
Appendix B

Advanced field-theoretic methods

B–1 The heat kernel

When using path-integral techniques one must often evaluate quantities of the form

H(x, τ) ≡ 〈x ∣∣e−τD∣∣ x〉 , (1.1)

where D is a differential operator and τ is a parameter. In this section, we shall
describe the heat kernel method by which H(x, τ) is expressed as a power series
in τ . For example, if in d dimensions the differential operator D is of the form

D = +m2 + V, (1.2)

where V is some interaction, then the heat kernel expansion for H(x, τ) is

H(x, τ) = i

(4π)d/2
e−τm2

τ d/2

[
a0(x)+ a1(x)τ + a2(x)τ

2 + · · · ] , (1.3)

where ai(x) are coefficients which will be determined below.
Let us begin by citing the two most common occurrences of H(x, τ). One is in

the evaluation of the functional determinant

detD = e tr lnD = e
∫
d4x Tr 〈x| lnD|x〉, (1.4)

where ‘ Tr ’ is a trace over internal variables like isospin, Dirac matrices, etc., and
‘ tr ’ is a trace over these plus spacetime. The (generally singular) matrix element
〈x| lnD|x〉 appearing in Eq. (1.4) can be expressed in a variety of ways. For exam-
ple, in dimensional regularization one can use the identity

ln
b

a
=
∫ ∞

0

dx

x

(
e−ax − e−bx) (1.5)

to write

〈x| lnD|x〉 = −
∫ ∞

0

dτ

τ

〈
x
∣∣e−τD∣∣ x〉+ C, (1.6)
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B–1 The heat kernel 521

where C is a divergent constant having no physical consequences. Substituting
Eq. (1.3) into the above yields

〈x| lnD|x〉 − C = − i

(4π)d/2

∞∑
n=0

md−2n �

(
n− d

2

)
an(x). (1.7)

The divergences in the series representation arise from the � function and are
restricted in four dimensions to the terms a0(x), a1(x), a2(x).

The heat kernel can likewise be used to analyze the functional determinant in
alternative regularization procedures, such as zeta-function regularization. Here,
one expresses the matrix element 〈x| lnD|x〉 as

〈x| lnD|x〉 = −
〈
x

∣∣∣∣[ dds e−s lnD
]
s=0

∣∣∣∣ x〉
= −

[
d

ds

〈
x

∣∣∣∣ 1

Ds

∣∣∣∣ x〉 ]
s=0

= − d

ds
ξD(x, s)

∣∣∣∣
s=0

,

ξD(x, s) ≡ 1

�(s)

∫ ∞

0
dτ τ s−1H(x, τ). (1.8)

The penultimate equality in Eq. (1.8) is obtained from repeated formal differentia-
tion of Eq. (1.6) with respect to D. Upon expanding the H(x, τ) term in ξD(x, s),
one arrives at the desired power-series expansion of 〈x| lnD|x〉. This usage is
applied in the next section.

The other main use of the heat kernel is in the regularization of anomalies. Often
one is faced with making sense of Tr 〈x |O(x)| x〉, where O is a local operator.
Although such quantities are generally singular, they can be defined in a gauge-
invariant manner by damping out the contributions of large eigenvalues,

Tr 〈x |O(x)| x〉 = lim
ε→0

Tr
〈
x
∣∣O(x)e−εD∣∣ x〉 , (1.9)

where D is a gauge-invariant differential operator. Again, it is only the low-order
coefficients, generally those up to a2(x), which contribute in the ε → 0 limit. We
employ this technique in Sects. III–3,4.

As an example of heat-kernel techniques, let us consider the following operator
defined in d dimensions:

D = dμd
μ +m2 + σ(x)

(
dμ ≡ ∂

∂xμ
+ �μ(x)

)
, (1.10)

where �μ(x) and σ(x) are functions and/or matrices defined in some internal sym-
metry space. In particular, neither �μ nor σ contains derivative operators. Employ-
ing a complete set of momentum eigenstates {|p〉} allows us to express the heat
kernel as
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522 Advanced field-theoretic methods

H(x, τ) =
∫

ddp

(2π)d
e−ip·xe−τDeip·x, (1.11)

where in d dimensions use is made of the relations

〈p|x〉 = 1

(2π)d/2
eip·x,

〈
x|x ′〉 = ∫ ddp

(2π)d
eip·(x

′−x) = δ(d)(x − x ′),
〈
p′|p〉 = ∫ ddx

(2π)d
ei(p

′−p)·x = δ(d)(p′ − p). (1.12)

From the identities

dμe
ip·x = eip·x(ipμ + dμ),

dμd
μeip·x = eip·x(ipμ + dμ)(ipμ + dμ), (1.13)

we can then write

H(x, τ) =
∫

ddp

(2π)d
e−τ[(ipμ+dμ)

2+m2+σ]

=
∫

ddp

(2π)d
eτ [p

2−m2]e−τ [d·d+σ+2ip·d]. (1.14)

The first exponential factor is simply the free field result, while all the interesting
physics is in the second exponential. The latter can be Taylor expanded in powers
of τ , keeping those terms which contribute up to order τ 2 after the integration over
momentum is performed. Note that each power of p2 contributes a factor of 1/τ .
Thus, we obtain the expansion

H(x, τ) =
∫

ddp

(2π)d
eτ(p

2−m2)

[
1− τ [d · d + σ ]

+ τ 2

2
[(d · d + σ)(d · d + σ)− 4p · d p · d]

+ 4τ 3

3!
[
p · d p · d(d · d + σ)+ p · d(d · d + σ)p · d

+ (d · d + σ)p · d p · d]
+ 16τ 4

4! p · d p · d p · d p · d + · · ·
]
, (1.15)

where terms odd in p have been dropped and we have displayed only those O(τ 3)

and O(τ 4) terms which contribute to H at order τ 2 after p is integrated over.
To perform the integral, it is convenient to continue to euclidean momentum
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B–1 The heat kernel 523

pE = {p1, p2, p3, p4 = −ip0}. Then, with the replacement pμpμ → −|pμEpμE| =
−p2

E , we obtain∫
ddpE

(2π)d
e−(p

2
E+m2)τ =

∫
d�d

(2π)d

∫
dpE p

d−1
E e−(p

2
E+m2)τ

= 2πd/2

�(d/2)

1

(2π)d
e−m2τ�(d/2)

2τ d/2

= 1

(4π)d/2
e−m2τ

τ d/2
,∫

ddpE

(2π)d
e−(p

2
E+m2)τp

μ

Ep
ν
E =

δμν

d

1

(4π)d/2
e−m2τ

τ d/2+1

�(d/2+ 1)

�(d/2)

= δμν

2

e−m2τ

(4π)d/2τ d/2+1
,∫

ddpE

(2π)d
e−(p

2
E+m2)τp

μ

Ep
ν
Ep

λ
Ep

σ
E =

e−m2τ

(4π)d/2τ d/2+2

×
(
δμνδλσ + δμλδνσ + δμσ δλν)

4
. (1.16)

Employing these relations to evaluate Eq. (1.14) gives (to second order in τ ),

H(x, τ) = ie−m2τ

(4π)d/2τ d/2

×
[

1− τσ + τ 2

(
1

2
σ 2 + 1

12
[dμ, dν][dμ, dν] + 1

6
[dμ, [dμ, σ ]]

)]
,

(1.17)

or in the notation of Eq. (1.3),

a0(x) = 1, a1(x) = −σ,
a2(x) = 1

2
σ 2 + 1

12
[dμ, dν][dμ, dν] + 1

6

[
dμ, [dμ, σ ]

]
. (1.18)

Fermions are treated in a similar manner. For example, the identity

ln /D = 1

2
ln(/D /D) (1.19)

allows the same technique to be used for the operator /D /D. In particular let us
consider the case where

��D = �∂ + i��V + i�Aγ5. (1.20)
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524 Advanced field-theoretic methods

With some work, one can cast this into the form of Eq. (1.10) with the identifica-
tions

/D /D ≡ D = dμd
μ + σ,

dμ = ∂μ + iVμ + σμνAνγ5 ≡ ∂μ + �μ,
σ = 1

2
σμνV

μν − 2AμA
μ + (i∂μAμ − [Vμ,Aμ]) γ5,

Vμν = ∂μVν − ∂νVμ + i[Vμ, Vν] + i[Aμ,Aν]. (1.21)

The values of ai(x) appearing in Eq. (1.18) can also be used in this case. The heat-
kernel coefficients have been worked out for more general situations [Gi 75].

B–2 Chiral renormalization and background fields

In this section, we illustrate the method described above while also proving an
important result for the theory of chiral symmetry. The goal is to demonstrate that
all the divergences encountered at one loop can be absorbed into a renormalization
of the coefficients of the O(E4) chiral lagrangian and to identify the renormaliza-
tion constants. The technique used here, the background field method, is of consid-
erable interest in its own right [Sc 51, De 67, Ab 82] and is applicable to areas such
as general relativity [BiD 82].

The basic idea of the background field method is to calculate quantum correc-
tions about some nonvanishing field configuration ϕ,

ϕ(x) = ϕ̄(x)+ δϕ(x), (2.1)

rather than about the zero field,1 and to then compute the path integral over the
fluctuation δϕ(x). The result is an effective action for ϕ̄. This effective action can
be expanded in powers of ϕ and applied to matrix elements at tree level, resulting
in a description of scattering processes at one-loop order. In the case of the chiral
lagrangian, one expands the full chiral matrix

U = Ū + δU, (2.2)

where Ū satisfies the classical equation of motion. Upon integration over δU , one
obtains the one-loop effective action for Ū . This contains a great deal of informa-
tion. In particular, Ū can be expanded in the usual way in terms of a set of external
meson fields

Ū = exp(iλaϕ̄a/F ) (a = 1, . . . , 8). (2.3)

1 See the discussion in Appendix A–4.
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B–2 Chiral renormalization and background fields 525

Contained in Seff(Ū) is the effective one-loop action for arbitrary numbers of meson
fields. Upon identification of renormalization constants, all processes become renor-
malized at the same time.

Our starting point is, in the notation of Sect. IV–6, the O(E2) lagrangian

L2 = F 2
0

4
Tr
(
DμUD

μU †
)+ F 2

0

4
Tr
(
χ†U + U †χ

)
. (2.4)

The procedure to follow is rather technical, so let us first quote the end result of
the calculation. Upon performing the one-loop quantum corrections, the effective
action will have the form

Seff = Sren
2 + Sren

4 + Sfinite
4 + · · · .

Here the lagrangians in Sren
2 , Sren

4 are the ones quoted in Sect. VII–2, but now with
renormalized coefficients. In particular Sren

4 is the sum Sren
4 = Sbare

4 + Sdiv
4 where,

in chiral SU(3) and employing dimensional regularization, Sdiv
4 is given by

Sdiv
4 = −λ

∫
d4x

[
3

32

[
Tr
(
DμUD

μU †
)]2

+ 3

16
Tr
(
DμUDνU

†
)

Tr
(
DμUDνU †

)
+ 1

8
Tr
(
DμUD

μU †
)

Tr
(
χ†U + U †χ

)
+ 3

8
Tr
[
DμUD

μU †
(
χU † + Uχ†

)]
+ 11

144

[
Tr
(
χU † + Uχ†

)]2 + 5

48
Tr
(
χU †χU † + Uχ†Uχ†

)
+ i

4
Tr
(
LμνD

μUDνU † + RμνDμU †DνU
)− 1

4
Tr
(
LμνUR

μνU †
)]
(2.5)

with

λ ≡ 1

32π2

{
2

d − 4
− ln 4π − 1+ γ

}
. (2.6)

The terms in Sdiv
4 are all of the same form as the terms in the bare lagrangian at

order E4. Therefore, all the divergences can be absorbed into renormalized values
of these constants. The finite remainder, Sfinite

4 , cannot be simply expressed as a
local lagrangian, but can be worked out for any given transition. When Sdiv

4 is added
to the O(E4) tree-level lagrangian of Eq. (VII–2.7), the result has the same form
but with coefficients

Lri = Li − γiλ, (2.7)
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526 Advanced field-theoretic methods

Table B–1. Renormalization coefficients.

i 1 2 3 4 5 6 7 8 9 10

SU(2) γi
1

12
1
6 0 1

8
1
4

3
32 0 0 1

6 − 1
6

SU(3) γi
3

32
3
16 0 1

8
3
8

11
144 0 5

48
1
4 − 1

4

where the {γi} are numbers which are given in Table B–1 for both the case of chiral
SU(2) and SU(3). Thus, the divergences can all be absorbed into the redefined
parameters and these in turn can be determined from experiment. Let us now turn
to the task of obtaining this result.

In applying the background field method, there are a variety of ways to para-
meterize δU , and several different ones are used in the literature. The prime con-
sideration is to maintain the unitarity property U †U = 1 = (Ū † + δU †

) (
Ū + δU)

along with Ū †Ū = 1. We shall take

U = Ūei�, (2.8)

with � ≡ λa�a representing the quantum fluctuations. This choice is made to
simplify the algebra in the heat-kernel renormalization approach, which we shall
describe shortly. Another possible choice is

U = ξeiηξ (2.9)

with η = λaηa and ξξ ≡ Ū . These two forms are related by η = ξ�ξ †. Since in
the path integral, we integrate over all values of� (or η) at each point of spacetime,
these two choices are equivalent.

The expansion of the lagrangian in terms of Ū and � is straightforward, and we
find

Tr
(
DμUD

μU †
) = Tr

(
DμŪD

μŪ †
)− 2i Tr

(
Ū †DμŪD̃

μ�
)

+ Tr
[
D̃μ�D̃

μ�+ Ū †DμŪ
(
�D̃μ�− D̃μ��

)]
,

Tr
(
χ†U + U †χ

) = Tr
(
χ†Ū + Ū †χ

)+ i Tr
(
�
(
χ†Ū − Ū †χ

))
− 1

2
Tr
[
�2
(
χ†Ū + Ū †χ

)]
, (2.10)

where

D̃μ� ≡ ∂μ�+ i
[
rμ,�

]
, (2.11)

where rμ is the matrix source function of Eqs. (IV–6.1,6.2). Since Ū satisfies the
equation of motion, there is no term linear in �. One may integrate various terms
in the action by parts to obtain
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B–2 Chiral renormalization and background fields 527

S
(0)
2 =

∫
d4x

{
L2(Ū)− F 2

0

2
�a
(
dμd

μ + σ )ab �b + · · ·
}
, (2.12)

where

dabμ = δab∂μ + �abμ ,
�abμ = −

1

4
Tr
([
λa, λb

] (
Ū †∂μŪ + iŪ †
μŪ + irμ

))
,

σ ab = 1

8
Tr
({λa, λb} (χ†Ū + Ū †χ

)+ [λa, Ū †DμŪ
] [
λb, Ū †DμŪ

])
. (2.13)

The action is now a simple quadratic form, and the path integral may be per-
formed. The only potential complication is the question of interpreting the integra-
tion variables. This is referred to as the ‘question of the path-integral measure’. The
integration over all the unitary matrices U can be accomplished by an integration
over the parameters in the exponential∫

[dU ] = N

∫
[d�a], (2.14)

where N is a constant which plays no dynamical role. With this identification one
obtains

eiWloop =
∫
[d�a]ei

∫
d4x F

2
2 �a(dμdμ+σ)ab�b

= (det
[
dμd

μ + σ ])−1/2 = e−
1
2 tr ln(dμdμ+σ). (2.15)

Here ‘tr’ indicates a trace over the spacetime indices as well as over the SU(N)
indices a, b.

The identification of divergences is most conveniently done by using the heat-
kernel expansion derived earlier in App. B–1, where it is shown that all the ultra-
violet divergences are contained in the first few expansion coefficients. The relevant
terms are

Wloop = i

2
tr ln

(
dμd

μ + σ )
= 1

2(4π)d/2

∫
d4x lim

m→0

{
�

(
1− d

2

)
md−2 Tr σ

+ md−4�

(
2− d

2

)
Tr

(
1

12
�μν�

μν + 1

2
σ 2

)
+ · · ·

}
, (2.16)

where

�abμν = ∂μ�
ab
ν − ∂ν�abμ + �acμ �cbν − �acν �cbμ =

[
dμ, dν

]ab
. (2.17)
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528 Advanced field-theoretic methods

For Nf flavors, the operator part of the first term in Eq. (2.16) is

Tr σ = Nf

2
Tr
(
DμŪD

μŪ †
)+ N2

f − 1

2Nf

Tr
(
χ†Ū + Ū †χ

)
. (2.18)

The above two traces are just those which appear in L2; as such, they can only
modify the quantities Fπ and m2

π . The remaining terms can be worked out with a
bit more algebra. Using the identity

∂μ
(
Ū †∂νŪ

)− ∂ν (Ū †∂μŪ
) = − [Ū †∂μU, Ū

†∂νU
]
, (2.19)

we find for the field strength,

�abμν =
1

8
Tr
{[
λa, λb

]([
Ū †DμŪ, Ū

†DνŪ
]
+ iŪ †LμνŪ + iRμν

)}
. (2.20)

This produces, for Nf flavors in chiral SU(Nf ),

Tr
(
�μν�

μν
) = Nf

8
Tr
([
Ū †DμŪ, Ū

†DνŪ
] [
Ū †DμŪ, Ū †DνŪ

])
+ iNf Tr

(
Rμν∂

μŪ †∂νŪ + Lμν∂μŪ∂νŪ †
)

− Nf Tr
(
LμνŪR

μνŪ †
)− Nf

2
Tr
(
LμνL

μν + RμνRμν
)
,

Tr σ 2 = 1

8

[
Tr
(
DμŪD

μŪ †
)]2 + 1

4
Tr
(
DμŪDνŪ

†
)

Tr
(
DμŪDνŪ †

)
+ Nf

8
Tr
(
DμŪD

μŪ †DνŪD
νŪ †

)+ 2+N2
f

8N2
f

[
Tr
(
χŪ † + Ū †χ

)]2
+ 1

4
Tr
(
DμŪD

μŪ †
)

Tr
(
χŪ † + Ūχ†

)
+ Nf

4
Tr
(
DμŪD

μŪ †
(
χŪ † + Ūχ†

))
+ N2

f − 4

8Nf

Tr
((
χŪ † + Ūχ†

) (
χŪ † + Ūχ†

))
. (2.21)

The only operator which is not of the same form as the basic O(E4) lagrangian
occurs in the first term of Tr�2. However, by use of Eq. (VII–2.3) for SU(3), it
can be written as a linear combination of our standard forms. For Nf = 3, these
add up to the result previously quoted in Eq. (2.5). Here, the divergence is in the
parameter λ. For convenience in applications, we have added some finite terms
to the definitions of λ in Eq. (2.6). The results for Nf = 2 are also quoted in
Table B–1, although some of the operators are redundant for that case.

The reader who has understood the above development as well as the standard
perturbative methods presented in the main text will be prepared for the use of
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the background field method in the full calculation of transition amplitudes. This
procedure consists of writing

dμd
μ + σ = D0 + V

D0 = +m2

V = {∂μ, �μ} + �μ�μ + σ −m2, (2.22)

wherem2 is the meson mass-squared matrix. The one-loop action is then expanded
in powers of the interaction V

Wloop = i

2
tr ln(dμd

μ + σ) = i

2
tr
[
lnD0 + ln(1+D−1

0 V )
]

= i

2
tr

[
lnD0 +D−1

0 V − 1

2
D−1

0 VD−1
0 V + · · ·

]
. (2.23)

The first term is an uninteresting constant which may be dropped, and the remain-
der has the coordinate space form

Wloop = − i
2

∫
d4x Tr [�F(x − x)V (x)]

− i

4

∫
d4xd4y Tr [�F(x − y)V (y)�F (y − x)V (x)] + · · · . (2.24)

When the matrix elements of this action are taken, the result contains not only the
divergent terms calculated above, but also the finite components of the one-loop
amplitudes. The resulting expressions are presented fully in [GaL 84, GaL 85a].
This method allows one to calculate the one-loop corrections to many processes at
the same time and, in practice, is a much simpler procedure for some of the more
difficult calculations.

B–3 PCAC and the soft-pion theorem

We have emphasized the use of effective lagrangians to elucidate the symmetry
predictions of a theory. For a dynamically broken chiral symmetry such as QCD,
these predictions will relate processes which have different numbers of Goldstone
bosons. The machinery of effective lagrangians will correctly yield such predic-
tions, but it is often useful to have an alternative technique for understanding or
calculating these results. In the case of chiral symmetry, this is provided by the
soft-pion theorem, which explicitly relates a process with a pion to one with that
pion removed from the amplitude. Calculations performed this way uses current
algebra methods which go by the name of partial conservation of the axial cur-
rent or PCAC [AdD 68]. While these techniques are often more cumbersome, they
often are useful. This section describes these methods.
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530 Advanced field-theoretic methods

We can again turn to the sigma model to introduce this subject. We return to
the effective lagrangian treatment of Chap. IV, with a pion mass included and the
S field integrated out. The lagrangian of Eq. (IV–6.12) gives rise to the vector and
axial-vector currents

V k
μ = −i

v2

4
Tr
[
τ k
(
U †∂μU + U∂μU †

)]
,

Akμ = i
v2

4
Tr
[
τ k
(
U †∂μU − U∂μU †

)]
, (3.1)

with k = 1, 2, 3. The equation of motion is found to be

∂μ
(
U †∂μU

)+ m2
π

2

(
U − U †

) = 0, (3.2)

and two important matrix elements are〈
0
∣∣Akμ∣∣πj(p)〉 = ivpμδ

kj ,
〈
0
∣∣∂μAkμ∣∣πj(p)〉 = vm2

πδ
kj . (3.3)

The former allows the identification v = Fπ , where Fπ is the pion decay constant
Fπ � 92 MeV, while the latter follows either from Eq. (3.1) directly, or by use of
the equation of motion for Akμ,

∂μAkμ = −i
v2m2

π

4
Tr
[
τ k
(
U − U †

)] = Fπm
2
ππ

k + · · · . (3.4)

This last equation forms the heart of the PCAC method. It describes a situation
covered by Haag’s theorem (recall Sect. IV–1), and says that we may use either
πk or ∂μAkμ (properly normalized) as the pion field. It is more general than the
sigma model, which we used to motivate it. This, plus certain smoothness assump-
tions, gives rise to a soft-pion theorem for the following matrix element of a local
operator O,

lim
qμ→0

〈
πk(q)β|O|α〉 = − i

Fπ

〈
β| [Qk

5,O
] |α〉 , (3.5)

where β, α are arbitrary states and Qk
5 =

∫
d3x Ak0(x) is an axial charge.

The proof of Eq. (3.5) starts with the LSZ reduction formula. We consider the
matrix element for the process α → β + πk(q) as the pion four-momentum q is
taken off the mass-shell,〈

πk(q)β|O(0)|α〉 = i

∫
d4x eiq·x

( +m2
π

) 〈
β|T (πk(x)O(0)) |α〉

= i

∫
d4x eiq·x(−q2 +m2

π)
〈
β|T (πk(x)O(0)) |α〉 , (3.6)
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The pion field can be replaced by using the PCAC relation (valid in the sense of
Haag’s theorem),

πk = 1

Fπm2
π

∂μAkμ, (3.7)

leading to〈
πk(q)β|O(0)|α〉 = i

(m2
π − q2)

Fπm2
π

∫
d4x eiq·x

〈
β|T (∂μAkμ(x)O(0)) |α〉 . (3.8)

The derivative can be extracted from the time-ordered product by using

∂μ
〈
β|T (Akμ(x)O(0)) |α〉
= 〈β|T (∂μAkμ(x)O(0)) |α〉+ δ(x0)

〈
β| [Ak0(x),O(0)] |α〉 , (3.9)

where the last term arises from differentiating the functions θ(±x0), which occur
in the time-ordering prescription. Upon integrating by parts, we find〈

πk(q)β|O(0)|α〉 = i
(m2

π − q2)

Fπm2
π

∫
d4x eiq·x

[− 〈β| [Ak0(x),O(0)] |α〉 δ(x0)

− iqμ
〈
β|T (Akμ(x)O(0)) |α〉] . (3.10)

Up to this stage all the formulae are exact for physical processes, even if appearing
rather senseless, since ∂μAkμ has the same singularity for q2 → m2

π as does the
field πk. However, to obtain the soft-pion theorem one assumes that the matrix
element does not vary much between its on-shell value and the point where the
pion’s four-momentum vanishes. In that circumstance, we have [NaL 62, AdD 68]

lim
qμ→0

〈
πk(q)β|O|α〉 = − i

Fπ

〈
β| [Qk

5,O(0)
] |α〉+ lim

qμ→0
iqμRk

μ, (3.11)

where

Rk
μ = −

i

Fπ

∫
d4x eiq·x

〈
β|T (Akμ(x)O(0)) |α〉 . (3.12)

The remainder term of Eq. (3.11) vanishes unless Rk
μ has a singularity as qμ → 0.

Such a singularity can occur if there are intermediate states in Rk
μ which are degen-

erate in mass with either α or β. This last statement can be proven by inserting a
complete set of intermediate states in the time-ordered product in Rk

μ, and taking
the qμ → 0 limit. This caveat should be kept in mind as it is sometimes relevant.

The soft-pion theorem relates to the intuitive picture for dynamically broken
symmetries mentioned in Sect. I–6. Since a chiral transformation corresponds in the
symmetry limit to the addition of a zero-energy Goldstone boson, we expect the
states 〈β| and 〈πkqμ=0β| to be related by the symmetry and, indeed, the soft-pion
theorem expresses this. Although the soft-pion theorem is exact in the symmetry
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limit, a smoothness assumption is needed in the real world to pass from qμ = 0 to
q2 = m2

π , implying that corrections of order qμ or of order m2
π can be expected.

In the Standard Model, the charge commutation rules are commonly abstracted
from those of the quark model. Upon expressing charge operators in terms of quark
fields,

Qk =
∫
d3x ψ̄γ0

λk

2
ψ, Qk

5 =
∫
d3x ψ̄γ0γ5

λk

2
ψ, (3.13)

one obtains the algebra[
Qi, V j

μ

] = if ijkV k
μ,

[
Qi

5, V
j
μ

] = if ijkAkμ,[
Qi,Ajμ

] = if ijkAkμ,
[
Qi

5, A
j
μ

] = if ijkV k
μ. (3.14)

These commutation rules can be extended to equal-time commutators, which con-
tain a charge density, e.g.,[

V i
0 (x), A

j
μ(y)

]
x0=y0 = if ijkAkμδ

(3)(x− y). (3.15)

However, commutators which involve two spatial components can be more
problematic [AdD 68].

Sometimes, in the PCAC approach, if the matrix element is assumed to be
strictly constant, the various soft-pion limits turn out to be contradictory. If so,
the amplitude must be extended to include momentum dependence, as happens in
nonleptonic kaon decay. By contrast, the effective lagrangian approach automat-
ically gives the appropriate momentum dependence, and its predictions follow in
a straightforward manner. Moreover, effective lagrangians are especially useful in
identifying and parameterizing corrections to the lowest-order results. They allow
a systematic expansion in terms of energy and mass.

B–4 Matching fields with different symmetry-transformation properties

In Chapter IV, we described the construction of an effective lagrangian for pion
fields with chiral transformation properties. However, most particles do not trans-
form in the same way as the pions of that chapter. In a broader context, we require
a procedure for combining fields with different symmetry properties. For example,
in the case of hadronic physics one often needs to consider particles such as nucle-
ons, ρ(770), etc., interacting with pions. A general approach for this was presented
in a set of classic papers on the subject [We 68, CoWZ 69, CaCWZ 69]. We shall
introduce this framework by again referring to the sigma model, and then we shall
extend the results.
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Heavy particles do not themselves exist in chiral multiplets. For example, the
chiral partner of ρ(770) would be the J PC = 1++ state a(1260). The a(1260)–
ρ(770) mass difference is considerable, and attempts to pair these particles in a
chiral multiplet would clearly be a matter of speculation. However, since each falls
into vectorial flavor (SU(2) or SU(3)) multiplets, it makes sense to build in only
vectorial flavor invariance without invoking assumptions about chiral properties.

We shall proceed by first working out an example, the fermionic sector of the
linear sigma model,

Lf = ψ̄ [i/∂ − g (σ − iτ · πγ5)]ψ

= ψ̄Li/∂ψL + ψ̄Ri/∂ψR − gv
(

1+ S

v

) (
ψ̄LUψR + ψ̄RU †ψL

)
. (4.1)

We shall drop reference to the scalar field S in the following. The above lagrangian
is invariant under the chiral transformations

ψL → LψL, ψR → RψR, U → LU R†, (4.2)

with L in SU(2)L and R in SU(2)R. As always, we are free to change variables
via contact transformations. In this instance, a useful choice of field redefinitions
turns out to be

NL ≡ ξ †ψL, NR ≡ ξψR, U = ξ ξ, (4.3)

where ξ = exp(iτ ·π/2Fπ). This is seen, after some algebra, to convert the fermion
lagrangian to

L′f = N
(
i /D − /Aγ5 −M

)
N, Dμ = ∂μ + iV μ,

V μ = − i
2

(
ξ †∂μξ + ξ∂μξ †

)
, Aμ = − i

2

(
ξ †∂μξ − ξ∂μξ †

)
,

(4.4)

which is a theory of fermions of mass M = gv having pseudovector coupling. The
new fields transform as

ξ → LξV † ≡ V ξ R†, NL → V NL, NR → V NR,

V μ → V
(
V μ − i∂μV † · V )V †, Aμ → V AμV

†, DμN → V DμN.
(4.5)

For purely vector transformations we haveL = R = V . ForL �= R, the property
of V is more complicated, and Eq. (4.5) implies that it cannot be a simple global
transformation, but must be a function of π(x) and hence a function of x. At first
sight, the need to express an SU(2)-transformation matrix like V as a function
of π(x) appears unnatural. However, it is in fact consistent with physical expec-
tations. Recall from the general discussion of dynamical symmetry breaking in
Sect. I–6 that, in the symmetry limit, axial transformations mix the proton not
with the neutron (as in isospin transformations) but rather with states consisting of
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nucleons plus zero-momentum pions. Mathematically, the important point is that
NL and NR transform in an identical fashion. This corresponds to the fact that
heavy fields do not transform chirally, but have a common vectorial SU(2) trans-
formation. It can be directly verified that Eq. (3.5) is a symmetry of the lagrangian.
Thus, we have obtained the expected result that the baryons can have a vectorial
SU(2) invariance, while maintaining a chiral invariance for pion couplings.

We see in the above example the ingredients of a general procedure for adding
heavy fields to effective chiral lagrangians. The heavy fields are assumed to have an
SU(2) (or SU(n), if desired) transformation described by the matrix V . A deriva-
tive ∂μ acting on a heavy field must be incorporated as part of a covariant deriva-
tive Dμ in order to maintain this invariance. Couplings to pions are described by
the matrices ξ and U , with ξ having the same transformation as in Eq. (4.5). It
is usually straightforward to combine factors of ξ and U in such a way that the
overall lagrangian is invariant. In the general case, each invariant term will have an
unknown coefficient which must be determined phenomenologically. For example,
the N̄ /Aγ5 N term in Eq. (4.4) would be expected to have a coefficient different
from unity; the unit coefficient is a prediction specific to the linear sigma model.
Effects which break the symmetry in an explicit fashion, like mass terms or elec-
troweak interactions, can be added by using appropriate external sources. To date,
heavy-field lagrangians have been used in applications primarily at tree level. The
feature which is essential for their application is that the pion momenta are small,
and hence the heavy fields are essentially static.
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