lemma 3.1. The matrices $A_{d}, A_{k} \in \mathscr{A}_{q}, 1 \leqq k \leqq 2 t$, satisfy:

$$
\begin{align*}
& A_{d} A_{k}+A_{k} A_{d}=(2 t-1) q J-A_{k} \tag{3.7}\\
& A_{k}^{2}=A_{k} A_{l}=A_{k}^{T} A_{l}=A_{k} A_{l}^{T}=(2 t-1)^{2} J, \quad k \neq l . \tag{3.8}
\end{align*}
$$

Proof. Since F is the incidence matrix of an $S H$-design we may use (1.6) to obtain

$$
\begin{equation*}
F^{2}=F\left(J-I-F^{T}\right)=t(J-I)-F \tag{3.9}
\end{equation*}
$$

We also note, that F can be expressed as a sum of those $P\left[a_{k}\right]$ for which $\chi\left(a_{k}\right)=1$. Thus,
(3.10) $\quad F=\sum_{k=1}^{2 t-1} P\left[g^{2 k}\right], \quad F P\left[a_{l}\right]=P\left[a_{l}\right] F$.

The (i, j)-th blocks of $A_{d} A_{k}$ and $A_{k} A_{d}, 1 \leqq k \leqq 2 t-1$, can be computed as follows:

$$
\begin{align*}
\left(A_{d} A_{k}\right)_{i j}= & \sum_{n=1}^{2 t-1}\left\{(I+F) F P\left[g^{2 k}\left(a_{i}+a_{j}+g^{2 n}\right)\right]\right. \tag{3.11}\\
& \left.+(J-F) F P\left[g^{2 k}\left(a_{i}+a_{j}+g^{2 n+1}\right)\right]\right\} \\
= & \left\{t(J-I) \sum_{n=1}^{2 t-1} P\left[g^{2(k+n)}\right]\right. \\
& \left.+[t(J+I)-J+F] \sum_{n=1}^{2 t-1} P\left[g^{2(k+n)+1}\right]\right\} P\left[g^{2 k}\left(a_{i}+a_{j}\right)\right] \\
= & 2 t[(2 t-1) J-F] P\left[g^{2 k}\left(a_{i}+a_{j}\right)\right]=2 t\left[(2 t-1) J-A_{i j}{ }^{k}\right] \tag{3.12}
\end{align*}
$$

Summation of (3.11) and (3.12) yields (3.7). The case $k=2 t$ can be proved along the same lines.

In order to verify (3.8) let us determine the (i, j)-th block of $A_{k} A_{l}, 1 \leqq$ $k, l \leqq 2 t-1$,

$$
\begin{aligned}
\left(A_{k} A_{\imath}\right)_{i j} & =\sum_{n=1}^{q} F P\left[g^{2 k}\left(a_{i}+a_{n}\right)\right] F P\left[g^{2 l}\left(a_{n}+a_{j}\right)\right] \\
& =F^{2} \sum_{n=1}^{q} P\left[g^{2 k}\left(a_{i}+a_{n}\right)+g^{2 l}\left(a_{n}+a_{j}\right)\right]=F^{2} \sum_{n=1}^{q} P\left[a_{n}{ }^{\prime}\right]
\end{aligned}
$$

We will show that the $a_{n}{ }^{\prime}$ are all distinct. Suppose that $a_{n}{ }^{\prime}=a_{m}{ }^{\prime}$ for some $n \neq$ m. This is equivalent to

$$
g^{2 k}\left(a_{i}+a_{n}\right)+g^{2 l}\left(a_{n}+a_{j}\right)=g^{2 k}\left(a_{i}+a_{m}\right)+g^{2 l}\left(a_{m}+a_{j}\right) .
$$

and implies the equation $\left(a_{n}-a_{m}\right) g^{2 k}\left[1+g^{2(l-k)}\right]=0$. But, $g^{2(l-k)} \neq-1=$ $g^{2 t-1}$ in $G F(q), q=4 t-1$. Thus, $a_{n}=a_{m}$ and $n=m$ contrary to our assumption. Consequently, $\left(A_{k} A_{l}\right)_{i j}=F^{2} J=(2 t-1)^{2} J$. Similar proofs take place for the remaining cases of (3.8).

Lemma 3.2. The matrices $A_{k} \in \mathscr{A}_{q}, 1 \leqq k \leqq 2 t$, satisfy

$$
\begin{equation*}
A_{k} A_{k}^{T}=q\left[t V_{k}+(t-1) J\right], \quad A_{k}^{T} A_{k}=q\left[t W_{k}+(t-1) J\right], \tag{3.13}
\end{equation*}
$$

where $V_{k}=\left(P\left[g^{2 k}\left(a_{i}-a_{j}\right)\right]\right), \quad W_{k}=\left(P\left[-g^{2 k}\left(a_{i}-a_{j}\right)\right]\right), \quad 1 \leqq k \leqq 2 t-1$, and $V_{2 t}=I_{q} \otimes J_{q}, W_{2 t}=J_{q} \otimes I_{q}$.

Proof. From (1.6) and (3.10) we obtain for $1 \leqq k \leqq 2 t-1$,

$$
\begin{aligned}
\left(A_{k} A_{k}^{T}\right)_{i j} & =\sum_{n=1}^{q} F P\left[g^{2 k}\left(a_{i}+a_{n}\right)\right] P\left[g^{2 k}\left(a_{n}+a_{j}\right)\right]^{T} F^{T} \\
& =F F^{T} \sum_{n=1}^{q} P\left[g^{2 k}\left(a_{i}-a_{j}\right)\right]=q t P\left[g^{2 k}\left(a_{i}-a_{j}\right)\right]+q(t-1) J .
\end{aligned}
$$

The other cases in (3.13) are verified in a similar way.
4. A construction for $P C$-graphs. Before assembling the adjacency matrix of a $P C$-graph from the elements of \mathscr{A}_{q} we require the definition of a skew-Latin square. A Latin square $L=\left(l_{i j}\right)$ of order $2 n+1$ with symbols $\{0, \pm 1, \ldots$, $\pm n\}$ is said to be skew-symmetric if $l_{i i}=0$ and $l_{j i}=-l_{i j}, 1 \leqq i, j \leqq 2 n+1$. So, for example, the circulant

$$
L=\left(l_{i j}\right), l_{i j}=\left\{\begin{array}{l}
j-i+p \quad \text { if } i-j>n \tag{4.1}\\
j-i-p \quad \text { if } j-i>n \\
j-i \text { otherwise }
\end{array}\right.
$$

forms a skew-Latin square of order $p=2 n+1$. It can be shown that the number of non-equivalent skew-Latin squares grows very rapidly as the order increases.

We are now in a position to state our main results.
Theorem 4.1. For $t>0$, such that $q=4 t-1$ is a prime power, let $p=$ $4 t+1$ be the order of a PC-graph with adjacency matrix $\widetilde{A}=\left(\widetilde{a}_{i j}\right)$. Then

$$
A=\left(A_{i j}\right), \quad A_{i j}= \begin{cases}A_{d} & \text { if } i=j \tag{4.2}\\ A\left(l_{i j}\right) & \text { if } i \neq j \text { and } \tilde{a}_{i j}=1 \\ J-A\left(l_{i j}\right) & \text { otherwise, }\end{cases}
$$

is the adjacency matrix of a $P C$-graph of order $p q^{2}$ for any skew-Latin square $L=\left(l_{i j}\right)$ of order p. Here $A_{a} \in \mathscr{A}_{q}$ and $A\left(l_{i j}\right), 1 \leqq i, j \leqq p$ are related to the
matrices $A_{k} \in \mathscr{A}_{q}$ as follows:

$$
A\left(l_{i j}\right)=\left\{\begin{array}{ll}
A_{k} & \text { if } l_{i j}=k \tag{4.3}\\
A_{k}{ }^{T} & \text { if } l_{i j}=-k
\end{array}, \quad 1 \leqq k \leqq 2 t\right.
$$

Proof. We note that A is of the form (2.1) and satisfies the necessary condition stated in Theorem 2.1. It remains to show that A satisfies the quadratic equation in (1.3) with $t^{\prime}=\left(p q^{2}-1\right) / 4=\left(16 t^{2}-4 t-1\right) t$. We shall make frequent use of the following fact. If X, Y are regular $(0,1)$-matrices of order q^{2} and degree $q(q-1) / 2$ then

$$
\begin{align*}
& X(J-Y)=(J-X) Y \tag{4.4}\\
& \quad=\binom{q}{2} J-X Y, \quad(J-X)(J-Y)=q J+X Y
\end{align*}
$$

Using the same notation as in Section 3 it is easily verified that

$$
\begin{equation*}
\sum_{k=1}^{2 t}\left(V_{k}+W_{k}\right)=q I+J \tag{4.5}
\end{equation*}
$$

Since $A_{a}{ }^{2}=2 t(2 t-1)(J+I)-A_{d}$ and each row (column) of A contains each of the matrices A_{k} (or $J-A_{k}$) and $A_{k}{ }^{T}$ (or $J-A_{k}{ }^{T}$), $k=1, \ldots, 2 t$, exactly once, then by (4.2), (4.4), (4.5) and Lemma 3.2:

$$
\begin{align*}
\left(A^{2}\right)_{i i}= & \sum_{n=1}^{p} A_{i n} A_{n i}=\sum_{n=1}^{p} A_{i n} A_{i n}^{T}=A_{l}{ }^{2}+2 t q J \tag{4.6}\\
& +\sum_{k=1}^{2 t}\left(A_{k} A_{k}^{T}+A_{k}^{T} A_{k}\right)=\left(16 t^{2}-4 t-1\right) t(J+I)-A_{i i} .
\end{align*}
$$

If $i \neq j$ then, by Lemma 3.1, if $\tilde{a}_{i j}=1$,

$$
\begin{align*}
\left(A^{2}\right)_{i j}= & \sum_{n=1}^{p} \tag{4.7}\\
& A_{i n} A_{j n}^{T}=A_{d} A\left(l_{i j}\right)+A\left(l_{i j}\right) A_{d}+(t-1)(2 t-1)^{2} J \\
& +2 t \cdot 2 t(2 t-1) J+t(2 t)^{2} J=\left(16 t^{2}-4 t-1\right) t J-A_{i j}
\end{align*}
$$

and if $\tilde{a}_{i j}=0$

$$
\begin{align*}
& \left(A^{2}\right)_{i j}=A_{d}\left[J-A\left(l_{i j}\right)\right]+\left[J-A\left(l_{i j}\right)\right] A_{d}+t(2 t-1)^{2} J \tag{4.8}\\
& \quad+2 t \cdot 2 t(2 t-1) J+(t-1)(2 t)^{2} J=\left(16 t^{2}-4 t-1\right) t J-A_{i j}
\end{align*}
$$

where, similarly as in (2.5a)-(2.7a), we employed the given strongly regular $P C$-graph with adjacency matrix \tilde{A}.

The matrices (4.2) can be used to derive many other non-isomorphic solutions of (1.3). To illustrate this derivation process, let

$$
\begin{equation*}
A^{\prime}=\left(A_{i j}{ }^{\prime}\right)=\left(Q_{i j} A_{i j} P_{i j}\right), \quad P_{j i}=Q_{i j}{ }^{T}, \quad 1 \leqq i, j \leqq p, \tag{4.9}
\end{equation*}
$$

where $P_{i j}, Q_{i j}$ are permutation matrices of order q^{2} and $A=\left(A_{i j}\right)$ satisfies (4.2). If we succeed to find $P_{i j}, Q_{i j}$ such that Lemmas 3.1 and 3.2 hold for elements of the corresponding set \mathscr{A}_{k}^{\prime}, then A^{\prime} will be the adjacency matrix
of a $P C$-graph of order $p q^{2}$. One possible choice for $P_{i j}, Q_{i j}$ is provided by the following:

Theorem 4.2. Let A^{\prime} be given by (4.9) with $P_{i j} \in\left\{P^{r}, Q_{r}, r=1, \ldots, q\right\}$ if $i=j$ and $P_{i j}=I$ otherwise. Here P is a block-diagonal permutation matrix, $(P)_{k l}=\delta_{k l} P\left[a_{k}\right], 1 \leqq k, l \leqq q$ and Q_{r} maps $A_{d}{ }^{r}=\left(P^{r}\right)^{T} A_{d} P^{r}$ to its complement $Q_{r}{ }^{T} A_{d}{ }^{r} Q_{r}=\left(A_{d}{ }^{r}\right)^{c}=J-I-A_{d}{ }^{r}$. Then A^{\prime} is the adjacency matrix of a $P C$ graph of order $p q^{2}$, if for any $1 \leqq i<j \leqq p$ the following conditions are satisfied (see Theorem 4.1 for notation). If $A_{i i}{ }^{\prime}=A_{a}{ }^{r}, A_{j j}{ }^{\prime}=A_{d}{ }^{s}$ and $l_{i j}=k$ then: if $1 \leqq k \leqq 2 t-1$ then

$$
\begin{equation*}
\chi\left(g^{2 k}+r g^{0}\right) \geqq 1, \quad \chi\left(g^{2 k}-s g^{0}\right) \geqq 0 \tag{4.10}
\end{equation*}
$$

are either both true or both false, and if $k=2 t$ then

$$
\begin{equation*}
\chi\left(g^{2 k}-s g^{0}\right) \leqq 0 \tag{4.11}
\end{equation*}
$$

where χ is the quadratic character of $G F(q)$. In case that $k<0,(4.10)$ and (4.11) hold with r and s interchanged. Finally, if either $A_{i i}{ }^{\prime}=\left(A_{d}{ }^{r}\right)^{c}$ or $A_{j}{ }^{\prime}=\left(A_{d}{ }^{s}\right)^{c}$, or both are true, then (4.10) and (4.11) hold with \geqq, § replaced by $<,>$ in those inequalities involving either r or s, or both r and s respectively.

Proof. Noting that, by definition (3.4), A_{d} corresponds to a self-complementary $P C$-graph of order q^{2} we may choose Q_{r} to be an isomorphism between the graph and its complement. Now, since

$$
\begin{equation*}
\left(A_{d}{ }^{r}\right)_{i j}=\left(\left(P^{r}\right)^{T} A_{d} P^{r}\right)_{i j}=A_{i j}{ }^{d} P\left[r\left(a_{i}-a_{j}\right)\right] \tag{4.12}
\end{equation*}
$$

calculations similar to those in (3.11) and (3.12) yield

$$
\begin{align*}
& \left(A_{d}{ }^{r} A_{k}\right)_{i j}=\left\{t(J-I) \sum_{n=1}^{2 t-1} P\left[g^{2 n}\left(g^{2 k}+r g^{0}\right)\right]\right. \tag{4.13}\\
& \left.\quad+[t(J+I)-J+F] \sum_{n=1}^{2 t-1} P\left[g^{2 n+1}\left(g^{2 k}+r g^{0}\right)\right]\right\} P\left[g^{2 k}\left(a_{i}+a_{j}\right)\right] \\
& \left(A_{k} A_{d}{ }^{s}\right)_{i j}=\left\{t(J-I) \sum_{n=1}^{2 t-1} P\left[-g^{2 n}\left(g^{2 k}-s g^{0}\right)\right]\right. \tag{4.14}\\
& \left.\quad+[t(J+I)-J+F] \sum_{n=1}^{2 t-1} P\left[-g^{2 n+1}\left(g^{2 k}-s g^{0}\right)\right]\right\} P\left[g^{2 k}\left(a_{i}+a_{j}\right)\right]
\end{align*}
$$

It is immediately verified that (3.7) holds if either $\chi\left(g^{2 k}+r g^{0}\right)=1, \chi\left(g^{2 k}-\right.$ $\left.s g^{0}\right)=0,1$ or $\chi\left(g^{2 k}+r g^{0}\right)=0,-1, \chi\left(g^{2 k}-s g^{0}\right)=-1$. The other cases follow along the same lines. The result is a consequence of Lemmas 3.1 and 3.2.

In order to demonstrate the construction techniques of this section we are going to exhibit all non-isomorphic $P C$-graphs on 45 nodes which can be derived from Theorem 4.1 and Theorem 4.2. For $t=1$ we have $p=5, q=3$ and the elements of $G F(3) \cong Z_{3}$ are numbered so that $a_{1}=1, a_{2}=2$ and
$a_{3}=0$. From the defining relations (3.2)-(3.6) applied to $G F(3)$ with primitive element $g=2$ we obtain:
(4.15) $A_{d}=\left[\begin{array}{lll}000 & 110 & 101 \\ 000 & 011 & 110 \\ 000 & 101 & 011 \\ 101 & 000 & 110 \\ 110 & 000 & 011 \\ 011 & 000 & 101 \\ 110 & 101 & 000 \\ 011 & 110 & 000 \\ 101 & 011 & 000\end{array}\right], A_{1}=\left[\begin{array}{lll}100 & 010 & 001 \\ 010 & 001 & 100 \\ 001 & 100 & 010 \\ 010 & 001 & 100 \\ 001 & 100 & 010 \\ 100 & 010 & 001 \\ 001 & 100 & 010 \\ 100 & 010 & 001 \\ 010 & 001 & 100\end{array}\right], A_{2}=\left[\begin{array}{ccc}001 & 001 & 001 \\ 001 & 001 & 001 \\ 001 & 001 & 001 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 010 & 010 & 010 \\ 010 & 010 & 010 \\ 010 & 010 & 010\end{array}\right]$

There are two non-equivalent skew-Latin squares of order 5: the circulant matrices with first rows $(0,1,2,-2,-1)$ and $(0,1,-2,2,-1)$ respectively. The unique $P C$-graph of order 5 and adjacency matrix \tilde{A} is a pentagon. It can be combined with each of the skew-Latin squares in 4 non-isomorphic ways, corresponding to the labellings $(1,2,3,4,5),(1,3,5,2,4),(1,2,3,5,4)$ and $(1,3,4,2,5)$. Using a computer analysis we established that all graphs obtained from the first skew-Latin square are isomorphic to those obtained from the second square. Thus, the construction in Theorem 4.1 generates 4 non-isomorphic $P C$-graphs of order 45 with adjacency matrices $A_{I}-A_{I V}$ given by:

$$
\begin{gather*}
{\left[\begin{array}{lllll}
A_{d} & A_{1} & \bar{A}_{2} & \bar{A}_{2}{ }^{T} & A_{1}{ }^{T} \\
A_{1}{ }^{T} & A_{d} & A_{1} & \bar{A}_{2} & \bar{A}_{2}{ }^{T} \\
\bar{A}_{2}{ }^{T} & A_{1}{ }^{T} & A_{d} & A_{1} & \bar{A}_{2} \\
\bar{A}_{2} & \bar{A}_{2}{ }^{T} & A_{1}{ }^{T} & A_{d} & A_{1} \\
A_{1} & \bar{A}_{2} & \bar{A}_{2}{ }^{T} & A_{1}{ }^{T} & A_{d}
\end{array}\right], A_{I I I}=\left[\begin{array}{lllll}
A_{d} & A_{1} & \bar{A}_{2} & A_{2}{ }^{T} & \bar{A}_{1}{ }^{T} \\
A_{1}{ }^{T} & A_{d} & A_{1} & \bar{A}_{2} & \bar{A}_{2}{ }^{T} \\
\bar{A}_{2}{ }^{T} & A_{1}{ }^{T} & A_{d} & \bar{A}_{1} & A_{2} \\
A_{2} & \bar{A}_{2}{ }^{T} & \bar{A}_{1}{ }^{T} & A_{d} & A_{1} \\
\bar{A}_{1} & \bar{A}_{2} & A_{2}{ }^{T} & A_{1}{ }^{T} & A_{d}
\end{array}\right],} \tag{4.16}\\
A_{I I}=\left(A_{i j}{ }^{I I}\right),
\end{gather*} \quad A_{i j}{ }^{I I}= \begin{cases}A_{d}, & i=j \\
\bar{A}_{i j}{ }^{I}, & i \neq j, \tag{4.17}\\
A_{I V}=\left(A_{i j}{ }^{I V}\right), \quad A_{i j}{ }^{I V}=\left\{\begin{array}{lll}
A_{d,}, & i=j \\
\bar{A}_{i j}{ }^{I I I}, & i \neq j,
\end{array}\right.\end{cases}
$$

where $\bar{A}_{k}=J-A_{k}$. Extending these matrices as in (1.7) we obtain 4 nonequivalent conference matrices $C_{I^{-}} C_{I V}$ of order 46 . Both C_{I} and $C_{I I}$ have automorphism groups of order 10 with orbits $(1 \times 1,1 \times 5,4 \times 10)(i \times j \Leftrightarrow$ i orbits of size j) representing 6 non-isomorphic $P C$-graphs per switching class with groups $(1 \times 10,1 \times 5,4 \times 1)(i \times j \Leftrightarrow i$ graphs with groups of order $j)$. Both $C_{I I I}$ and $C_{I V}$ have automorphism groups of order 2 with orbits $(6 \times 1$, 20×2) representing 26 graphs per switching class with groups $(6 \times 2,20 \times 1)$. All together we have generated 64 nonisomorphic $P C$-graphs of order 45,48 of which have trivial automorphism groups. We remark, that automorphisms of a symmetric conference matrix C are represented by ± 1 permutation matrices P such that $P^{T} C P=C$.

An exhaustive search for permutation matrix-combinations satisfying the conditions of Theorem 4.2 yields the following sets of diagonal blocks for A^{\prime} :

	$\left(1,1^{c}, 3,2^{c}, 3\right)$	$\left(1,3^{c}, 1^{c}, 2^{c}, 2^{c}\right)$	$\left(1,3^{c}, 2,3^{c}, 1^{c}\right)$
(4.18)	$\left(1,2,2,1^{c}, 3\right)$	$\left(2,1^{c}, 3,1,2\right)$	$\left(3,1,1^{c}, 3,2^{c}\right)$
	$(2,2,2,2,2)$	$\left(2,2,1^{c}, 3,1\right)$	$\left(3,1,2,2,1^{c}\right)$
	$(3,3,3,3,3)$	$\left(2,3^{c}, 1^{c}, 1,3^{c}\right)$	$\left(3,2^{c}, 3,1,1^{c}\right)$,

where the value r or r^{c} of the i-th component indicates that $A_{i i}{ }^{\prime}=A_{d}{ }^{r}$ or $\left(A_{d}{ }^{r}\right)^{c}$ respectively. Inserting the diagonal blocks represented by the first column in (4.18) (and the corresponding complementary sets) into A_{I} and $A_{\text {I }}$ we obtain after extension 8 conference matrices of type $(1 \times 1,1 \times 5,4 \times 5)$ with groups of order 10 and 8 matrices of type $(6 \times 1,20 \times 2)$ with groups of order 2. Inserting all sets of (4.18) (and their complements) into $A_{\text {III }}$ and $A_{I V}$ we obtain another 48 matrices of the second type. Hence, Theorem 4.2 yields a total of 64 non-equivalent symmetric C-matrices of order 46, generating 1504 non-isomorphic $P C$-graphs on 45 nodes, 1152 of which have trivial automorphism groups. We note that the $P C$-graphs (4.16) and (4.17) are included in those obtained from Theorem 4.2.

Many more $P C$-graphs (and C-matrices) can be constructed by permuting off-diagonal blocks in (4.9). So, for example, by setting

$$
\begin{align*}
& A_{12}^{I}=A_{12}{ }^{I I I}=\left(A_{21}{ }^{I}\right)^{T}=\left(A_{21}{ }^{I I I}\right)^{T}=A_{1} P^{2}, \tag{4.19}\\
& A_{52}{ }^{I}=A_{52}{ }^{I I I}=\left(A_{25}{ }^{I}\right)^{T}=\left(A_{25}{ }^{I I I}\right)^{T}=\bar{A}_{2} P,
\end{align*}
$$

in (4.16) and (4.17) we obtain $4 C$-matrices with groups of order 3 and orbits ($10 \times 1,12 \times 3$) representing $22 P C$-graphs per switching class with groups $(10 \times 3,12 \times 1)$ respectively.

References

1. V. Belevitch, Conference networks and Hadamard matrices, Ann. Soc. Scientifique Brux. T. 82 (1968), 13-32.
2. P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Repts. Suppl. No. 10 (1973).
3. J. M. Goethals, and J. J. Seidel, Orthogonal matrices with zero diagonal, Can. J. Math. 19 (1967), 1001-1010.
4. R. Mathon, 3-class association schemes, Proc. Conf. on Algebraic Aspects of Combinatorics, U. of Toronto (1975), 123-155.
5. J. J. Seidel, A survey of two-graphs, Proc. Int. Coll. Theorie Combinatorie, Acc. Naz. Lincei, Roma (1973).
6. R. J. Turyn, On C-matrices of arbitrary powers, Can. J. Math. 23 (1971), 531-535.
7. W. D. Wallis, A. Street, and J. Wallis, Combinatorics: Room Squares, Sum-Free Sets, Hadamard Matrices, Lecture Notes in Math. 292 (Springer-Verlag, New York, 1972).

University of Toronto
Toronto, Ontario

[^0]: Received November 10, 1976. This research was supported in part by the National Research Council of Canada.

