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To improve production efficiency, the sheep meat industry has increased flock prolificacy. However, multiple-born lambs have
lower birth weights, increased mortality and reduced growth rate compared with single-born lambs. Lamb mortality is a major
issue for livestock farming globally and solutions are required to increase survival to realise the value of increased flock fecundity.
Nutrition during gestation can influence maternal–foetal placental nutrient transfer and thus foetal growth and organ/tissue
development, as well as improve postnatal productivity. This review covers the challenges and opportunities associated with
increased prolificacy, highlights gaps in our knowledge and identifies some opportunities for how targeted intervention with
specific nutrients during mid-to-late pregnancy may influence lamb survival and productivity with a specific focus on pasture-based
systems. This time frame was selected as intervention strategies in short-time windows post-pregnancy scanning and before
lambing to improve lamb survival in high-risk groups (e.g. triplets) are likely to be the most practical and economically feasible
options for pasture-based extensive farming systems.
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Implications

Improving lamb survival and performance is key to enhancing
productivity of sheep farming enterprises worldwide. Pastoral-
based production systems often present a challenging
environment to manipulate nutrition due to difficult terrain,
vast land masses and remote locations. The potential for
targeted dietary interventions to influence a range of
production phenotypes including survival, growth and meat
production offers exciting opportunities to realise the value
of increased ewe fecundity. Targeted nutritional interventions
in critical developmental time windows may offer potential
tools for farmers to improve lamb survival and production
performance especially in multiple-born lambs.

Introduction

Perinatal lamb mortality is a major welfare and production
issue for sheep farming systems worldwide. In Australia
alone, the production costs are estimated at AU$ 450M

with prevention costs estimated at AU$ 100M (Lane et al.,
2015). Perinatal mortality is a complex problem involving
the interaction of nutrition, environmental factors, sheep
genotype and management.
Pasture-based sheep production is a relatively low cost,

efficient and sustainable system that enable countries like
New Zealand to compete as a global exporter of food and
fibre (Morris and Kenyon, 2014). In New Zealand, >95%
of the sheep diet is provided through grazed pasture and
forage crops (Hodgson et al., 2005) or even higher in the hill
country environments where topographical challenges limit
the ability to feed supplements. With expansion of the
dairy industry, sheep farming is now located in these more
challenging hill country environments which is often of lower
fertility and subject to climatic extremes (Morris and Kenyon,
2014). These changes in the farming system pose additional
changes to identifying intervention strategies to improve
lamb survival.
As there is minimal genetic control over litter survival, with

the main source of variation being temporary environmental
effects (Everett-Hincks et al., 2005), nutrition is probably one
of the most important environmental effects that influences† E-mail: sue.mccoard@agresearch.co.nz
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lamb survival and performance. As such, feeding manage-
ment and/or strategic feeding systems may produce tools
for farmers to improve lamb survival. Prior reviews have
described the effect of nutrition during the peri-conceptional
period on foetal programming and health (Oliver et al., 2007;
Fleming et al., 2012), the role of the plane of maternal
nutrition and foetal programming on production (Symonds
et al., 2010; Kenyon and Blair, 2014), vascularity of nutrient
transferring issues including the placenta (Vonnahme et al.,
2015), the effect of maternal trace element and vitamin
supplementation on the lamb (Rooke et al., 2008), the
impact of amino acids (AA) in sheep production (McCoard
et al., 2016) and the potential reasons for the lack of transfer
of scientific knowledge into practice to improve neonatal
survival in small ruminants (Dwyer et al., 2016). This review
focusses on the impact of maternal supplementation with
specific nutrients in the mid-to-late gestation period, the
potential underpinning mechanisms involved and the
potential opportunities to increase survival of multiple-born
lambs in pasture-based grazing systems with a particular
focus on placental nutrient transfer, birth weight, viability
and thermoregulation.

Production impact of multiple births

Implementation of nutritional, genetic, management and
health strategies by New Zealand sheep farmers has resulted
in a 24% increase in the number of lambs born per ewe
mated in the last 18 years (increase of 100% to 124% from
1990; Morel et al., 2008). However, lambing percentages
>200% have been described (Shorten et al., 2013), which
are associated with a greater proportion of twin- and triplet-
born lambs (Amer et al., 1999).
It is well accepted that twins and triplets have reduced

birth weight which leads to higher mortality rates at lambing
compared with singletons (Scales et al., 1986; Gootwine
et al., 2007). An average mortality rate of 15% to 20% in
twins and 25% to 40% in triplets has been reported in New
Zealand (West et al., 2008; Stafford, 2013), with similar rates
observed in Australia (Hinch and Brien, 2014) and other
areas of the globe (Rowland et al., 1992; Dwyer, 2007). The
first 24 h of life is critical for lamb survival, with nearly 50%
of all mortalities occurring during this time frame (Dwyer,
2007). The negative relationship between lamb survival
and number of lambs born highlights the importance
of identifying strategies to increase lamb survival in multiple-
born lambs to realise the value of the improvements in ewe
fecundity.

Intra-uterine growth restriction

Intra-uterine growth restriction (IUGR) is common in
multiple-born lambs and is a significant problem for agri-
cultural animal production. The term IUGR is often used to
describe a wide range of phenotypic outcomes in offspring that
have experienced a restricted intra-uterine environment, and

is defined as decreased intra-uterine growth velocity
(Ergaz et al., 2005) and thus reduced foetal growth potential.
Most studies have focussed on the target outcome of human
health where IUGR is often a condition resulting from
drastically reduced conceptus nutrient and oxygen supply in
late gestation mainly resulting from placental insufficiency.
The consequences of IUGR in multiple-born lambs include
reduced foetal growth and thus birth weight, higher
mortality rates (see review by Kenyon, 2008), reduced
neonatal growth rate and lower muscle mass (McCoard et al.,
1997). In addition, IUGR can result in permanent negative
effects on growth, feed efficiency, body composition and
thus poor finishing, meat quality and long-term health,
thereby decreasing farmer profits (Wu et al., 2006; Kenyon and
Blair, 2014).

Placental development and nutrient transfer

The primary determinant of foetal growth, and thus lamb
birth weight, is the supply of nutrients which depends on
placental transport as illustrated by the positive correlation
between placental and foetal weight (Mellor, 1983). Sheep
have a cotyledonary placentation where the exchange of
nutrients and waste products happens at discrete sites called
placentomes (Ford, 2000). These discrete units of foetal–
maternal exchange are composed of foetal (cotyledon) and
maternal (caruncle) components (Ford, 2000) which can be
classified based on their shape (type A to D) and may differ
in their maternal–foetal exchange area, oxygen exchange
efficiency and glucose transport (Fowden et al., 2006).
Transport of nutrients across the placenta is determined by a
range of factors including the concentration gradient
between maternal and foetal blood, placental blood flow
and metabolism, and specific membrane-bound transporter
expression and activity.
In sheep, uterine capacity is a key factor limiting foetal

survival and growth, especially when ewes are carrying
multiples (Gootwine et al., 2007). Lower birth weights in
multiple litters are associated with smaller placentae with
reduced placentome number and weight per foetus in twin
compared to singleton foetuses (McCoard et al., 2001;
Rumball et al., 2008; van der Linden et al., 2013) and
decreased total placental vascularity (Vonnahme et al.,
2008), suggesting reduced placental nutrient transport.
However, the smaller placentas associated with twins have
been shown to be more efficient (van der Linden et al., 2013)
which may be a function of compensatory changes in
placental structure and function to deliver an adequate
nutrient supply to the foetus to support growth (Rumball
et al., 2008). The role of changes in placentome morphology
on nutrient transport has not been evaluated directly and
warrants further investigation.
Developmental changes occur in maternal and foetal

plasma AA concentrations during pregnancy in sheep.
Factors that influence maternal and foetal AA profiles include
breed (Ashworth et al., 2011), the stage of pregnancy
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(Kwon et al., 2003) and maternal nutrient status (Kwon et al.,
2004). We have reported that increased foetal growth in
response to maternal arginine supplementation from
100 days of pregnancy to term (McCoard et al., 2013) is
associated with improved placental growth, development
and function (van der Linden et al., 2015). Twins have
reduced plasma arginine, leucine, histidine and glutamine
compared with singletons (van der Linden et al., 2013),
which indicates that AA transport may differ between twin
and single placentae and/or differential metabolism of the
foetoplacental unit. The mechanism responsible for these
differences is unclear however leucine, arginine and gluta-
mine are known activators of the mechanistic target of
rapamycin (mTOR) signalling pathway which is a placental
nutrient sensor (Roos et al., 2007) that coordinates maternal
nutrient availability and foetal nutrient supply (Jansson and
Powell, 2006). In early pregnancy, this pathway plays an
important role in the survival and development of the ovine
conceptus (Kim et al., 2011) and in humans; placental mTOR
signalling is markedly down-regulated during IUGR (Roos
et al., 2007). Hyperthermia-induced growth restriction in
sheep is also associated with perturbations in placental
mTOR signalling (Arroyo et al., 2009). In other species, mTOR
signalling controls placental AA transport by regulating the
expression of specific AA transporters (Roos et al., 2005 and
2007). Thus, the activation of placental mTOR signalling and
AA transporter expression leading to increased foetal growth
is a potential mechanism underpinning the effect of maternal
arginine supplementation on ovine foetal growth.
Another potential mechanism mediating the effect of

maternal arginine supplementation on foetal growth is
placental metabolism of arginine into nitric oxide (NO) which
is a major mediator of ovine placental–foetal blood flow
during pregnancy (Rosenfeld et al., 1996). Arginine is the
major substrate used for NO production and the two
enzymes responsible for this process are inducible (iNOS) and
constitutive (cNOS) nitric oxide synthase. Kwon et al. (2004)
report that the activities of iNOS and cNOS and levels of NO
peak in the intercotyledonary placenta, placentome and
intercaruncular endometrium during mid-to-late gestation of
Columbia crossbred ewes – a period of rapid foetal growth.
In addition, it has been reported that treatment of Suffolk
ewes, restricted to 50% NRC requirements with sildenafil
citrate, dose-dependently increased total AA’s and poly-
amines in amniotic fluid, allantoic fluid and foetal serum
without affecting values in maternal serum, and foetal
weight in nutrient-restricted ewes (Satterfield et al., 2010).
Sildenafil citrate works by inhibiting the enzyme that breaks
down cyclic guanosine monophosphate, the metabolite
produced by NO stimulation of guanylate cyclase, and which
is responsible for tissue vasodilation. Interestingly, it has
recently been shown that NO synthesis stimulates mTOR
activation (Ito et al., 2013; Capobianco et al., 2015), sug-
gesting that either of these pathways maybe involved in
regulating ovine placental AA transport, and potentially
contribute to the differences in placental efficiency between
twins and singletons. A greater functional understanding of

the foetoplacental unit in relation to nutrient transfer
in multiple-born lambs is required to develop nutritional
intervention strategies to improve foetal outcome in sheep.

Birth weight

Birth weight is a key contributing factor to lamb mortality
with low birth weight increasing a lamb’s risk for starvation
and exposure (Dwyer and Morgan, 2006). The birth weight of
triplet-born lambs was reported to be 19% to 24% lower
than twin-lamb birth weights (Morris and Kenyon, 2004;
Everett-Hincks et al., 2005; Everett-Hincks and Dodds, 2008),
and 36% to 40% lower than singles (Scales et al., 1986).
Lower birth weight is associated with increased surface
area to body–mass ratio and lower body energy reserves
(Alexander, 1978) which can increase mortality when
exposured to cold conditions (Dwyer and Morgan, 2006).
The optimal birth weight range for lamb survival is 4 to 6 kg
(Dalton et al., 1980; Morel et al., 2008).
Specific AA supplementation during pregnancy has been

shown to enhance foetal growth, and thus birth weight in
sheep. Notably, intravenous bolus injection with 155 µmol
arginine–HCl/kg BW three times daily between 60 days
gestation and birth increases birth weight in single and twin
lambs from under-fed ewes (Lassala et al., 2010). However,
while the birth weight of quadruplet lambs was increased
when well-fed Booroola Rambouillet ewes were injected
with an intravenous bolus of 345 µmol arginine–HCl/kg BW,
three times daily, from 100- to 21 days of gestation, the birth
weight of triplets, twins or singletons was unchanged
(Lassala et al., 2011). In contrast, when twin-bearing
Romney ewes were given an intravenous bolus injection of
345 μmol arginine–HCl/kg bodyweight, three times a day,
from 100 days gestation to birth, the birth weight of female
but not male lambs was increased (McCoard et al., 2013)
suggesting supplementation during the last 2 weeks of
gestation may have the potential to influence the birth
weight of twin-born lambs. Alternatively, the differences
between these studies may reflect breed differences in their
response to AA supplementation, or potentially an influence
of the nutritional value of the basal diet despite both
being formulated to meet or exceed National Research
Council (NRC) requirements. Overall, these studies highlight
the potential for specific AA supplementation during key
developmental time windows (late gestation) to influence
lamb birth weight which may have important consequences
for survival, especially in lower birth weight lambs. The effect
of supplementation with other AA beyond arginine on lamb
birth weight has yet to be evaluated. Furthermore, delivery
methods that enable delivery of AA via the diet to avoid
rumen degradation such as rumen-protected formulations or
AA analogues (McCoard et al., 2016) are required before
practical evaluation of the impact of AA supplementation can
be evaluated in pasture-fed multiple-bearing ewes on farm.
Iodine deficiency can lead to lamb mortality (Sargison

et al., 1998). Lamb birth weight is negatively affected by
grazing ewes on kale crops during gestation, an effect which
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is reversed with maternal iodine supplementation during
pregnancy (i.m.: iodised arachis oil; high = 400mg,
medium = 300mg; Knowles and Grace, 2015). Kale is a
complementary forage crop that has low iodine concentra-
tions and contains glucosinolates that inhibit thyroid
utilisation of iodine through releasing thiocyanate goitrogens
(Stoewsand, 1995), therefore in this case, maternal iodine
supplementation was correcting for iodine deficiency.
However, provided dietary intake of >0.2 to 0.30mg I/kg dry
matter is obtained (Grace and Knowles, 2010), dietary intake
of iodine is usually adequate. Consistent with this notion,
birth weight is unaffected by maternal iodine supplementa-
tion (26.6mg/day in the diet) from 119 day gestation to term
in ewes fed fresh silage (McGovern et al., 2015). Similarly,
lamb birth weight was unaffected in twin- or triplet-born
lambs from pasture-fed ewes supplemented with iodine (i.m.
injection of 1.5 ml iodised peanut oil 35 days postpartum)
despite elevated maternal iodine levels throughout gestation
(Kerslake et al., 2010). These studies suggest that provided
ewes are not iodine deficient, supplementation with iodine
during mid-to-late gestation is likely to have limited impact
on survival of multiple-born lambs.
Maternal supplementation with polyunsaturated fatty

acid (PUFA) increases gestation length in several species
(reviewed by Capper et al., 2006) resulting in a more
physiologically mature foetus at birth. However, supple-
mentation with 12 g/ewe per day algae-derived PUFA DHA in
twin-bearing Targhee ewes in the last 30 days of gestation
and early lactation had no effect on lamb birth weight
(Keithly et al., 2011). Other studies have also demonstrated
variable effects of trace elements and vitamins throughout
gestation on lamb birth weight (reviewed by Rooke et al.,
2008). However, studies where ewes are supplemented in
the last trimester of gestation are scarce. Capper et al. (2005)
reported that vitamin E supplementation (500mg/kg;
6 weeks prepartum) of twin- and triplet-bearing ewes
increased lamb birth weight. Supplementation of pasture
grazing ewes deficient in cobalt with 0.03 or 0.06mg cobalt/
day via weekly drenching throughout gestation also
increased lamb birth weight (Quirk and Norton, 1987).
However, maternal supplementation with selenium, an
antioxidant, had inconsistent effects (Hammer et al., 2011).
More research is required to establish whether maternal
supplementation strategies in mid-to-late gestation can
benefit lamb birth weight in pasture-fed ewes where
trace element and mineral status of the ewes is adequate.
The practical considerations for maternal trace element
supplementation to ewes in pasture-based systems has been
reviewed elsewhere (Grace and Knowles, 2012).

Neonatal vitality

Lighter birth weight, newborn lambs or lambs with lower
rectal temperatures exhibit reduced vigour (Dwyer and
Morgan, 2006), and less drive to suckle (Alexander and
Williams, 1968), which increased their risk of hypothermia
(Dalton et al., 1980). Increased mortality and morbidity of

multiple-born lambs has been linked to compromised
immune function (Dønnema et al., 2015). Vitamin E is one of
the micronutrients that may have an impact on immune
functions and health. It protects biological membranes from
oxidative damage by acting as scavengers of reactive oxygen
species and is linked to IgG production (Huber, 1988).
A number of vitamin E supplementation studies have been
conducted during mid-to-late pregnancy to assess the
production performance of multiple-born lambs. Dønnema
et al. (2015) have shown that oral vitamin E supplemented
(360 IU/ewe per day; 6 to 7 weeks prepartum) Norwegian
White Sheep with ⩾3 lambs have a significantly lower rate of
stillbirths compared with control ewes. However, this was
not observed in ewes with ⩽2 lambs, which is in agreement
with a previous study conducted in twin-bearing Hardy
Speckled Faces ewes orally supplemented with 200 IU
vitamin E per ewe per day for the last 8 weeks of gestation
(Merrell, 1998). The mechanism of action is currently not
known, however it could be linked to reduced oxidative
stress or lack of IgG stimulation in twin-bearing ewes
(Daniels et al., 2000).
Long-chain PUFAs have also been used to assess their

effect on lamb viability, as they are known to influence
neuronal division, synaptic transmission and retinal develop-
ment potentially improving early neonatal behaviour.
Several studies have shown that supplementation of twin- and
triplet-bearing ewes with PUFAs in the last 4 to 9 weeks of
gestation improved lamb vigour (Capper et al., 2005 and
2006; Pickard et al., 2005 and 2008). For example, inclusion of
6 or 12 g of DHA from 9 weeks before lambing improved
measures of lamb vigour including time to suckle and time to
stand (Pickard et al., 2005 and 2008).

Thermoregulation

Brown adipose tissue (BAT) is a specialised fat store that is
used by the newborn lamb to generate about 50% of the
total heat produced (Symonds and Lomax, 1992; Satterfield
and Wu, 2011), facilitating an effective adaptation to the
cold challenge of the extra-uterine environment and
preventing hypothermia (Alexander and Williams, 1968).
Hypothermia is a major cause of on-farm lamb losses in the
first few days of life (Everett-Hincks and Dodds, 2008). Low
birth weight lambs exhibited lower rectal temperatures
(Dwyer and Morgan, 2006), greater lactate concentrations
(Stafford et al., 2007) and lower plasma thyroid hormone
concentrations (Kerslake et al., 2010). These factors are
known to negatively impact on the ability of a newborn
lamb to maintain body temperature after birth and likely
contribute to mortality (Kerslake et al., 2010). We have
shown that during cold exposure there was a rapid decrease
in heat loss in the newborn lamb (McCoard et al., 2014b).
Therefore, increasing BAT stores and/or the activity of
BAT has the potential to improve survival.
Rooke et al. (2008) reviewed the role of trace elements

and vitamin supplementation of the ewe on various traits
in the lamb including thermoregulatory capacity. Of the
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micronutrients evaluated (Cobalt, Copper, Iodine, Iron,
Manganese, Selenium (Se), Zinc, vitamins A and E and n-3
fatty acids), Se, vitamin E and fatty acids were identified as
the most likely candidates to improve lamb survival. Many of
the studies undertaken have evaluated supplementation
throughout pregnancy and/or have studied the responses in
ewes fed a concentrate or a conserved forage-based diet,
rather than within a pasture-based feeding system. As some
diets are deficient in some micronutrients, for example lower
vitamin E levels in dry stored feeds compared with spring
fresh forage (Kivimae and Carpena, 1973), many of the studies
reported in the literature may have limited application
to a pasture-based system. Trace element supplementation
in pasture-fed ewes can improve lamb performance
(Grace and Knowles, 2012) however specific evaluation of
thermoregulatory capacity of the neonates following
maternal supplementation has not been directly evaluated.
Specific PUFA such as linoleic acid are a key energy source

for BAT in lambs (Lammoglia et al., 1999). However, twin-
bearing Taghee ewes supplemented with 12 g/ewe per day of
algae-derived DHA during the last 30 days of gestation had
no effect on lamb thermogenesis (Keithly et al., 2011). In
contrast, twin-bearing ewes fed rumen-protected fat which
was high in saturated and monounsaturated fatty acids or
high in n-6- and n-3-PUFAs at a level of 2% or 4% for the last
40 days of gestation may improve cold tolerance in newborn
lambs (Chen et al., 2007). It is important to note however,
that when fed at 8% of the ewe diet, cold tolerance was
markedly reduced coupled with reduced palmitate oxidation
from BAT indicating decreased ability to oxidise fatty acids,
independently of cytochrome c oxidase activity, GDP binding
or uncoupling protein 1 (UCP-1) gene expression. These
observations highlight the potential for PUFAs to increase
thermogenesis but in a dose-dependent manner.
Iodine supplementation of the ewe can elevate thyroid

hormone level in the ewe and newborn lamb (Andrewartha
et al., 1980; Rose et al., 2007) which may increase rectal
temperatures in the lamb compared with supplemented
lambs (Donald et al., 1994). Negative relationship between
maternal iodine supplementation in late gestation and
immunoglobulin G (IgG) levels in the newborn lamb have
been reported (Boland et al., 2006; Rose et al., 2007; Boland
et al., 2008). Recently, McGovern et al. (2015) reported that
ewes supplemented with 26.6mg/day iodine (either as
calcium iodate or potassium iodide) mixed in concentrate
feed as a carrier, from 119 days gestation to term, was linked
to a failure of IgG absorption and thus passive transfer which
may have been the result of suppressed thyroid hormone
status. These results imply there are negative effects of
maternal iodine supplementation in late gestation, however,
the direct effect on lamb survival and subsequent impact on
lamb survival and immune function later in life remain to be
established. In ewes fed a 100% pasture diet, Kerslake et al.
(2010) reported no difference in lamb heat production
following maternal iodine supplementation (i.m. injection
of 1.5 ml iodised peanut oil; Flexidine 26% w/w iodine
bound to ethyl esters of unsaturated fatty acids in oil 35 days

before mating) despite elevating maternal iodine levels
throughout gestation.
Parenteral arginine supplementation of well-fed twin-

bearing ewes from 100 to 140 days of gestation has been
shown to increase brown fat stores in the foetuses at
140 days gestation by about 15% (McCoard et al., 2013)
through increased fat cell hypertrophy, resulting in a 0.6°C
increase in core-body temperature of twin-born lambs
within 2 h of birth (McCoard et al., 2014a). Increased BAT
deposition in foetuses from under-fed ewes and diet-induced
obese sheep at 125 days of gestation has also been reported
in response to maternal arginine supplementation
(Satterfield and Wu, 2011). These studies highlight the
benefits of maternal arginine supplementation to increase
thermoregulatory capacity and potential survival. However,
validation of these findings in the field, and quantification
of the impacts on lamb survival are required.
The development of BAT and onset of BAT thermogenesis is

mediated by rapid up-regulation of genes including UCP-1
around birth (Symonds et al., 2011). Expression of UCP-1 is
a marker of BAT thermogenesis and several factors and
cofactors influence UCP-1 expression including PPARγ-
co-activator-1α (PGC-1α) which regulates mitochondrial
biogenesis and oxidative metabolism and PRD1-BF-1-RIZ1
homologous domain containing protein-16 (PRDM-16) which
is responsible for BAT lineage determination (Kajimura et al.,
2010). We have shown that increased BAT mass in
late gestation foetuses in response to maternal arginine
supplementation is associated with increased expression
of UCP-1 and PRDM-16, and that plasma cortisol may
up-regulate UCP-1 expression in the near-term ovine foetus
(McCoard et al., 2014a). Up-regulation of PRDM16 indicates
that arginine may signal the commitment of precursor cells to
the BAT lineage which in turn may have important implica-
tions maintaining neonatal core-body temperature, as well
as mediating whole body metabolism, adipocyte-muscle
cross-talk and energy partitioning (Satterfield and Wu, 2011,
Tan et al., 2012). Nitrous oxide and mTOR signalling
have been implicated in the arginine-induced changes in
mitochondrial biogenesis and thus BAT (Tan et al., 2012). In
the ovine neonate mTOR signalling may play a greater
role (McCoard et al., 2014a); however, this remains to be
evaluated directly.
Although non-shivering thermogenesis is the first line of

defence against cold exposure in the newborn lamb, the
second line of defence is shivering thermogenesis which is
initiated only after body temperatures fall significantly
(Alexander and Williams, 1968). Shivering thermogenesis
can provide up to 50% of maximal heat production during
cold exposure in the newborn lamb. Shivering and non-
shivering thermogenesis to facilitate heat production during
cold exposure in the newborn lamb are equally important,
with shivering thermogenesis becoming the primary source
of heat production after the first few days of life (Alexander
and Williams, 1968). It has been postulated that adaptation
to the extra-uterine environment post-birth may involve
cross-talk between different muscle and fat deposits and
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their interaction with other organs involved in BAT function
(Symonds, 2013), however these interactions remain to be
elucidated. Skeletal muscle and BAT may have a common
origin (Seale et al., 2008) and in humans a link between
muscle volume and functional BAT has been suggested in
children and adolescents (Gilsanz et al., 2011), highlighting
the potential importance of skeletal muscle growth during
gestation and its contribution to BW thermoregulatory
capacity and thus survivability at birth.
Twin-born lambs have reduced muscle mass compared

with singletons (McCoard et al., 1997), with the divergence
in muscle mass appearing after 100 days gestation (McCoard
et al., 2001) contributing to the lower birth weight of
twins. During foetal development, skeletal muscle has lower
priority, in terms of nutrient partitioning, compared with
other tissues such as brain, heart and liver, resulting
in muscle being more vulnerable to nutrient deficiency
(Zhu et al., 2006). Newborn lambs also exhibit high rates of
AA oxidation supporting the notion that low-birth weight

lambs at birth are less mature compared with high birth
weight lambs in some aspects of metabolic and endocrine
development (Greenwood et al., 2002).
Amino acid availability regulates skeletal muscle mass

by stimulating protein synthesis and reducing protein
degradation. Amino acids act as precursors of nitrogenous
substances, such as polyamines and NO which likely mediate
growth and development of muscle fibres (Wu et al., 2010).
In addition, AA exert a signalling effect on the regulating
factors controlling myogenesis (Yoon and Chen, 2013). In the
later stages of pregnancy, skeletal muscle growth increases
rapidly and the foetus responds to infusion of specific
(e.g. arginine) or a mix of AA by increasing protein synthesis
(Liechty et al., 1999; de Boo et al., 2005). This response
during foetal life appears to be associated with the plasma
level of insulin in the foetus (Brown and Hay 2006). However,
in IUGR sheep models, when AA are infused directly into the
foetus, net foetal protein accretion increases independently
of insulin changes (Brown et al., 2012).

Table 1 Summary of the observed effects on foetal-neonatal growth and development when supra-nutritional levels of specific nutrients are supplied
to multiple-bearing ewes during mid-to-late pregnancy

Interventions Protocol Phenotypic effect Reference

Arginine 345 µmol Arg–HCl/kg BW 3 times daily to from
100 days of gestation to term

Improved placental growth,
development and function

van der Linden et al. (2015)

155 µmol Arg–HCl/kg BW 3 times daily
between 60 days gestation and birth

Increased birth weight in single and
twin lambs

Lassala et al. (2010)

345 µmol Arg–HCl/kg BW 3 times daily to from
100 to 121 days of gestation

Increased birth weight of
quadruplet lambs

Lassala et al. (2011)

345 μmol Arg–HCl/kg BW 3 times a day from
100 days gestation to birth

Increase in birth weight of female
but not male lambs

Increased brown fat stores in the
foetuses

McCoard et al. (2013)

345 μmol Arg–HCl/kg BW 3 times a day from
100 to 140 days gestation

Increase in core-body temperature McCoard et al. (2014a)

345 μmol Arg–HCl/kg BW 3 times a day from
100 days gestation to birth

Increase in the capacity for protein
synthesis in foetal muscle

Sales et al. (2014)

Iodine 100mg potassium iodide/2 weeks; 90 days
prepartum

Increased rectal temperatures Donald et al. (1994)

200 IU/ewe per day in the last 8 weeks of
gestation

No effect on birth weight Merrell (1998)

26.6mg/day as calcium iodate or potassium
iodide from 119 days gestation to term

No effect on birth weight
Failure of IgG absorption

McGovern et al. (2015)

I.m injection of 1.5 ml iodised peanut oil
35 days pre-mating (long-acting depot)

No effect on birth weight
No effect on heat production

Kerslake et al. (2010)

Fat 2%, 4% or 8% (of total fat intake)
rumen-protected fat (high in saturated or
monounsaturated fatty acids); 40 days
prepartum

Increased cold tolerance in
newborn lambs in the
2% and 4% groups and reduced
cold tolerance in the 8% group

Chen et al. (2007)

PUFA 45 g/kg concentrate Increased lamb vigour Capper et al. (2006)
DHA; 12 g/ewe per day 9 weeks prepartum for
varying durations

Trend for increased gestation length
Increased lamb vigour

Pickard et al. (2005 and
2008)

DHA; 12 g/ewe per day DHA in the last 30 days
of gestation

No effect on birth weight Keithly et al. (2011)

Vitamin E 500mg/kg; 6 weeks prepartum Increased lamb birth weight of twin
and triplet

Capper et al. (2005)

360 IU/ewe per day; 6 to 7 weeks prepartum Decreased rate of stillbirths Dønnema et al. (2015)

IgG = immunoglobulin G; PUFA = polyunsaturated fatty acid.
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During late gestation, changes in specific rather than total
intracellular muscle AA concentrations are associated
with lower muscle mass in twins (Pacheco et al., 2010).
Notably, arginine and glutamine appeared to be closely
related to foetal mass and the mass of the semitendinosus
muscle (Pacheco et al., 2010). Further, a reduction in the
concentration of specific intracellular free AA such as
arginine, leucine, valine and glutamine which play important
roles in muscle growth, may be limiting for skeletal muscle
hypertrophy in twins (Sales et al., 2013), consistent with the
correlation between the weight of the foetal semitendinosus
muscle in twins with intracellular concentrations of free
arginine (r = 0.66, P< 0.01) and glutamine (r = 0.49,
P< 0.01) in late gestation (Sales et al., 2014).
Compared with singletons, twin foetal sheep have down-

regulated mTOR signalling in late gestation which may be
related to long-term restricted nutrient availability leading to
reduced ribosome number and abundance of the translational
machinery per ribosome (Sciascia et al., 2010). These
results may explain, at least in part, the restricted myofibre
hypertrophy and reduced muscle mass observed in twins
relative to singletons. Activation of mTOR signalling in skeletal
muscle is under the control of the arginine-family of AA
(e.g. arginine and glutamine) and leucine (Meijer and
Dubbelhuis, 2004). Consistent with this notion, maternal
intravenous bolus injection of arginine three times daily from
100 days gestation to birth increased the capacity for protein
synthesis in foetal muscle which is associated with increased
abundance of mTOR near birth (Sales, 2014). In the same
experiment, we reported that maternal arginine administra-
tion increased core-body temperatures of the lambs within
2 h of birth (McCoard et al., 2014a). Although arginine
increased the capacity for skeletal muscle growth in lambs,
the potential cross-talk between skeletal muscle growth
and thermoregulatory capacity of the lambs remains to
be elucidated. Furthermore, the effect of maternal arginine
supplementation on lamb survival in pasture-fed ewes in
a commercial farm system also remains to be determined.

Future prospects

Improved productivity and profitability of the sheep meat
industry has been made possible by increasing lambing
percentages. However, multiple-birth lambs suffer from IUGR
which negatively impacts early-life development and growth.
The application of specific nutritional components such as
AA, vitamins, trace elements and PUFAs in mid-to-late
gestation (summarised in Table 1) have the potential to
influence traits associated with lamb survival including
placental nutrient transfer and thus foetal growth, birth
weight, lamb vigour and thermoregulatory capacity.
Undoubtedly, further research into the utility of macro and
micronutrients in pasture-fed ewes on foetal growth, lamb
survival and postnatal performance, critical intervention time
windows and identification of delivery routes and stages
of growth that are both cost-effective and practical to
implement in pasture-based grazing systems should be the

focus of future research activities. Further, discovery of the
role other nutrients play in regulating foetal growth
and survival is required to increase our knowledge of the
potential for nutraceuticals to decrease lamb mortality and
morbidity. We hope the animal field will grasp this line of
research and continue to expand this knowledge base and
the potential it has in improving sheep production.
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