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Abstract

We prove that the groups presented by finite convergent monadic rewriting systems with generators of
finite order are exactly the free products of finitely many finite groups, thereby confirming Gilman’s
conjecture in a special case. We also prove that the finite cyclic groups of order at least three are the only
finite groups admitting a presentation by more than one finite convergent monadic rewriting system (up
to relabelling), and these admit presentation by exactly two such rewriting systems.
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1. Introduction

A string rewriting system for a group G comprises a set Σ of monoid generators for
the group and a set T of rewriting rules which proclaim that certain forbidden words
in the generators may be replaced by other preferred words that spell the same group
element. Viewed in this way, group elements are equivalence classes of words, with
words equivalent if they are related in the reflexive, symmetric and transitive closure
of the rewriting rules. Words with no forbidden subwords are natural candidates for
normal forms. Under certain hypotheses one may understand how to apply rewriting
rules to solve the word problem, and related problems, in G. A program exists to
characterise algebraically those groups that admit presentation by various subclasses
of string rewriting systems.

Finite convergent monadic rewriting systems provide a particularly fast solution to
the word problem because in such systems rewriting rules are length reducing and
each equivalence class of words contains a unique irreducible (normal form) which
is necessarily the shortest word in the equivalence class. To compute the irreducible
for an arbitrary word w ∈ Σ∗ one repeatedly replaces a forbidden subword by a single
generator or the empty word until no forbidden subwords remain. The existence of
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such a simple and efficient solution to the word problem has significant algebraic
consequences. For example, any group G admitting such a solution to the word
problem is virtually free [5, Theorem 5].

In 1984 Gilman conjectured that a group G can be described by a finite convergent
monadic rewriting system if and only if G is a plain group [6]. A group is plain
if it can be decomposed as a free product of finitely many finite groups and finitely
many infinite cyclic groups. The plain groups form a proper subclass of the finitely
generated virtually free groups [5, Corollary 1]. Gilman’s conjecture is known to hold
in a number of special cases. In particular, it holds:

• if all forbidden words are to be replaced by the empty word [4] (see also [9]), in
which case G decomposes as a free product of finitely many cyclic groups;

• if |Σ| ≤ 2, in which case G is either a finite group or an infinite cyclic group or a
free product of a finite cyclic group and a cyclic group [8, Theorem 3.4];

• if G is torsion-free, because a torsion-free virtually free group is necessarily a free
group [10, Theorem 11];

• if G is virtually abelian [5];
• if every element of Σ has a group inverse in Σ [1]; or
• if all forbidden words have length two [2].

Despite this excellent progress, Gilman’s conjecture in its full generality is yet to be
confirmed or refuted. Perhaps this is surprising given the number of other known or
suspected characterisations of the plain groups. The plain groups are exactly:

• the fundamental groups of finite graphs of groups in which vertex groups are finite
and edge groups trivial [12];

• the groups admitting a finite group presentation with a simple reduced word
problem [7];

• the groups presented by finite rewriting systems that are convergent on at least the
equivalence class containing the empty word and in which all forbidden words
are to be replaced by the empty word and every element of Σ has an inverse in
Σ [9].

Shapiro [13] asked whether or not the plain groups are exactly the groups admitting a
finite group generating set with respect to which the Cayley graph is geodetic.

In the present paper we prove that the groups presented by finite convergent
monadic rewriting systems with generators of finite order are exactly the free products
of finitely many finite groups, thereby confirming that Gilman’s conjecture holds in
another special case. We also prove that a normalised finite convergent monadic
rewriting system (Σ, T ) which presents a finite group G is either the nontrivial part
of the multiplication table for G, or |Σ| = |T | = 1 and G is a finite cyclic group of order
at least three. It is therefore easy to determine whether or not the group presented by a
normalised finite convergent monadic rewriting system is finite.
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2. Rewriting systems

In this section we recall standard notation, vocabulary and well-known results
concerning rewriting systems. A comprehensive account of the results mentioned can
be found in [3].

For a nonempty set Σ, we write Σ∗ for the set of finite words in symbols from Σ

(including the empty word λ). Equipped with the operation of concatenation, Σ∗ is the
free monoid on Σ. We write ≡ for equality in Σ∗. For all w ∈ Σ∗, we write |w| for the
length of w, and we write w j to represent the concatenation of j copies of w.

A rewriting system (Σ, T ) comprises a nonempty set Σ of letters, and a set T ⊆
Σ∗ × Σ∗ of rewriting rules. The set dom(T ) := {` ∈ Σ∗ | (`, r) ∈ T for some r ∈ Σ∗} is
the domain of the rewriting system. The elements of dom(T ) are called forbidden
words. For u, v ∈ Σ∗ we write u→ v if there exist x, y ∈ Σ∗ and (`, r) ∈ T such that
u ≡ x`y and v ≡ xry; that is, v is obtained from u by replacing a forbidden subword by
the preferred word indicated by a rewriting rule. A word u ∈ Σ∗ is reducible if there
exist x, y ∈ Σ∗ and ` ∈ dom(T ) such that u ≡ x`y, and irreducible otherwise. We write
→∗ for the reflexive and transitive closure of →. We say that v ∈ Σ∗ is a reduction
of u if u→∗ v. We write ↔∗ for the symmetric closure of →∗. It follows that ↔∗ is
an equivalence relation respecting concatenation, and G = Σ∗/↔∗ is a monoid with
identity element represented by λ. We say that G is presented by the rewriting system
(Σ, T ). We are interested in the case where G is a group. This holds if and only if for
all a ∈ Σ there exists wa ∈ Σ∗ such that awa ↔

∗ λ↔∗ waa.
A general rewriting system may be unwieldy, or ineffective for solving the word

problem. Some addition properties are desirable. We say that (Σ, T ) is: terminating
(or Noetherian) if there is no infinite sequence of words u0, u1, . . . , ∈ Σ∗ such that
ui → ui+1 for all i; Church–Rosser if whenever u↔∗ v, there exists x ∈ Σ∗ such that
u→∗ x and v→∗ x; and convergent if it is both terminating and Church–Rosser. If
(Σ, T ) is a convergent rewriting system and u, v ∈ Σ∗, then rewriting rules can be used
to demonstrate u↔∗ v whenever it holds. To also be able to demonstrate u=∗ v
whenever it holds, one needs a method to demonstrate u=∗ v when u and v are
irreducibles.

We say that (Σ, T ) is: finite if Σ and T are finite sets; monadic if r ∈ Σ ∪ {λ} for
all (`, r) ∈ T ; and normalised (or reduced) if for all (`, r) ∈ T we have that |`| ≥ 2, no
proper subword of ` is reducible, r is irreducible, and (`, r′) ∈ T implies r ≡ r′. It is well
known that for any finite convergent rewriting system (Σ, T ) presenting a monoid G,
we may by an effective procedure construct a normalised finite convergent rewriting
system (Σ′, T ′) that presents an isomorphic monoid G′. Further, the construction is
such that (Σ′,T ′) is monadic if (Σ,T ) is monadic. It follows that when it is the monoid
G of interest, we do not lose generality by assuming that any finite convergent monadic
rewriting system presenting G is normalised. In such a system, each reduction reduces
the length of a word, and each irreducible g ∈ Σ∗ is the unique minimal length word
representing the corresponding element of G. It is therefore easy to determine whether
or not u↔∗ v for an arbitrary pair of words u, v ∈ Σ∗. For each u ∈ Σ∗ we write irr(u)
for the irreducible that is↔∗-equivalent to u.
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3. Generators of finite order

We henceforth assume that (Σ, T ) is a normalised finite convergent monadic
rewriting system presenting a group G, and that every letter a ∈ Σ has finite order.
We write ma for the order of a, and for each 1 ≤ j < ma we write a j for the irreducible
representing a j. We write Σa := Σ ∩ {a1, . . . , ama−1}. We say that (Σ, T ) contains the
nontrivial part of the multiplication table for 〈a〉 if Σa = {a1, . . . , ama−1}, from which it
follows that a jak ∈ dom(T ) for all 1 ≤ j, k < ma.

Our argument is structured as a sequence of lemmas. Our first two lemmas establish
a dichotomy of behaviour for the cyclic subgroups generated by letters.

Lemma 3.1. Suppose that a ∈ Σ. If Σa , {a}, then ma > 2 and (Σ, T ) contains the
nontrivial part of the multiplication table for 〈a〉.

Proof. Suppose that Σa , {a}. Then ma > 2 and there exists an integer s such that
1 < s < ma and as ∈ Σ.

Let p be the maximum integer such that 1 < p < ma and ap ∈ Σ. Suppose that
p < ma − 1. Since a1ap ↔

∗ apa1 ↔
∗ ap+1, the words a1ap and apa1 are distinct words

representing the same group element. Because irreducibles are the unique words
of minimal length representing the corresponding group element, a1ap and apa1 are
reducible. Thus |ap+1| ≤ 1. Because p < ma − 1, ap+1 . λ. Thus ap+1 ∈ Σ, contradicting
the maximality of p. Thus p = ma − 1.

Now let q be the minimum integer such that 1 < q < ma and aq ∈ Σ. Suppose that
q > 2. Since ama−1aq ↔

∗ aqama−1 ↔
∗ aq−1, the words ama−1aq and aqama−1 are distinct

words representing the same group element. As above, it follows that |aq−1| ≤ 1.
Because q > 2, aq−1 . λ. Thus aq−1 ∈ Σ, contradicting the minimality of q. Thus
q = 2. �

Lemma 3.2. Suppose that a ∈ Σ.

(1) If (Σ, T ) does not contain the nontrivial part of the multiplication table for 〈a〉,
then Σa = {a}, ma > 2 and a j ≡ a j for all 1 ≤ j < ma.

(2) We have a j ∈ Σ∗a for all 1 ≤ j < ma; in particular, irr(ama−1) ∈ Σ∗a.
(3) If a j ∈ dom(T ) for some integer j ≥ 3, then j = ma.

Proof. The first statement follows immediately from Lemma 3.1 and the observation
that Σa = {a1, . . . , ama−1} when ma = 2. The second statement follows immediately
from the first. We now prove the third statement. Suppose that ` ≡ a j ∈ dom(T ) for
some integer 3 ≤ j < ma. Because (Σ,T ) is monadic, irr(a j) ∈ Σa ∪ {λ}. Because (Σ,T )
is normalised, every proper subword of ` is irreducible. Hence a2 is irreducible. By
(1), ai is irreducible for all 1 ≤ i < ma. Hence j ≥ ma. Because every proper subword
of ` is irreducible, and ama is reducible, j = ma. �

The next two lemmas establish that forbidden words have a very structured form.

Lemma 3.3. Suppose that ` ∈ dom(T ).

(1) If ` ≡ uba j for some a ∈ Σ, 1 ≤ j < ma, b ∈ Σ\{a} and u ∈ Σ∗, then u ≡ λ.
(2) If ` ≡ a jbu for some a ∈ Σ, 1 ≤ j < ma, b ∈ Σ\{a} and u ∈ Σ∗, then u ≡ λ.
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Proof. We prove the first statement. The second is proved similarly. Suppose that
` ≡ uba j for some for some a ∈ Σ, 1 ≤ j < ma, b ∈ Σ\{a} and u ∈ Σ∗.

Consider first the case where b ∈ Σa. By Lemma 3.1, (Σ, T ) contains the nontrivial
part of the multiplication table for 〈a〉. Hence ba is reducible. Since every proper
subword of ` is irreducible, ` ≡ ba. Hence u ≡ λ (and j = 1).

Now consider the case where b < Σa. By Lemma 3.2(2), ub . ama− j. Since ub is
a proper subword of a word in the domain of T , it is irreducible. Because distinct
irreducible words represent distinct group elements, ub=∗ ama− j. It follows that
(uba j, d) ∈ T for some d ∈ Σ. Now ub = irr(uba jama− j), but uba jama− j →

∗ dama− j. By
Lemma 3.2(2), ama− j ∈ (Σa)∗. Since ama− j is irreducible and ama− j ∈ (Σa)∗ and (Σ,T ) is
monoidal, any reduction of dama− j of length at least two has last letter from Σa. Since
b < Σa and ub is a reduction of dama− j, |ub| ≤ 1. Thus u ≡ λ. �

Lemma 3.4. Suppose that ` ∈ dom(T ). If |`| > 2, then ` ≡ ama and for some a ∈ Σ.

Proof. We prove the contrapositive. Suppose that ` . ama for all a ∈ Σ. Consider first
the case where ` ≡ a j for some a ∈ Σ and some positive integer j. By Lemma 3.2(3),
j = 2 and hence |`| = 2. Now consider the case where no such a, j exist. It follows that
` ≡ uba j for some a ∈ Σ, 1 ≤ j < ma, b ∈ Σ\{a} and u ∈ Σ∗. By Lemma 3.3(1), u ≡ λ
and ` ≡ ba j. By Lemma 3.3(2), j = 1. Thus ` ≡ ba and |`| = 2. �

In light of Lemma 3.4, it is natural to construct a digraph ∆ = ∆(Σ, T ) in which
vertices correspond to letters and a directed edge from a to b (with a . b) indicates
that ab ∈ dom(T ). Distinct connected components of ∆ correspond to sub-rewriting
systems of (Σ,T ) that generate free factors of G. The remaining lemmas establish that
the connected components of ∆ are in fact complete digraphs.

Lemma 3.5. Suppose that a, b ∈ Σ.

(1) If xb ∈ dom(T ) for some x ∈ Σa, then ub ∈ dom(T ) for all u ∈ Σa.
(2) If ay ∈ dom(T ) for some y ∈ Σb, then av ∈ dom(T ) for all v ∈ Σb.
(3) If xy ∈ dom(T ) for some x ∈ Σa and y ∈ Σb, then uv ∈ dom(T ) for all u ∈ Σa and

v ∈ Σb.

Proof. We prove the first statement. The second statement is proved similarly. The
first and second statements combine to give the third.

Suppose that xb ∈ dom(T ) for some x ∈ Σa. Then (xb, d) ∈ T for some d ∈ Σ ∪ {λ}.
If Σa = {a} there is nothing to prove, so suppose that u ∈ Σa\{x}. By Lemma 3.1, ma > 2
and (Σ,T ) contains the nontrivial part of the multiplication table for 〈a〉. Hence x ≡ a j

and u ≡ ak for some 1 ≤ j, k < ma. Let i be the remainder when k − j is divided by ma.
Because x=∗ λ, b . d. Now aixb→ aid and aixb→ akb. Since aid, akb are distinct
words that spell the same group element and |aid| ≤ |akb|, the word akb is reducible.
Because (Σ,T ) is normalised, a reducible word of length two is necessarily in dom(T ).
Hence akb ∈ dom(T ), and the claim is proved. �

Lemma 3.6. For all a, b ∈ Σ, ab ∈ dom(T ) if and only if ba ∈ dom(T ).
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Proof. Let a, b ∈ Σ. By symmetry it suffices to show only one direction of implication.
Suppose that ab ∈ dom(T ). If a ≡ b there is nothing to prove, so suppose that a . b.
If a, b ∈ Σc for some c ∈ Σ, then Σc , {c} and the result follows from Lemma 3.1. So
suppose that no such c exists. By Lemma 3.2(2), a=∗ bmb−1 and b=∗ ama−1. It
follows that (ab, d) ∈ T for some d ∈ Σ\{a, b}. Because ab↔∗ d, bmb−1ama−1 ↔

∗ dmd−1.
Because dmd−1 is irreducible, bmb−1ama−1 →

∗ dmd−1.
Consider the case where bmb−1ama−1 ≡ dmd−1. Then |dmd−1| = |bmb−1| + |ama−1| > 1. It

follows by Lemma 3.2 that md > 2, Σd = {d}, dmd−1 ≡ dmd−1 and bmb−1, ama−1 ∈ {d}∗.
Because a, b, d are distinct, bmb−1 . bmb−1 and ama−1 . ama−1. By Lemma 3.2(1),
bmb−1, ama−1 ∈ Σ. It follows that bmb−1 ≡ ama−1 ≡ d. Then bama−1 ≡ bbmb−1→

∗ λ. Hence
bama−1 ∈ dom(T ). By Lemma 3.5(2), ba ∈ dom(T ).

Now consider the case where bmb−1ama−1 . dmd−1. If bmb−1, ama−1 ∈ Σ, then
bmb−1ama−1 ∈ dom(T ) and the result follows from Lemma 3.5(3). If ama−1 ∈ Σ but
bmb−1 < Σ, then bmb−1ama−1 ≡ bmb−1ama−1. It follows from Lemma 3.4 that bama−1 ∈

dom(T ). The result follows from Lemma 3.4 again. Similarly, the result follows
if ama−1 < Σ but bmb−1 ∈ Σ. Consider the case where bmb−1, ama−1 < Σ. Because
bmb−1ama−1 ≡ bmb−1ama−1 is reducible and bmb−1,ama−1 are irreducible and a . b, Lemma
3.4 yields ba ∈ dom(T ). �

Lemma 3.7. Suppose that a, b, d ∈ Σ. If (ab, ds) ∈ T for some 1 ≤ s < md, then
ad, da, bd, db ∈ dom(T ).

Proof. Suppose that (ab, ds) ∈ T for some 1 ≤ s < md. Note that this means ds ∈ Σ

and ds . a. Since ab↔∗ ds, ama−1ds ↔
∗ b. It follows that a jds ∈ dom(T ) for some

1 ≤ j < ma. If |a j| > 1, then a j ≡ a j and, by Lemma 3.4, ads ∈ dom(T ). If |a j| = 1,
then a jds is a reducible word of length two, and hence a jds ∈ dom(T ). In either case,
it follows from Lemma 3.5(3) that ad ∈ dom(T ). By Lemma 3.6, da ∈ dom(T ). The
proof that bd, db ∈ dom(T ) is similar. �

Lemma 3.8. Suppose that a, b ∈ Σ. If ab ∈ dom(T ), then irr(a jbk) ∈ Σ ∪ {λ} for all
1 ≤ j < ma and 1 ≤ k < mb.

Proof. Suppose that ab ∈ dom(T ). If a ≡ b, then (Σ, T ) contains the nontrivial part of
the multiplication table for 〈a〉 and the result follows. Suppose that a . b. If {a, b} ⊆ Σc

for some c, then the result follows from Lemma 3.1. Suppose that no such c exists.
We now consider cases based on whether or not (Σ, T ) contains the nontrivial parts of
the multiplication tables for 〈a〉 and 〈b〉.

The result follows immediately from Lemma 3.5(3) in the case where (Σ, T )
contains the nontrivial parts of the multiplication tables for 〈a〉 and 〈b〉.

Consider the case where Σa = {a} and ma > 2 and (Σ,T ) contains the nontrivial part
of the multiplication table for 〈b〉. By Lemma 3.5(2), abk ∈ dom(T ) for all 1 ≤ k < mb.
Fix an integer 1 ≤ k < mb. Since abk ∈ dom(T ), bk . a. Since ama−1 ≡ ama−1, bk .
irr(ama−1). It follows that (abk, d) ∈ T for some d ∈ Σ\{a, bk}. Now ama bk → ama−1d and
ama bk →

∗ bk. Because bk is irreducible, ama−1d→∗ bk. Because ama−1 is irreducible,
Lemma 3.4 gives that (ad, e) ∈ T for some e ∈ Σ\{a, d}. Thus a2bk →

∗ e. Now we have
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ama bk → ama−2e and ama bk →
∗ bk. Applying this argument inductively, we conclude

that irr(a jbk) ∈ Σ ∪ {λ} for all 1 ≤ j < ma.
A similar argument proves that the result holds in the case where Σb = {b} and

mb > 2 and (Σ,T ) contains the nontrivial part of the multiplication table for 〈a〉.
Finally, consider the case where Σa = {a} and ma > 2 and Σa = {b} and mb > 2. Let

j, k be such that 1 ≤ j < ma and 1 ≤ k < mb. Because bk and ama− j are irreducible and
distinct, a jbk =∗ λ. An argument similar to that above gives that a jbk →∗ dbk−1 and
a jbk →∗ a j−1e for some d, e ∈ Σ\{a, b}. Because a j−1 is irreducible and e=∗ ama− j+1,
any reduction of a j−1e has first letter a unless it has length one; because bk−1 is
irreducible, any reduction of dbk−1 has first letter equal in G to a jbp for some 1 ≤ p ≤ k.
Because a jbk =∗ a, it must be that a j−1e reduces to a word of length one. Hence
irr(a jbk) ∈ Σ. �

Lemma 3.9. Suppose that a, b ∈ Σ. If ab ∈ dom(T ), then (Σ, T ) contains the nontrivial
parts of the multiplication tables of 〈a〉 and 〈b〉.

Proof. Suppose that ab ∈ dom(T ). By Lemma 3.6 it suffices to show that (Σ, T )
contains the nontrivial part of the multiplication table of 〈a〉. Suppose not. By Lemma
3.1, ma > 2 and a j ≡ a j for all 1 ≤ j < ma. Because a2 is irreducible and ab is reducible,
b . a. If c ∈ Σ such that a, b ∈ Σc, then (Σ, T ) contains the nontrivial part of the
multiplication table of 〈c〉, and hence also 〈a〉. So no such c exists. By Lemma 3.6,
ba ∈ dom(T ). Let x := irr(bmb−1a) and y := irr(ab). By Lemma 3.8, x, y ∈ Σ. Because
ab↔∗ y and b . λ, y . a. But then yx ≡ irr(ab)irr(bmb−1a)↔∗ a2. It follows that a2 is
reducible, which is impossible. �

Remark 3.10. The contrapositive of the lemma gives immediately that if a ∈ Σ

and (Σ, T ) does not contain the nontrivial part of the multiplication table for 〈a〉,
then (Σ\{a}, T\{(am

a , λ)}) is a normalised finite convergent monadic rewriting system
presenting a group G1 such that G � G1 ∗ Z/maZ.

Lemma 3.11. Suppose that a, b, c ∈ Σ and ab, bc ∈ dom(T ) and a . c. Then ac ∈
dom(T ).

Proof. If any two of the letters a,b, c are contained in Σd for some d ∈ Σ, then the result
follows easily from Lemmas 3.1 and 3.5. Suppose that no such d exists. It follows that
a . irr(bmb−1), and b . irr(cmc−1). Thus there exist d, e ∈ Σ such that (ab, d), (bc, e) ∈ T .
Since b . λ, c . e. By Lemma 3.8, abmb−1 →

∗ x for some x ∈ Σ. Now

ac↔∗ abmb−1bc→ abmb−1e→∗ xe.

Because c . e, ac . xe. Because ac and xe are distinct words of equal length
representing the same group element, they are reducible. Hence ac ∈ dom(T ). �

We now prove our main results.

Theorem 3.12. Let G be a group. Then G is presented by a finite convergent monadic
rewriting system (Σ, T ) such that every letter a ∈ Σ has finite order in G if and only if
G may be decomposed as a free product of finitely many finite groups.
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Proof. First suppose that G = G1 ∗ · · · ∗ Gp for some finite groups G1, . . . ,Gp. For
each integer i such that 1 ≤ i ≤ p, we let Σi := Gi\{1Gi} (where 1Gi denotes the identity
element in Gi) and

Ti := {(ab, c) | a, b, c ∈ Σi such that ab =Gi c}

∪ {(ab, λ) | a, b ∈ Σi such that ab =Gi 1Gi}.

Let Σ =
⋃p

i=1 Σi and T =
⋃p

i=1 Ti. It is then easily confirmed that (Σ,T ) is a normalised
finite convergent monadic rewriting system presenting G and every letter a ∈ Σ has
finite order in G.

Now suppose that G is presented by a finite convergent monadic rewriting system
(Σ, T ) such that every letter a ∈ Σ has finite order in G. Without loss of generality we
assume that (Σ,T ) is normalised. For a, b ∈ Σ, we write a ∼ b if a ≡ b or ab ∈ dom(T ).
By definition, the relation is reflexive. It is symmetric by Lemma 3.6, and transitive
by Lemma 3.11. Thus ∼ is an equivalence relation on Σ. It follows that (Σ, T ) may
be partitioned into rewriting systems (Σ1,T1), . . . , (Σp,Tp) such that each Σi comprises
the elements of one ∼-equivalence class (or, equivalently, the vertices of one connected
component of ∆). Then G � G1 ∗ · · · ∗Gp, where Gi denotes the group presented by
(Σi,Ti) for 1 ≤ i ≤ p. For a, b ∈ Σi with a . b, we have ab, ba ∈ dom(T ). It follows that
if u ∈ Σ∗i is irreducible and |u| > 1, then u = a j for some a ∈ Σi and some 1 ≤ j < ma.
In turn it follows that there are finitely many irreducibles in (Σi,Ti), and hence finitely
many elements in Gi. Thus G is a free product of finitely many finite groups. �

In [8, Theorem 2.7] it is shown that if (Σ, T ) is a normalised finite convergent
monadic rewriting system presenting a finite group G and every element of Σ has
an inverse in Σ, then (Σ, T ) is the nontrivial part of the multiplication table for G.
It is also observed that for each integer m ≥ 3 the finite cyclic group of order m is
presented by the finite convergent monadic rewriting system ({a}, {(am, 1)}). It follows
immediately from the above that these are the only examples of normalised finite
convergent monadic rewriting systems describing finite groups.

Corollary 3.13. Suppose that (Σ, T ) is a normalised finite convergent monadic
rewriting system presenting a group G. Then G is a finite group if and only if either
|Σ| = |T | = 1 and |G| ≥ 3 (in which case G is a finite cyclic group of order at least
three), or (Σ, T ) is the nontrivial part of the multiplication table for G. Therefore
the finite cyclic groups of order at least three are the only finite groups admitting a
presentation by more than one normalised finite monadic convergent rewriting system
(up to relabelling), and these admit exactly two such rewriting systems.

We note that, by Corollary 3.13, it is rather easy to determine whether or not a
normalised finite convergent monadic rewriting system determines a finite group. In
[11, Theorem 4.9] an algorithm is described which determines whether or not a finite
convergent rewriting system with a unique irreducible representative for each↔∗-class
determines a torsion-free group.
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