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Abstract

In this paper we discuss an exponential integrator scheme, based on spatial discretization
and time discretization, for a class of stochastic partial differential equations. We show
that the scheme has a unique stationary distribution whenever the step size is sufficiently
small, and that the weak limit of the stationary distribution of the scheme as the step
size tends to 0 is in fact the stationary distribution of the corresponding stochastic partial
differential equations.
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1. Introduction

The convergence and the stability of numerical schemes for finite-dimensional stochastic
differential equations (SDEs) have been extensively investigated; see, e.g. [18] and [22]. Nowa-
days, numerical approximate schemes for stochastic partial differential equations (SPDEs) are
also becoming more and more popular. There is extensive literature on strong/weak convergence
of approximate solutions for SPDEs. For instance, under a dissipative condition, Caraballo
and Kloeden [3] showed pathwise convergence of finite-dimensional approximations for a
class of reaction–diffusion equations. Applying the Malliavin calculus approach, Debussche
[7] discussed weak convergence of an implicit Euler scheme for the stochastic heat equation
with multiplicative noise. Greksch and Kloeden [8] investigated time-discretised Galerkin
approximations of parabolic SPDEs through an eigenfunction argument. Gyöngy [9], [10],
Shardlow [23], and Yoo [25] applied finite element methods to approximate solutions of
parabolic SPDEs driven by space–time white noise. Hausenblas [12], [13] utilized discretization
in time, including implicit Euler, explicit Euler, and Crank–Nicholson schemes, to approximate
quasilinear evolution equations. Higher-order pathwise numerical approximations of SPDEs
with additive noise was considered in [15]. For the Taylor approximations of SPDEs, we refer
the reader to the monograph [16].

There are few results however on the asymptotic behavior of numerical solutions for
infinite-dimensional SPDEs although the counterpart for the finite-dimensional case has been
extensively studied; see, e.g. [22]. In this work we will investigate the long-term behavior
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of a certain numerical scheme for a class of SPDEs. To begin with, we introduce some
notation and, thus, give the framework of our work. Let (H, 〈·, ·〉H, ‖ · ‖H) be a real separable
Hilbert space. Let idH : H → H be the identity operator, and denote by (L(H), ‖ · ‖) and
(LHS(H), ‖·‖HS) the families of bounded linear operators and Hilbert–Schmidt operators from
H into H , respectively. In this paper we consider an SPDE on the real separable Hilbert space
(H, 〈·, ·〉H, ‖ · ‖H) of the form

dX(t) = {AX(t) + b(X(t))} dt + σ(X(t)) dW(t) (1)

with initial value X(0) = x ∈ H , where W(t) is an H -valued cylindrical idH-Wiener process
defined on some probability space (�, F , P) with a filtration {Ft }t≥0 satisfying the usual
conditions, b : H → H is a Lipschitz continuous mapping, σ(x) := σ 0 + σ 1(x), x ∈ H , such
that σ 0 ∈ L(H), and σ 1 : H → LHS(H). The interested reader is referred to the classical
book [4] for further details on SPDEs.

Throughout the paper, we impose the following assumptions.

(H1) (A, D(A)) is a self-adjoint operator on H generating an immediately compact C0-
semigroup {etA}t≥0 such that ‖etA‖ ≤ e−αt for some α > 0. In this case, by [17,
Theorem 6.26 and Theorem 6.29], −A has a discrete spectrum {λi}i≥1 such that 0 <

λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · · and limi→∞ λi = ∞ with corresponding eigenbasis {ei}i≥1
of H .

(H2) There exist θ1 ∈ (0, 1) and δ1 ∈ (0, ∞) such that
∫ t

0 ‖(−A)θ1 esAσ 0‖2
HS ds ≤ δ1 for any

t > 0, where (−A)θ1 := ∑
k≥1 λ

θ1
k (ek ⊗ ek) denotes the fractional power of −A.

(H3) There exist L1, L2 > 0 such that

‖b(x)−b(y)‖H ≤ L1‖x−y‖H, ‖σ 1(x)−σ 1(y)‖HS ≤ L2‖x−y‖H, x, y ∈ H.

(H4) There exists γ ∈ R such that

2〈x − y, b(x) − b(y)〉H + ‖σ 1(x) − σ 1(y)‖2
HS ≤ −γ ‖x − y‖2

H, x, y ∈ H.

By [5, Theorem 5.3.1] we know that (H1)–(H3) imply existence and uniqueness of the mild
solution to (1), i.e. there exists a unique H -valued adapted process Xx(t) with the initial value
x ∈ H such that

Xx(t) = etAx +
∫ t

0
e(t−s)Ab(Xx(s)) ds +

∫ t

0
e(t−s)Aσ (Xx(s)) dW(s). (2)

Remark 1. In fact, under (H1), (H3), and
∫ t

0 ‖esAσ 0‖2
HS ds ≤ δ2 for any t > 0 and some

δ2 > 0, (1) also admits a unique mild solution on H . Condition (H2) is just imposed for
the later numerical analysis. Let σ 0 = idH, and let Ax := ∂2

ξ x for x ∈ D(A) := H 2(0, π) ∩
H 1

0 (0, π). Then A is a self-adjoint negative operator and Aek = −k2ek, k ∈ N, where ek(ξ) :=
(2/π)1/2 sin kξ, ξ ∈ [0, π ] and k ∈ N. A simple computation shows that

∫ t

0
‖(−A)θ1 esA‖2

HS ds =
∞∑

k=1

(k2)2θ1

∫ t

0
e−2k2s ds ≤ 1

2

∞∑
k=1

(k2)2θ1−1.

Then (H2) holds with δ1 = 1
2

∑∞
k=1(k

2)2θ1−1 for θ1 ∈ (0, 1
4 ).
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Remark 2. By (H3), it is readily seen that

‖b(x)‖2
H + ‖σ 1(x)‖2

HS ≤ L̄(1 + ‖x‖2
H), x ∈ H, (3)

where L̄ := 2((L2
1 + L2

2) ∨ μ) with μ := ‖b(0)‖2
H + ‖σ 1(0)‖2

HS. Moreover, by (H4) we have

2〈x, b(x)〉H + ‖σ 1(x)‖2
HS

= 2〈x, b(x) − b(0)〉H + ‖σ 1(x) − σ 1(0)‖2
HS + 2〈x, b(0)〉H

+ 2〈σ 1(x) − σ 1(0), σ 1(0)〉HS + ‖σ 1(0)‖2
HS

≤ −(γ − ε)‖x‖2
H + 2(L2

2 + 1 + ε)με−1, ε ∈ (0, 1), x ∈ H, (4)

where 〈T , S〉HS := ∑∞
i=1〈T ei, Sei〉H for S, T ∈ FHS(H).

Before defining the numerical scheme, we need to introduce some further notation. For
any n ∈ N, let πn : H → Hn := span{e1, . . . , en} be the orthogonal projection, i.e. πnx =∑n

i=1〈x, ei〉Hei, x ∈ H , let An := πnA ∈ L(Hn), let bn := πnb : Hn → Hn, and let σn :=
πnσ : Hn → LHS(Hn). Moreover, throughout the paper, let xn := πnx for arbitrary x ∈ U ,
where U is a bounded subset of H .

Consider the finite-dimensional approximation associated with (1) on Hn � R
n

dXn(t) = {AnX
n(t) + bn(X

n(t))} dt + σn(X
n(t)) dW(t), Xn(0) = xn. (5)

The spatial approximation (5) is also called the Galerkin approximation of (1). Owing to

πnAx = πnA

( n∑
i=1

〈x, ei〉Hei

)
= −

n∑
i=1

〈x, ei〉Hλiei, x ∈ Hn,

it follows that

Anx = Ax, etAnx = etAx, and 〈x, bn(y)〉H = 〈x, b(y)〉H (6)

for all x, y ∈ Hn. By (H3) and the property of πn, for x, y ∈ Hn, we have

‖An(x − y) + bn(x) − bn(y)‖2
H + ‖σ 1

n (x) − σ 1
n (y)‖2

HS ≤ 2(λ2
n + L2

1 + L2
2)‖x − y‖2

H.

Hence, under (H1) and (H3), (5) admits a unique strong solution {Xn
xn

(t)}t≥0 with the starting
point xn ∈ Hn.

Next we introduce the time-discretization scheme for (5). For a step size � ∈ (0, 1) and each
integer k ≥ 0, compute the discrete exponential integrator (EI) scheme Ȳ

n,�
xn

(k�) ≈ Xn
xn

(k�)

by setting Ȳ
n,�
xn

(0) := xn and forming

Ȳ n,�
xn

((k + 1)�) := e�An{Ȳ n,�
xn

(k�) + bn(Ȳ
n,�
xn

)� + σn(Ȳ
n,�
xn

(k�))�Wk}, (7)

where �Wk := W((k + 1)�) − W(k�), and define the continuous EI scheme by

Yn,�
xn

(t) := etAnxn +
∫ t

0
e(t−s�)Anbn(Y

n,�
xn

(s�)) ds +
∫ t

0
e(t−s�)Anσn(Y

n,�
xn

(s�)) dW(s),

(8)

where t� := �t/��� with �t/�� standing for the integer part of t/�. It is easy to see from (6)
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and (8) that

Yn,�
xn

(t) = e(t−s)AY n,�
xn

(s) +
∫ t

s

e(t−r�)Abn(Y
n,�
xn

(r�)) dr

+
∫ t

s

e(t−r�)Aσn(Y
n,�
xn

(r�)) dW(r), 0 ≤ s ≤ t. (9)

By Y
n,�
xn

(0) = Ȳ
n,�
xn

(0), we deduce from (7) and (9) that Y
n,�
xn

(k�) = Ȳ
n,�
xn

(k�), i.e. Y
n,�
xn

(t)

coincides with the discrete EI approximate solution at the grid points.

Remark 3. For finite-dimensional SDEs, the discrete/continuous Euler–Maruyama (EM)
scheme is standard; see, e.g. [20, p. 113]. The roots of constructing schemes (8) and (9)
go back to, e.g. [6] and [19].

For the discrete EI scheme (7), in this paper we are concerned with the following two
questions.

• Given n ∈ N, for what choices of the step size � ∈ (0, 1) does the EI scheme have a
unique stationary distribution?

• Will the stationary distribution of the EI scheme converge weakly to some probability
measure? If so, what is the weak limit probability measure?

In this paper we will give positive answers to these two questions.
It is also worth pointing out that, for the finite-dimensional case, by a Lyapunov–Foster

argument, Yuan and Mao [26] studied the asymptotic stability in distribution of EM numerical
solutions for a class of SDEs, and, by a global attractor approach, Yevik and Zhao [24]
investigated the existence of a stationary distribution of the EM scheme for random dynamical
systems associated with a class of SDEs. Comparing the EI scheme (7) with the EM scheme
for the finite-dimensional case, e.g. [20, p. 113], we note that the explicit EI scheme (7) is based
not only on spatial discretization but also on time discretization. Moreover, in (1), the linear
operator A is generally unbounded, and the diffusion coefficient is not Hilbert–Schmidt, so the
Itô formula does not apply. Therefore, our approaches are different from those in [24] and [26].
Furthermore, using Malliavin calculus, Bréhier [2] discussed the asymptotic behavior of the
invariant measure for an implicit Euler scheme associated with a class of parabolic SPDEs
driven by additive noise, where the drift coefficient is bounded.

The organization of this paper is as follows. In Section 2, for a given n ∈ N and a sufficiently
small step size � ∈ (0, 1), we show that the EI approximate solution {Ȳ n,�

xn
(k�)}k≥0, xn∈Hn

admits a unique stationary distribution under properties (P1) and (P2). In Section 3 we provide
some sufficient conditions such that (P1) and (P2) hold. In the last section we show that the
weak limit of the EI scheme as the step size tends to 0 is in fact the stationary distribution of (1).

2. Stationary distribution for the EI scheme

For fixed integer n ∈ N, arbitrary integer k ≥ 0, and  ∈ B(Hn), define the k-step transition
probability kernel for the discrete EI approximate solution Ȳ

n,�
xn

(k�) by

P
n,�
k (xn, ) := P(Ȳ n,�

xn
(k�) ∈ ).

Following the argument of [26, Theorem 1.2], we deduce the following result.

Lemma 1. It holds that {Ȳ n,�
xn

(k�)}k≥0 is a homogeneous Markov process.
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We still need to introduce some additional notation and notions. For a real separable Hilbert
space (K, ‖ · ‖K), let P (K) stand for the collection of all probability measures on K . For
P1, P2 ∈ P (K), define the metric dL as

dL(P1, P2) := sup
f ∈L

∣∣∣∣
∫

K

f (u)P1(du) −
∫

K

f (u)P2(du)

∣∣∣∣,

where L := {f : K → R : |f (u) − f (v)| ≤ ‖u − v‖K and |f (·)| ≤ 1}.
Remark 4. It is known that the weak convergence of probability measures is a metric con-
cept; see, e.g. [14, Proposition 2.5]. In other words, a sequence of probability measures
{Pk}k≥1 ∈ P (K) converges weakly to a probability measure P0 ∈ P (K) if and only if
limk→∞ dL(Pk, P0) = 0.

Definition 1. For a given n ∈ N and a given step size �, {Ȳ n,�
xn

(k�)}k≥0, xn∈Hn is said to

have a stationary distribution πn,� ∈ P (Hn) if limk→∞ dL(P
n,�
k (xn, ·), πn,�(·)) = 0 for every

xn ∈ Hn.

Definition 2. For a given n ∈ N and a given step size �, {Ȳ n,�
xn

(k�)}k≥0, xn∈Hn is said to have
property (P1) if

sup
k≥0

sup
xn∈U

E‖Ȳ n,�
xn

(k�)‖2
H < ∞,

while it is said to have property (P2) if

lim
k→∞ sup

xn,yn∈U

E‖Ȳ n,�
xn

(k�) − Ȳ n,�
yn

(k�)‖2
H = 0,

where U is a bounded subset of Hn.

We now state our main result in this section.

Theorem 1. Assume that (P1) and (P2) hold. Then, for a given n ∈ N and a given step size �,
{Ȳ n,�

xn
(k�)}k≥0, xn∈Hn has a unique stationary distribution πn,� ∈ P (Hn).

Proof. For fixed n ∈ N, we note that Hn � R
n is finite dimensional, and choose a bounded

subset U ⊆ Hn such that xn, yn ∈ U . Following the argument used to derive [26, Lemma 2.4
and Lemma 2.6], we deduce that

lim
k→∞ sup

xn,yn∈U

dL(P
n,�
k (xn, ·), P

n,�
k (yn, ·)) = 0, (10)

and that, invoking Lemma 1, there exists πn,� ∈ P (Hn) such that

lim
k→∞ dL(P

n,�
k (0, ·), πn,�(·)) = 0. (11)

Then the desired assertion follows from (10), (11), and the triangle inequality

dL(P
n,�
k (xn, ·), πn,�(·)) ≤ dL(P

n,�
k (xn, ·), P

n,�
k (0, ·)) + dL(P

n,�
k (0, ·), πn,�(·)).
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3. Sufficient conditions for properties (P1) and (P2)

To make Theorem 1 more applicable, in this section we give some sufficient conditions for
(P1) and (P2) to hold. In what follows, C > 0 is a generic constant whose values may change
from line to line. For notational simplicity, let

Zn,�(t) :=
∫ t

0
e(t−s�)Aσ 0

n dW(s) and Ỹ n,�
xn

(t) := Yn,�
xn

(t) − Zn,�(t).

Lemma 2. Under (H1)–(H3),

E‖Ỹ n,�
xn

(t) − Ỹ n,�
xn

(t�)‖2
H ≤ β1�(1 + E‖Ỹ n,�

xn
(t�)‖2

H), t ≥ 0, (12)

where β1 := 3{(λ2
n + 2L̄) ∨ (2L̄(1 + ‖(−A)−θ1‖2δ1))}.

Proof. Observe from (8) that

Ỹ n,�
xn

(t) = etAxn +
∫ t

0
e(t−s�)Abn(Y

n,�
xn

(s�)) ds +
∫ t

0
e(t−s�)Aσ 1

n (Y n,�
xn

(s�)) dW(s). (13)

Then, by the Hölder inequality, the Itô isometry, and (H1), we have

E‖Ỹ n,�
xn

(t) − Ỹ n,�
xn

(t�)‖2
H

≤ 3

{
E‖(e(t−t�)A − idH)Ỹ n,�

xn
(t�)‖2

H + E

∫ t

t�
‖b(Y n,�

xn
(s�))‖2

H ds

+ E

∫ t

t�
‖σ 1(Y n,�

xn
(s�))‖2

HS ds

}

=: 3{I1(t) + I2(t) + I3(t)}. (14)

Recalling the fundamental inequality 1 − e−y ≤ y, y > 0, from (H1) we obtain

‖(e(t−t�)A − idH)u‖2
H ≤ (1 − e−λn(t−t�))2‖u‖2

H ≤ λ2
n�2‖u‖2

H, u ∈ Hn. (15)

Thus, we arrive at
I1(t) ≤ λ2

n�2
E‖Ỹ n,�

xn
(t�)‖2

H. (16)

Note that, from the Itô isometry, (H1), and (H2),

E‖Zn,�(t)‖2
H =

∫ t

0
‖e(s−s�)Ae(t−s)Aσ 0

n ‖2
HS ds

≤
∫ t

0
‖(−A)−θ1(−A)θ1 e(t−s)Aσ 0

n ‖2
HS ds

≤ ‖(−A)−θ1‖2
∫ t

0
‖(−A)θ1 e(t−s)Aσ 0‖2

HS ds

≤ ‖(−A)−θ1‖2δ1. (17)

Thus, by (3) and (17), it follows that

I2(t) + I3(t) ≤ �E{‖b(Y n,�
xn

(t�))‖2
H + ‖σ 1(Y n,�

xn
(t�))‖2

HS}
≤ 2L̄�{1 + E‖Ỹ n,�

xn
(t�)‖2

H + E‖Zn,�(t�)‖2
H}

≤ 2L̄�{1 + ‖(−A)−θ1‖2δ1 + E‖Ỹ n,�
xn

(t�)‖2
H}. (18)

As a result, (12) follows by substituting (16) and (18) into (14).
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Theorem 2. Let (H1)–(H4) hold, and assume further that 2α + γ > 0. If � < min{1, (2α +
γ )2/(4ρ2

1 )} then
sup
t≥0

sup
xn∈U

E‖Yn,�
xn

(t)‖2
H < ∞, (19)

where

ρ1 := 2 +
( |14α − γ |2

64
+ 2L̄ + |14α − γ |

8

)
β1 + 2(1 + β1 + λ2

nL̄)

and U is a bounded subset of Hn. Hence, property (P1) holds whenever the step size � is
sufficiently small.

Proof. Note that (13) can be rewritten in the differential form

dỸ n,�
xn

(t) = {AỸ n,�
xn

(t) + e(t−t�)Abn(Y
n,�
xn

(t�))} dt + e(t−t�)Aσ 1
n (Y n,�

xn
(t�)) dW(t) (20)

with Ỹ
n,�
xn

(0) = xn. For any ν > 0, by Itô’s formula, from (20) and (H1), we obtain

E(eνt‖Ỹ n,�
xn

(t)‖2
H)

≤ ‖x‖2
H + E

∫ t

0
eνs{−(2α − ν)‖Ỹ n,�

xn
(s)‖2

H + 2〈Ỹ n,�
xn

(s), e(s−s�)Abn(Y
n,�
xn

(s�))〉H

+ ‖σ 1(Y n,�
xn

(s�))‖2
HS} ds. (21)

Since
‖Ỹ n,�

xn
(t)‖2

H = ‖Ỹ n,�
xn

(t�)‖2
H + 2〈Ỹ n,�

xn
(t�), Ỹ n,�

xn
(t) − Ỹ n,�

xn
(t�)〉H

+ ‖Ỹ n,�
xn

(t) − Ỹ n,�
xn

(t�)‖2
H, (22)

it follows from (21) that

E(eνt‖Ỹ n,�
xn

(t)‖2
H) ≤ ‖x‖2

H + E

∫ t

0
eνs{−(2α − ν)‖Ỹ n,�

xn
(s�)‖2

H + ‖σ 1(Y n,�
xn

(s�))‖2
HS

+ 2〈Yn,�
xn

(s�), b(Y n,�
xn

(s�))〉H

− 2(2α − ν)〈Ỹ n,�
xn

(s�), Ỹ n,�
xn

(s) − Ỹ n,�
xn

(s�)〉H

− (2α − ν)‖Ỹ n,�
xn

(s) − Ỹ n,�
xn

(s�)‖2
H

+ 2〈Ỹ n,�
xn

(s) − Ỹ n,�
xn

(s�), b(Y n,�
xn

(s�))〉H

− 2〈Zn,�(s�)), b(Y n,�
xn

(s�))〉H

+ 2〈Ỹ n,�
xn

(s), (e(s−s�)A − idH)bn(Y
n,�
xn

(s�))〉H} ds.

This, together with (4), yields

E(eνt‖Ỹ n,�
xn

(t)‖2
H)

≤ ‖x‖2
H − (2α + γ − ε − ν)E

∫ t

0
eνs‖Ỹ n,�

xn
(s�)‖2

H ds
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+ E

∫ t

0
eνs{−2(2α − ν)〈Ỹ n,�

xn
(s�), Ỹ n,�

xn
(s) − Ỹ n,�

xn
(s�)〉H

− (2α − ν)‖Ỹ n,�
xn

(s) − Ỹ n,�
xn

(s�)‖2
H

+ 2〈Ỹ n,�
xn

(s) − Ỹ n,�
xn

(s�), b(Y n,�
xn

(s�))〉H} ds

+ 2E

∫ t

0
eνs〈Ỹ n,�

xn
(s), (e(s−s�)A − idH)bn(Y

n,�
xn

(s�))〉H ds

+ E

∫ t

0
eνs{2(L2

2 + 1 + ε−1)με−1 − 2〈Zn,�(s�), b(Y n,�
xn

(s�))〉H

− 2(γ − ε)〈Zn,�(s�), Ỹ n,�
xn

(s�))〉H − (γ − ε)‖Zn,�(s�)‖2
H} ds

=: J1(t) + J2(t) + J3(t) + J4(t). (23)

By the elementary inequality 2ab ≤ κa2 + b2/κ, a, b ∈ R, κ > 0, and (12), we arrive at

J2(t) ≤ E

∫ t

0
eνs{2�1/2‖Ỹ n,�

xn
(s�)‖2

H + 2−1�1/2 + �1/2‖Zn,�(s�)‖2
H

+ {(|2α − ν|2 + 2L̄)�−1/2 + |2α − ν|}‖Ỹ n,�
xn

(s) − Ỹ n,�
xn

(s�)‖2
H} ds,

where in the last step we used (3). Combining (12) with (17), we thus obtain

J2(t) ≤
∫ t

0
eνs{{2 + (|2α − ν|2 + 2L̄ + |2α − ν|)β1}�1/2

E‖Ỹ n,�
xn

(s�)‖2
H

+ {1 + ‖(−A)−θ1‖2δ1 + (|2α − ν|2 + 2L̄ + |2α − ν|)β1}�1/2} ds. (24)

On the other hand, we deduce from (3), (15), (17), and (22) that

J3(t) ≤ E

∫ t

0
eνs{2�1/2‖Ỹ n,�

xn
(s�)‖2

H + 2�1/2‖Ỹ n,�
xn

(s) − Ỹ n,�
xn

(s�)‖2
H

+ �−1/2‖(e(s−s�)A − idH)bn(Y
n,�
xn

(s�))‖2
H} ds

≤
∫ t

0
eνs{2(1 + β1 + λ2

nL̄)�1/2
E‖Ỹ n,�

xn
(s�)‖2

H

+ 2(β1 + λ2
nL̄(1 + ‖(−A)−θ1‖2δ1))�1/2} ds. (25)

Furthermore, due to (3) and (17), for arbitrary κ > 0, we have

J4(t) ≤ E

∫ t

0
eνs{2(L2

2 + 1 + ε−1)με−1 + κ−1‖Zn,�(s�)‖2
H + κ‖b(Y n,�

xn
(s�))‖2

H

+ |γ − ε|2κ−1‖Zn,�(s�)‖H + κ‖Ỹ n,�
xn

(s�)‖2
H + |γ − ε|‖Zn,�(s�)‖2

H} ds
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≤
∫ t

0
eνs{κL̄ + (κ−1 + 2κL̄ + |γ − ε|2κ−1 + |γ − ε|)‖(−A)−θ1‖2δ1

+ 2(L2
2 + 1 + ε−1)με−1 + (1 + 2L̄)κE‖Ỹ n,�

xn
(s�)‖2

H} ds.

In particular, taking ε = ν = (2α + γ )/8 and κ = (2α + γ )/(4(1 + 2L̄)) yields

J4(t) ≤
∫ t

0
eνs{4−1(2α + γ )E‖Ỹ n,�

xn
(s�)‖2

H + C} ds. (26)

Substituting (24)–(26) into (23), we deduce that

E(eνt‖Ỹ n,�
xn

(t)‖2
H) ≤ ‖x‖2

H + C

∫ t

0
eνs ds − 2α + γ − 2ρ1�1/2

2
E

∫ t

0
eνs‖Ỹ n,�

xn
(s�)‖2

H ds.

For � < (2α + γ )2/(4ρ2
1 ), it is trivial to see that 2α + γ − 2ρ1�1/2 > 0. Thus, we have

sup
t≥0

sup
xn∈U

E(‖Ỹ n,�
xn

(t)‖2
H) < ∞.

Finally, recalling that Ỹ
n,�
xn

(t) = Y
n,�
xn

(t) − Zn,�(t), (19) follows from (17).

By an argument similar to that used to prove Theorem 2, we can also derive the following
result which states that solutions of (8) starting from different values will be sufficiently close
as time tends to ∞.

Theorem 3. Let the assumptions of Lemma 2 hold. If � < min{1, (2α + γ )2/(4ρ2
2 )} then

lim
t→∞ sup

xn,yn∈U

E‖Yn,�
xn

(t) − Yn,�
yn

(t)‖2
H = 0,

where ρ2 := 6(λ2
n + L̄)(|2α −γ |+1)+3+7L̄+λ2

nL̄+6λ2
n and U is a bounded subset of Hn.

Hence, property (P2) holds whenever the step size � is sufficiently small.

4. Weak limit distribution

In Section 3 we gave some sufficient conditions for (7) to have a unique stationary distribution
πn,� ∈ P (Hn) for a fixed n and a sufficiently small step size � ∈ (0, 1). In this section
we proceed to discuss the weak limit behavior of πn,� ∈ P (Hn) and answer the following
questions.

• Will the stationary distribution πn,�(·) converge weakly to some probability measure in
P (H) whenever n → ∞ and � → 0?

• If yes, what is the weak limit probability measure?

Denote {Xx(t)}t≥0, x∈H by the mild solution of (1) starting from the point x at time t = 0,
which is a homogeneous Markov process. For any subset  ⊂ B(H) and arbitrary t ≥ 0, let
Pt (x, ) := P(Xx(t) ∈ ).

Definition 3. We say that {Xx(t)}t≥0, x∈H has a stationary distribution π(·) ∈ P (H) if
limt→∞ dL(Pt (x, ·), π(·)) = 0.
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To study the limit behavior of πn,�(·), we first give several auxiliary lemmas.

Lemma 3. Let (H1)–(H4) hold, and assume further that 2α + γ > 0. Then the mild solution
{Xx(t)}t≥0, x∈H of (1) has a unique stationary distribution π(·) ∈ P (H).

Proof. We note that Bao et al. [1, Theorem 3.1] investigated the stationary distribution of
(1) with σ 0 = 0, i.e. the diffusion coefficient there is a Hilbert–Schmidt operator. For σ 0 �= 0,
note that σ is not Hilbert–Schmidt. Therefore, [1, Theorem 3.1] does not apply to (1). Let

Z̄(t) :=
∫ t

0
e(t−s)Aσ 0 dW(s) and X̄x(t) := Xx(t) − Z̄(t).

Then (1) can be rewritten in the form

dX̄x(t) = {AX̄x(t) + b(Xx(t))} dt + σ 1(Xx(t)) dW(t). (27)

To be precise, (27) is first meant in the mild sense. But, under (H1)–(H3), it also has a unique
variation solution, and, therefore, the Itô formula applies to ‖X̄x(t)‖2

H. By arguments similar
to those used in the proofs of Theorem 2 and Theorem 3, respectively, for some bounded subset
U ⊆ H , we deduce that

sup
t≥0

sup
x∈U

E‖Xx(t)‖2
H < ∞ (28)

and
lim

t→∞ sup
x,y∈U

E‖Xx(t) − Xy(t)‖2
H = 0.

Then, following the argument used in [1, Proof of Theorem 3.1], we obtain the desired assertion.

Lemma 4. Let (H1) and (H2) hold, and assume further that there exist δ2 > 0 and θ2 ∈ (0, 1)

such that ∫ �

0
‖esAσ 0‖2

HS ds ≤ δ2�θ2 . (29)

Then
sup
t≥0

E‖Z̄(t) − Z̄(t�)‖2
H ≤ C�θ1∧θ2 , (30)

where C > 0 is a constant independent of �.

Proof. Recall from [21, Theorem 6.13] that there exists C1 > 0 such that

‖(−A)α1 etA‖ ≤ C1t
−α1 , ‖(−A)−α2(1 − etA)‖ ≤ C1t

α2 , (31)

for arbitrary α1 ≥ 0 and α2 ∈ [0, 1], and that

(−A)α3+α4x = (−A)α3(−A)α4x, x ∈ D((−A)γ ), (32)

for any α3, α4 ∈ R, where γ := max{α3, α4, α3 + α4}. In light of the independent increment
of the Wiener process and Itô’s isometry,

E‖Z̄(t) − Z̄(t�)‖2
H =

∫ t�

0
‖(e(t−t�)A − idH)e(t�−s)Aσ 0‖2

HS ds +
∫ t

t�
‖e(t−s)Aσ 0‖2

HS ds.
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This, combining (H2), (29), and (31) with (32), yields

E‖Z̄(t) − Z̄(t�)‖2
H ≤

∫ t�

0
‖(−A)−θ1(e(t−t�)A − idH)‖2 · ‖(−A)θ1e(t�−s)Aσ 0‖2

HS ds

+
∫ �

0
‖esAσ 0‖2

HS ds

≤ (C2
1δ1 + δ2)�θ1∧θ2 ,

completing the proof.

Remark 5. Let σ 0 = idH, and let A be the Laplace operator defined in Remark 1. A straight-
forward computation shows that

∫ �

0
‖esA‖2

HS ds = 1

2

∞∑
k=1

1

k2 (1 − e−2k2�). (33)

Recall that, for arbitrary δ ∈ (0, 1) and x, y ≥ 0,

|e−x − e−y | ≤ |x − y|δ. (34)

It then follows from (33) and (34) that

∫ �

0
‖esA‖2

HS ds ≤ 2δ−1�δ
∞∑

k=1

1

k2(1−δ)
.

Hence, (29) holds with δ2 = 2δ−1 ∑∞
k=1 1/k2(1−δ) and θ2 = δ ∈ (0, 1

2 ).

Lemma 5. Let the assumptions of Lemma 3 hold, and let

τ := α−1L1 + (2α)−1/2L2 ∈ (0, 1). (35)

Then

sup
t≥0

E‖Xx(t) − Yn,�
xn

(t)‖2
H ≤ C{λ−(θ1∧1/2)

n + �θ1∧θ2},

where C > 0 is a constant dependent on x ∈ H but independent of n and �.

Proof. By (3) and (28), it follows that

sup
t≥0

E‖b(Xx(t))‖2
H + sup

t≥0
E‖σ 1(Xx(t))‖2

HS ≤ C. (36)

Note that (E‖ · ‖2
H)1/2 is a norm and recall from [11, Theorem 202] the Minkowski integral

inequality, (
E

∣∣∣∣
∫ t

0
F(s) ds

∣∣∣∣
2)1/2

≤
∫ t

0
(E|F(s)|2)1/2 ds, t ≥ 0,
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where F : [0, ∞) × � → R is measurable and locally integrable. Then, applying the Itô
isometry and using (H1), we obtain, from (2),

(E‖X̄x(t) − X̄x(t�)‖2
H)1/2

≤ ‖et�A{e(t−t�)A − 1}x‖H

+
∫ t�

0
(E‖e(t�−s)A{e(t−t�)A − idH}b(Xx(s))‖2

H)1/2 ds

+
(∫ t�

0
E‖e(t�−s)A{e(t−t�)A − idH}σ 1(Xx(s))‖2

HS ds

)1/2

+
∫ t

t�
(E‖b(Xx(s))‖2

H)1/2 ds +
(∫ t

t�
E‖σ 1(Xx(s))‖2

HS ds

)1/2

=: F1(t) + F2(t) + F3(t) + F4(t) + F5(t). (37)

Let ρ := (θ1 ∧ θ2)/2. In view of (31), (32), (H1), and the boundedness of (−A)−(1−ρ/2), we
have

F1(t) = ‖(−A)−(1−ρ/2)et�A(−A)−ρ/2{e(t−t�)A − idH}(−A)x‖2
H

≤ C‖(−A)−(1−ρ/2)‖2‖Ax‖2
H�ρ.

Also, by (31) and (32), from (36), we obtain, for θ̃ ∈ (0, 1),

5∑
k=2

Fk(t) ≤ C�1/2 + C�ρ

∫ t�

0
(θ̃s)−ρe−α(1−θ̃ )s ds + C�ρ

(∫ t�

0
(θ̃s)−2ρe−2α(1−θ̃ )s ds

)1/2

.

(38)
Observe that

∫ t�

0
s−ρe−α(1−θ̃ )s ds ≤ (α(1 − θ̃ ))ρ−1

∫ ∞

0
s−ρe−s ds = (α(1 − θ̃ ))ρ−1(1 − ρ),

and, similarly, ∫ t�

0
s−2ρe−2α(1−θ̃ )s ds ≤ (2α(1 − θ̃ ))2ρ−1(1 − 2ρ),

where (·) is the gamma function. Hence,

4∑
k=2

Fk(t) ≤ C�(θ1∧θ2)/2.

This, together with the estimate of F1(t), gives

sup
t≥0

E‖X̄x(t) − X̄x(t�)‖2
H ≤ C�θ1∧θ2 .

Noting that X̄x(t) = Xx(t) − Z̄(t) and utilizing (30), we have

sup
t≥0

E‖Xx(t) − Xx(t�)‖2
H ≤ C�θ1∧θ2 . (39)
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Since
‖(idH − πn)(−A)−θ1u‖2

H ≤ λ−2θ1
n ‖u‖2

H, u ∈ H,

we arrive at
‖(idH − πn)(−A)−θ1‖2 ≤ λ−2θ1

n . (40)

By virtue of the Itô isometry, (H2), (40), (31), and (32), it follows that

E‖Z̄(t) − Zn,�(t)‖2
H ≤ 2‖(idH − πn)(−A)−θ1‖2

∫ t

0
‖(−A)θ1 esAσ 0‖2

HS ds

+ C�2θ1

∫ t

0
‖(−A)θ1 esAσ 0

n ‖2
HS ds

≤ C(λ−2θ1
n + �2θ1). (41)

Following the argument used to obtain (37), we have

(E‖X̄x(t) − Ỹ n,�
xn

(t)‖2
H)1/2

≤ ‖etA(idH − πn)x‖H

+
∫ t

0
‖e(t−s)A(idH − πn)‖(E‖b(Xx(s))‖2

H)1/2 ds

+
(∫ t

0
‖e(t−s)A(idH − πn)‖2

E‖σ 1(Xx(s))‖2
HS ds

)1/2

+
∫ t

0
‖e(t−s)A‖(E‖bn(Xx(s)) − bn(Xx(s�))‖2

H)1/2 ds

+
(∫ t

0
‖e(t−s)A‖2

E‖σ 1
n (Xx(s)) − σ 1

n (Xx(s�))‖2
HS ds

)1/2

+
∫ t

0
‖e(t−s)A‖(E‖bn(Xx(s�)) − bn(Y

n,�
xn

(s�))‖2
H)1/2 ds

+
(∫ t

0
‖e(t−s)A‖2

E‖σ 1
n (Xx(s�)) − σ 1

n (Y n,�
xn

(s�))‖2
HS ds

)1/2

+
∫ t

0
‖e(t−s)A{idH − e(s−s�)A}‖(E‖b(Y n,�

xn
(s�))‖2

H)1/2 ds

+
(∫ t

0
‖e(t−s)A{idH − e(s−s�)A}‖2

E‖σ 1(Y n,�
xn

(s�))‖2
HS ds

)1/2

=:
9∑

i=1

Gi(t). (42)

A straightforward computation shows that

‖etA(idH − πn)u‖2
H =

∞∑
i=n+1

e−2λi t 〈u, ei〉2
H, u ∈ H.

This further gives
‖etA(idH − πn)‖2 ≤ e−2λnt (43)
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and

G1(t) ≤
( ∞∑

i=n+1

e−2λi t

λ2
i

λ2
i 〈x, ei〉2

H

)1/2

≤ λ−1
n ‖Ax‖H (44)

by recalling that {λi}i≥1 is a nondecreasing sequence. By (36) and (43), we have

3∑
i=2

Gi(t) ≤ C

∫ t

0
‖e(t−s)A(idH − πn)‖ ds + C

(∫ t

0
‖e(t−s)A(idH − πn)‖2 ds

)1/2

≤ C

∫ t

0
e−λn(t−s) ds + C

(∫ t

0
e−2λn(t−s) ds

)1/2

≤ C(λ−1
n + λ

−1/2
n ). (45)

Taking (H1), (H3), and (39) into account gives

G4(t) + G5(t) ≤ C�(θ1∧θ2)/2. (46)

Next, note from (H1) and (H3) that

G6(t) + G7(t)

≤ α−1 sup
0≤s≤t

(E‖b(Xx(s�)) − b(Y n,�
xn

(s�))‖2
H)1/2

+ (2α)−1/2 sup
0≤s≤t

(E‖σ 1(Xx(s�)) − σ 1(Y n,�
xn

(s�))‖2
H)1/2

≤ τ sup
0≤s≤t

(E‖X̄x(s) − Ỹ n,�
xn

(s)‖2
H)1/2 + τ sup

0≤s≤t

(E‖Z̄(s) − Zn,�(s)‖2
H)1/2, (47)

where τ ∈ (0, 1) is defined by (35). Following the argument used to obtain (38), we have

G8(t) + G9(t) ≤ C�(θ1∧θ2)/2. (48)

Substituting (44)–(48) into (42) yields

sup
t≥0

(E‖X̄x(t) − Ỹ n,�
xn

(t)‖2
H)1/2 ≤ C(λ

−1/2
n + �(θ1∧θ2)/2)

due to τ ∈ (0, 1). Consequently, the desired assertion follows from (41).

Theorem 4. Assume that (H1)–(H4), (29), and (35) hold. Then there exists a �n such that
limn→∞ �n = 0 and

lim
n→∞ dL(πn,�n(·), π(·)) = 0.

Proof. Fix x ∈ H , and let ε > 0 be arbitrary. By Lemma 5, there exist a sufficiently large
n ∈ N and a �̄n sufficiently small such that

dL(Pk�̄n
(x, ·), P

n,�̄n

k (xn, ·)) ≤ 1
3ε.

For the previous n ∈ N, by Theorem 1, there exist a sufficiently small �̃n and T1 > 0 such that

dL(P
n,�̃n

k (xn, ·), πn,�̃n(·)) ≤ 1
3ε
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whenever k�̃n ≥ T1. Furthermore, owing to Lemma 3, there exists T2 > 0 such that

dL(Pt (x, ·), π(·)) ≤ 1
3ε, t ≥ T2.

Let T := T1 ∨ T2, �n = �̄n ∧ �̃n, and k = [T/�n] + 1. Then the desired assertion follows
from the triangle inequality

dL(πn,�(·), π(·)) ≤ dL(Pk�(x, ·), π(·)) + dL(Pk�(x, ·), P
n,�
k (xn, ·))

+ dL(P
n,�
k (xn, ·), πn,�(·)).

Remark 6. For the finite-dimensional case, finite-time convergence is enough to discuss the
limit of the stationary distribution for the numerical scheme; see, e.g. [20, Theorem 6.23].
For the infinite-dimensional case, we need the uniform convergence of EI scheme (7) to get
the limit behavior of πn,�, which is quite different from the finite-dimensional case. In fact,
for finite-time convergence of EI scheme (8), condition (35) can be removed by checking the
argument of Lemma 5 and taking the Gronwall inequality into consideration.
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