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Global stability analysis of elastic aircraft in
edge-of-the-envelope flow
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Shock buffet on wings is a phenomenon caused by strong shock-wave/boundary-layer
interaction resulting first in self-sustained flow unsteadiness and eventually in a
detrimental structural response called buffeting. While it is an important aspect of wing
design and aircraft certification, particularly for modern transonic air transport, not all
of the underlying multidisciplinary physics is thoroughly understood. Building upon a
single-discipline shock-buffet stability study, this work now investigates the impact of
an elastic structure in these extreme flow conditions. Specifically, a triglobal stability
analysis of a fluid–structure coupled system is presented, utilising the implicitly restarted
Arnoldi method with a sparse iterative Krylov solver and novel preconditioner. Asymmetry
resulting from a static aeroelastic simulation based on a finite-element model of the
underlying geometry in a wind tunnel modifies the global modes of the earlier fluid-only
symmetric full-span analysis. A flutter stability analysis at wind-tunnel flow conditions
below shock-buffet onset finds no instability in the structural degrees-of-freedom, whereas
in shock-buffet flow with globally unstable fluid modes additional marginally unstable
structural (and fluid) modes emerge. The developed stability tool for coupled analysis is
instrumental in identifying those physically relevant and strongly coupled modes where
a standard pk-type (p being eigenvalue and k reduced frequency) flutter analysis fails.
With the complementary computation of adjoint eigenmodes, the core of the instability is
pinpointed to a relatively small wing area which may help to effect the control and delay of
this detrimental transonic unsteadiness. We contribute to the question on how the presence
of the elastic wing structure impacts on the otherwise pure aerodynamic three-dimensional
shock-buffet dynamics.
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1. Introduction

For over a century, the study of aeroelasticity has been pivotal in many real-life
engineering quests (Livne 2003; Shubov 2006; Beran, Stanford & Schrock 2017). By
investigating the combined effect of aerodynamic, elastic and inertial forces, countless
detrimental phenomena have been identified and system designs rectified. Torsional
divergence, flutter, limit-cycle oscillations, shock buffet and its structural response, called
buffeting, are well-known examples witnessed on aircraft and all can (and have) lead
to undesirable reduced overall performance, structural fatigue and worse. Questions on
flow stability, specifically in the absence of structural dynamics, have similarly been
studied for many decades (Theofilis 2011). Owing to the invaluable insights gained
over the years, the means of transportation that we use every day have been designed
to be safer and more efficient with a reduced environmental footprint. Paramount to
all these advancements are reliable yet fast and accurate methods to discover how and
when these phenomena occur and, crucially, how to limit their impact or prevent them
altogether. Numerical analysis, alongside experiments, has proven a powerful tool in this
regard.

Shock buffet is an aerodynamic phenomenon characterised by self-excited flow
oscillations due to shock-wave/boundary-layer interaction on aircraft wings at transonic
speeds. Although it was first identified in the 1960s, a complete multidisciplinary
explanation remains elusive, despite progress made continually by experiments and
numerical investigations (Tijdeman 1977; Jacquin et al. 2009; Dandois 2016). One of
the first theoretical models by Lee (1990) proposed an acoustic feedback loop that
sustained the shock oscillations, which was corroborated in experimental studies, although
contradictory results and theories have also been put forward (Jacquin et al. 2009;
Feldhusen-Hoffmann et al. 2018; Moise, Zauner & Sandham 2022). The first global
stability study on an aerofoil in turbulent flow linked shock buffet to an unstable
eigenmode (Crouch et al. 2009), soon followed by similar findings on infinite straight
and swept wings (Crouch, Garbaruk & Strelets 2019; Paladini et al. 2019a; He &
Timme 2021). Spanwise-localised pockets of shear-layer pulsation synchronised with
an outboard-propagating shock oscillation, dubbed buffet cells, that are correlated with
the sweep angle, were found to be a defining feature of three-dimensional shock buffet
(Iovnovich & Raveh 2015; Dandois 2016). The first global stability study on a finite-wing
aircraft by Timme & Thormann (2016) and Timme (2020) corroborated the insight gained
from related experimental work (Dandois 2016; Sugioka et al. 2018; Masini, Timme &
Peace 2020; Sugioka et al. 2021).

The mutual interaction between an elastic wing structure and shock buffet has
been investigated previously too. Experimental work on a finite wing found that weak
shock-wave/boundary-layer interaction does not affect the structural response strongly,
despite large flow field fluctuations (Steimle, Karhoff & Schröder 2012). However, with
increasing shock strength due to higher free-stream Mach number, strong fluid–structure
coupling was observed, despite weaker fluctuations in the flow overall, and the aeroelastic
system responded to the unsteady flow excitation. Importantly, it has been shown, for a
pitch-plunge (and variants thereof) typical section aerofoil, that the introduction of an
elastic structure has the ability to destabilise an otherwise stable flow (Nitzsche et al.
2019). This work also points out limitations of traditional flutter prediction methods,
such as the so-called pk-type analysis (Hassig 1971; where p is the eigenvalue and k the
reduced frequency), in tracing all relevant modes, prompting the development of more
advanced methods. This observation is congruent with our discussion. Expanding global
stability analysis by incorporating fluid–structure interaction is indeed an active research
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area going beyond transonic wings. Novel methods and physics, with unstable eigenmodes
originating both in the fluid and structural degrees of freedom, have been explored
for various configurations, such as a cylinder with splitter plate and spring-mounted
plates and aerofoils (Pfister, Marquet & Carini 2019; Negi, Hanifi & Henningson 2020;
Pfister & Marquet 2020; Moulin & Marquet 2021). Another important earlier study
to be pointed out is that in Lesoinne et al. (2001) where the linearised physics were
modelled in a similar approach to ours and applied to finite-wing flutter in inviscid
flow.

This contribution builds upon previous work by Timme (2020), that studied the
fluid-only shock-buffet instability on a finite-wing aircraft, and expands the investigation
by Houtman & Timme (2021), which introduced an elastic structure. We developed the
fluid–structure coupled Jacobian operator, and its integration into the stability framework,
to enable the search for dominant fluid modes while at the same time determining the
impact of the elastic wing structure. Previous work used the so-called Schur complement
method to trace aeroelastic modes describing the wing vibration (Bekemeyer & Timme
2019; Badcock et al. 2011). This formulation, which can be shown to be equivalent
to legacy tools in conventional flutter analysis, is an efficient way of establishing the
flutter boundary while making use of computational fluid dynamics functionality for
the aerodynamics. However, it is not suitable for finding fluid instabilities due to the
mathematical structure of modelling the coupled physics. The method favoured herein
does not require any rearrangement or decomposition of the matrix eigenvalue problem.
Choosing a coupled solution approach with an inner–outer iterative structure relying
on the shift-invert spectral transformation necessitated the implementation of a novel
preconditioner for the inner sparse iterative linear equation solver, while offering speed up
compared with discipline-specific block-Jacobi-type preconditioning. In previous work,
the aerostructural coupled system has been solved in the context of adjoint gradient
computation for multidisciplinary optimisation. Discipline-specific preconditioners from
the fluid and structural solvers were reused in Kenway, Kennedy & Martins (2014) in a
block-Jacobi fashion, noting that discarding the off-diagonal coupling terms allows for
easier parallelisation. Block-Jacobi and Gauss–Seidel preconditioners for a three-field
formulation were compared in Zhang & Zingg (2018). While this is an intricate
discussion, clear performance gains were realised overall when including various coupling
terms. A similar strategy of observing the discipline coupling is followed in our
work.

This paper continues with a description of the physical models, linearised analyses
and numerical details in § 2. The focus is on the coupled discrete Jacobian matrix
operator and the adaptation of the inner–outer iterative eigenvalue solver, using the
implicitly restarted Arnoldi method from the ARPACK linear algebra library and a
bespoke sparse iterative linear solver, all made available in the industrial DLR-TAU code.
The adoption of the Sherman–Morrison–Woodbury formula for the parallel inversion of
block-arrowhead matrices in deriving a preconditioner for the coupled fluid–structure
system and its benefits are discussed, too. Results for the NASA Common Research
Model, introduced as a test case in § 3, are scrutinised in § 4, where the impact
of the fluid–structure coupling on both the shock-buffet related direct and adjoint
eigenmodes as well as the structural sensitivity of the instability to identify the core
of the global dynamics, colloquially called wavemaker, are elucidated. A verification
test case, together with an assessment of the numerical methods, is outlined in the
appendices.

967 A4-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

41
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.413


J. Houtman and S. Timme

2. Theory and methods

2.1. Physical models of fluid and structure
The starting point of our work is the set of governing equations in semi-discrete form:

ẇ = R(w), (2.1)

where w is the state vector comprising two parts, wf and ws, to represent the fluid and
structural degrees of freedom, respectively, and R is the corresponding discretised residual
operator. The expression ˙( · ) denotes a temporal derivative. Equation (2.1) depends on a
large number of parameters which are not explicitly stated herein.

The fluid system is assumed to be governed by the Reynolds-averaged Navier–Stokes
(RANS) equations in three-dimensional space coupled with a suitable turbulence model.
The fluid state vector wf of conservative variables is given by wf = [ρ, ρuf , ρE, ρν̃]T,
where ρ is the density, uf the Cartesian velocity-field vector, E the specific total
energy and ν̃ the working variable of the turbulence model, when using the negative
Spalart–Allmaras model (Allmaras, Johnson & Spalart 2012). The governing equations
written in conservative integral form in the arbitrary Lagrangian–Eulerian formulation
can be stated as

d
dt

∫
Ωf (t)

wf dV +
∫

∂Ωf (t)
(F − F v − wf ẋf ) · n dS =

∫
Ωf (t)

S dV, (2.2)

where Ωf (t) is a time-dependent (due to structural motion) arbitrary control volume
enclosed by ∂Ωf (t), the vectors F and F v are the inviscid and viscous fluxes, respectively,
n is the normal vector to ∂Ωf and S describes the source term of the turbulence model in
our case. The term wf (ẋf ·n), which accounts for flux balances in a moving domain as a
result of the fluid–structure interaction, with ẋf as the Cartesian mesh velocity vector, has
been exposed explicitly in (2.2). The RANS equations (plus turbulence model) provide the
fluid part of (2.1) and Rf contains the spatial discretisation of the last two integrals and an
additional term arising from the geometric conservation law (Thomas & Lombard 1979),
when dealing with the time-dependent discrete control volumes in the temporal derivative.
The dimension of the fluid system is given by the number of mesh points times the number
of conservative variables.

The structural system, defined in a suitable domain Ωs(t) and communicating with the
fluid domain through the fluid/structure interface Γ (t) (e.g. the wetted surface of the wing
structure) (Pfister et al. 2019; Negi et al. 2020; Lesoinne et al. 2001), is governed by the
second-order ordinary differential equation

M ẍs + Cẋs + Kxs = f , (2.3)

where matrices M , C and K represent the constant mass, damping and stiffness
matrices, respectively. We discard structural damping throughout, only accounting for
the aerodynamic damping. Vectors f and xs are any present forces, specifically the
aerodynamic pressure and friction forces acting on the interface Γ in our case, and the
structural coordinates, respectively. The deformation of the structure, xs, can be expressed
as xs = Φη, where Φ is a matrix consisting of the spatial orthogonal mode shapes of
the structural system and η (modal coordinates) provides the time-dependent amplitude
of each mode shape contributing to the deformation. The velocity of the structural
coordinates is defined as us ≡ ẋs = Φη̇ for ease of notation in the following. At the
interface, Γ , the velocity of the structural points equals those of the fluid domain to
enforce the no-slip and no-penetration condition us = ẋf (= uf ). Matrix Φ, together with
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the wind-off structural frequencies, is obtained from an undamped free-vibration analysis
of the underlying finite-element model. The structural equation (2.3) of second order is
projected into the modal space (using a suitable set of m dominant modes with lowest
frequency) and rewritten as a first-order equation by standard linearisation (Tisseur &
Meerbergen 2001), specifically ẇs = Rs, using ws = [ηT , η̇T ]T and defining the structural
residual Rs as

Rs = Dws + ϑEΦT f (wf , ws), (2.4)

where D = [0, I;−ΦTKΦ, 0] and E = [0, I]T, with I being the m × m identity matrix. The
mass ratio ϑ results from writing the equation in dimensionless form, consistent with the
fluid equations, and is a function of reference fluid density and length in our formulation.
If the mode shapes are mass normalised such that the generalised mass matrix becomes
ΦTMΦ = I , the generalised stiffness matrix, ΦTKΦ, is a diagonal matrix containing the
squares of the angular frequencies of each structural mode. Hence, the modal structural
equations are uncoupled when no generalised aerodynamic forces, ΦT f , are applied.
Aerodynamic coupling leads to aeroelastic phenomena.

A time-invariant static aeroelastic solution of (2.1), w̄ = [w̄T
f , η̄T , 0]T, satisfying

R(w̄) = 0 and referred to as a coupled base state, is of special interest for global stability
analysis and shall be detailed explicitly. The elastic restoring force, resulting from the static
deformation, is in equilibrium with the generalised aerodynamic forces, and the modal
structural equation simplifies to ΦTKΦη̄ = ΦT f (w̄f , η̄) with the static deformation in
physical coordinates in domain Ω̄s given as x̄s = Φη̄. Accordingly, the static deformation
will define the equilibrium fluid domain Ω̄f within which the inviscid and viscous fluxes
(and source term of turbulence model) in (2.2) are evaluated. Velocities on the interface
Γ̄ are, of course, zero. Linear dynamic investigations effectively look at the perturbations
around this coupled equilibrium state.

There are a few points to add to complement the preceding description. First, using
RANS-level aerodynamics, the dimension of the fluid problem is much larger than that
of the structural problem, 2m, due to both the requirements on the resolution of the
nonlinear fluid flow and the assumed linear nature of the structural model with constant
(e.g. deformation-independent) mass and stiffness matrices. We note, however, that a
nonlinear structure will also result in a large number of structural degrees of freedom
according to the detail included in the finite-element model. Second, the innocuous
appearing unsteady aerodynamic forces, f , in the context of aircraft aeroelasticity and
loads typically represent motion-induced (resulting from the wing motion itself linked
to e.g. flutter instability) and gust-induced (with the external excitation originating away
from the wing) contributions. As noted by Hall (2022), a third unsteady aerodynamic force
contribution results from the unstable shock-buffet flow field itself (with the excitation
originating at the wing but not requiring its motion). This is a non-trivial discussion.
With no attempt to be exhaustive, one aspect here is that the unsteady aerodynamic
force and the excited wing motion will mutually interact and modulate one another, with
e.g. amplitude-dependent (nonlinear) synchronisation taking place in certain scenarios.
While a strict distinction between the motion- and buffet-induced contributions becomes
questionable, particularly in an established shock-buffet/buffeting state, buffet loads are
often initially derived from an assumed rigid wing. Herein, we will look at this challenge
by extracting dominant global modes from a converged time-invariant solution at globally
stable pre-onset (and mildly unstable) conditions. Finally, the interface between the fluid
and structural systems plays an important role. Normally the structural coordinates do
not conform with the fluid surface mesh coordinates, and hence a suitable mapping at
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the interface between the disciplines is needed, typically by splining the mode shapes
to the surface mesh for the coupled analysis to allow the transfer of aerodynamic loads
and structural deformations between the fluid and modal structural governing equations
without the need for additional transformations.

2.2. Global stability analysis
With the governing equations of the fluid and structural systems defined, we can return
to (2.1). Decomposing the unknown fluid and structural variables into static/steady base
state and perturbation vectors via w(t) = w̄ + εw̃(t) (with factor ε � 1) results, after some
more manipulation, in the linearised equations of the form

˙̃w = Jw̃, (2.5)

where J = ∂R/∂w is the coupled Jacobian matrix, which is a large sparse matrix
conveniently expressed as consisting of four blocks J = [J ff , J fs; Jsf , Jss], with Jsf =
ϑEΦT∂ f /∂wf and Jss = D + ϑEΦT∂ f /∂ws. In addition, the fluid-to-structure coupling
matrix can be expressed as J fs = [J f η, J f η̇], where J f η = ∂Rf /∂η and similarly J f η̇ =
∂Rf /∂ η̇. With these definitions, the fluid Jacobian matrix, J ff = ∂Rf /∂wf , is obvious.
When the standard exponential ansatz of the form w̃(t) = ŵeλt is taken, (2.5) is recast as
an eigenvalue problem,

λŵ = Jŵ, (2.6)

where λ = σ + iω denotes the eigenvalue, which is a complex number consisting of a
decay/growth rate σ and angular frequency ω (with i as the complex unit

√−1), and ŵ
is the corresponding eigenvector containing the complex spatial amplitudes describing
the coherent dynamics. When σ is greater than zero, the system is said to be globally
unstable and this is what must be prevented within the aircraft flight envelope. Hence,
the solution of this eigenvalue problem is desired as a first step in the analysis (once a
nonlinear equilibrium solution w̄ of (2.1) is available).

A complete study of global instability mechanisms requires the solution of the adjoint
equations. These have now become ubiquitous in fluid mechanics, for application in error
estimation, shape optimisation, flow control and many more (Luchini & Bottaro 2014).
Hence, (2.6) is also solved in its (discrete) adjoint form such that

λ∗w̌ = J†w̌, (2.7)

where the eigenvalue will be complex conjugate to that of the direct global problem with
corresponding adjoint eigenvector w̌. The adjoint Jacobian operator J† is defined through
a suitable inner product 〈b, Ja〉 = 〈J†b, a〉, where 〈a, b〉 = aHQb describes the weighted
inner product of two arbitrary vectors a and b, with Q expressing a positive–definite
matrix. The adjoint operator can thus be given explicitly as J† = Q−1JTQ. We combine
a norm that was chosen e.g. in rigid-wing shock-buffet investigations by Sartor, Mettot &
Sipp (2015) and Paladini et al. (2019a) and in the study of a rotationally flexible cylinder
with splitter plate in Basso et al. (2021). Specifically, the choice of an inner product and
its resulting norm physically represent a measure of energy in the coupled system

‖w‖2 = 〈w, w〉 =
∫

Ωf

wH
f wf dV + ηH

(
ΦTKΦ

)
η + η̇H

(
ΦTMΦ

)
η̇. (2.8)

Hence, the weight matrix Q contains the discrete cell volumes on its diagonal for fluid
degrees of freedom as well as generalised stiffness and mass matrices for the structural
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degrees of freedom. Observe the equivalence between the modal and physical coordinates,
specifically for the structural elastic strain energy, ηH(ΦTKΦ)η = xH

s Kxs, and similarly
for the structural kinetic energy, η̇H η̇ = η̇H(ΦTMΦ)η̇ = uH

s Mus, with ΦT = ΦH and Φ
being mass normalised. Other inner products to define the energy norm, particularly for a
compressible fluid, have been discussed in the literature and can be explored in the future
(Bugeat et al. 2019; Yeh & Taira 2019). Due to the non-normality of the Jacobian operator,
the set of direct and adjoint global modes form a bi-orthonormal basis where 〈w̌i, ŵj〉 =
δij (once appropriately normalised) with the standard definition of the Kronecker delta
δij. Where applicable, this test of bi-orthonormality was done for all computed modes.
Regions of high spatial amplitudes in the adjoint vector can be physically interpreted as
those where a harmonic forcing (or initial condition) affects the direct eigensolution most,
i.e. the global flow field is most receptive to such imposed perturbations. Related to this is
resolvent analysis to identify the maximum response to harmonic forcing, optimised over
all possible forcings (Houtman, Timme & Sharma 2022, 2023).

Another extension of the concepts comes from combining the direct and adjoint global
modes to form what is often called the wavemaker, which shows the sensitivity of the
dynamics to localised feedback and can reveal the origin (or core) of an instability
(Giannetti & Luchini 2007). To be consistent and comparable to previous related work
(Paladini et al. 2019a,b), the fluid wavemaker can be defined as the normalised pointwise
product of the direct and adjoint eigenvectors, such that

θf ,i = ‖Riw̌f ‖2 ‖Riŵf ‖2, (2.9)

where Ri is a diagonal matrix to extract the relevant variables of the direct and adjoint
solution vectors at a given location i describing a discrete control volume. The vector
2-norm is indicated through ‖·‖2, and, importantly, the direct and adjoint eigenvectors
of the coupled system observe the earlier-stated bi-orthonormality to normalise the
wavemaker. Similarly, following the work by Basso et al. (2021), the wavemaker of the
modal structural system can be stated as (defining χ ≡ η̇ for ease of notation)

θs,j = |Rjη̌| |Rjη̂| + |Rjχ̌ | |Rjχ̂ |, (2.10)

where diagonal matrix Rj extracts the modal degrees of freedom denoted by subscript j.
The interested reader is also referred to the work by Skene et al. (2022) that includes an
insightful discussion on different definitions of the wavemaker in the literature.

2.3. Numerical approach

2.3.1. Static aeroelastic base state calculation
The RANS equations (plus turbulence model) are solved herein using the industrial
DLR-TAU code which relies on a second-order, finite-volume, vertex-centred spatial
discretisation (Schwamborn, Gerhold & Heinrich 2006). The inviscid fluxes are computed
using a central scheme with matrix artificial dissipation. The Green–Gauss theorem is used
to evaluate the gradients of flow variables required for viscous fluxes and source terms,
where needed. Turbulence closure is provided by the negative Spalart–Allmaras model
using the Boussinesq eddy-viscosity assumption. The far-field boundary is described
as free-stream flow through a characteristic boundary condition consistent with the
discretisation of the interior fluxes, while the no-slip, no-penetration condition on viscous
walls is enforced strongly. Additionally, when a symmetry plane boundary condition
is required (specifically, for our isolated wing test case to verify the implementation,
see Appendix A), this is imposed by removing components of the momentum equations

967 A4-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

41
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.413


J. Houtman and S. Timme

normal to the plane. The steady-state flow solution is converged to low residual levels
approaching machine epsilon using the implicit backward Euler method with lower–upper
symmetric Gauss–Seidel iterations and local time stepping for convergence acceleration.
A geometric multi-grid method is also used to improve convergence rates.

The coupled aeroelastic problem requires solving the mass–spring modal structural
equations with applied (generalised) aerodynamic forces iteratively in a staggered fashion
updating the structural and fluid degrees of freedom in turn. The mode shapes were
mapped one to one to the surface mesh for the fluid equations through interpolation using
radial basis functions (see e.g. Michler 2011). This allows the transfer of aerodynamic
forces and structural deformations between the fluid and structural equations without
the need for additional transformations. While the Newmark-beta scheme can be used to
integrate the second-order structural equations in time, for the static aeroelastic coupling
where the aerodynamic loads are balanced by the wing stiffness, specifically ΦTKΦ η̄ =
ΦT f (w̄f , η̄), the structural degrees of freedom are updated iteratively based on the latest
loads estimate. The coupling between aerodynamics and structure for these nonlinear
iterations (either for computing a base state or for unsteady time marching) is done
using the tools provided through the FlowSimulator framework, see for instance Reimer,
Heinrich & Ritter (2020). However, the fluid–structure coupling for linearised analyses in
identifying dominant global modes has been integrated entirely in the TAU flow solver as
part of this work with detail provided in the following.

2.3.2. Aeroelastic triglobal stability calculation
The Jacobian matrix blocks of the linearisation are evaluated on the statically
deformed geometry for subsequent stability analysis. Matrices J ff and Jsf are computed
from a hand-derived, analytical formulation, while J fs is computed using a central
finite-difference residual evaluation of the fluid equations on the deformed volume mesh,
with mesh deformation applied through a radial basis function approach (see e.g. Michler
2011). Specifically, a finite-difference step size of 10−5 is used throughout and the
sensitivity of the computed global modes was found to be negligible. Also see previous
work (e.g. Timme & Thormann 2016) where the frequency-domain aerodynamic response
to structural forcing, applied through the columns of matrix J fs, has been assessed with
respect to time-marching pulse excitation. Forming Jss is trivial due to the linear modal
nature of the structural system. Note that the viscous contribution to the aerodynamic
forces f is discarded herein for stability analysis, leaving the pressure components only,
and the impact of this simplification in the analysis of aircraft wing aeroelasticity was
found to be negligible when compared with time-marching simulation that accounted for
the full aerodynamic force vector including viscous terms (Belesiotis-Kataras & Timme
2021). Details on the meaning of the different matrices and simplifications can be found
in Badcock et al. (2011), while a thorough discussion of the underlying linear harmonic
solver in DLR-TAU can be found in Thormann & Widhalm (2013).

In previous work (Badcock et al. 2011; Timme & Badcock 2011; Timme, Marques &
Badcock 2011), the coupled fluid–structure system was solved using the Schur complement
eigenvalue method. This method utilises the Schur complement matrix S to solve for the
structural part of the eigenvalue problem in (2.6). Rearranging gives

S(λ)ŵs = λŵs, (2.11)

where S(λ) is expressed as

S(λ) = Jss − Jsf (J ff − λI)−1J fs, (2.12)
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and λ is an eigenvalue originating in the uncoupled structural system. This is an important
condition, as will be seen below. The second part of the right-hand side in (2.12) is dubbed
the interaction (or coupling) matrix Sc = −Jsf (J ff − λI)−1J fs and can be formed in both
the frequency and time domain (Timme & Badcock 2011; Timme et al. 2011). It was noted
by the authors that determining the values of the Schur complement matrix, specifically
the aerodynamic coupling matrix Sc, requires considerable computational effort, if not
done efficiently. As it depends on the steady-state solution and the eigenvalue, scanning
over a large parameter space quickly becomes prohibitive, and thus approximations are
needed. While multiple approaches to approximating matrix Sc were offered, a linear
spline interpolation is chosen as a surrogate herein while iterating to the eigensolution.
Depending on using either λ or iω when forming matrix Sc, the Schur complement method
can be shown to be equivalent to either a classical p or pk flutter analysis (Hassig 1971). It
is also intuitive that the absence of aerodynamics leads to the uncoupled, linear eigenvalue
problem for the structural dynamics, Dŵs = λŵs. Finally, the fluid part of the coupled
system can be computed from the other equation of the original coupled matrix problem
in (2.6):

(J ff − λI)ŵf = −J fsŵs, (2.13)

and these ideas, and equivalent relations for the adjoint eigenvalue problem, have been
exercised in previous work (Bekemeyer & Timme 2019).

There are two requirements for the Schur complement method to work; an appropriate
shift based on the structural (wind-off) frequencies (or a previously converged solution)
and the matrix decomposition with relevant eigenmodes from the matrix Jss. With regards
to applying the same method for buffet studies, whilst the former requirement can be
obtained through engineering insight even for a fluid mode, it is not possible to obtain
the latter when interest is in modes emerging from the fluid system. Specifically, we are
not aware of a suitable matrix decomposition that would isolate the leading flow physics
linked to the buffet phenomenon to similarly apply the efficient Schur complement solver.
Hence, a coupled eigenvalue solver is needed, incorporating the full Jacobian matrix. This
can be done by using the methods available through the ARPACK library.

The implicitly restarted Arnoldi method, as implemented in the ARPACK library, is a
routine for finding a set of eigenvalues for large sparse matrices (Sorensen 1992). Starting
with a random search direction v, the algorithm computes, in principle, the so-called
Krylov subspace Kr = [v, Jv, J2v, . . . , Jr−1v] of dimension r. After each successive
multiplication with the Jacobian operator J, the resulting vector is orthonormalised
and added as column to a matrix V r. Following projection, a few Ritz eigenvalues λr
and corresponding Ritz approximate eigenvectors ŵ = V ryr (where eigenvector yr is
associated with λr) of the upper Hessenberg matrix Hr = V H

r JV r are good approximations
of those largest eigenvalues of J. A major advantage is that the algorithm needs only to
compute the matrix-vector product Jv, so the full matrix J does not need to be obtained
and stored explicitly. The algorithm can also be run in shift-invert mode to find the largest
eigenvalues closest to a user-defined complex-valued shift ζ by operating on vector v
with A−1 = (J − ζ I)−1 instead of J. To achieve this, a linear system of the size of the
coupled problem needs to be solved and a practical way is using an iterative Krylov
subspace solver, which again heavily relies on matrix-vector products now with the shifted
Jacobian matrix A and this can, in principle, be done matrix free for low memory footprints
(Knoll & Keyes 2004; Vevek, Houtman & Timme 2022a). However, the matrix-forming
approach is used herein. An inner–outer iterative eigenvalue method is thus established,
whereby the outer implicitly restarted Arnoldi process is used to find the eigenvalues
while an inner iterative solver enables the shift-invert operation. The preconditioned
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generalised conjugate residual method with inner orthogonalisation and deflated restarting
(GCRO-DR) is chosen as the inner iterative solver (Xu, Timme & Badcock 2016).

2.3.3. Preconditioned sparse iterative solver
The GCRO-DR solver is an iterative method for solving systems of linear equations
(Eiermann, Ernst & Schneider 2000; Parks et al. 2006). It utilises the restarted Arnoldi
method for solving the system Ax = b by seeking a solution vector x that minimises the
norm of the residual, ‖b − Ax‖. Specifically, compared with the standard generalised
minimal residual method, GCRO-DR recycles the Krylov subspace between restarts,
with the potential to avoid convergence stall and indeed to accelerate convergence while
reducing the required size of the subspace. Whichever Krylov subspace method is used,
a preconditioned version is normally needed in practice to achieve convergence, with the
preconditioner P−1 being an approximation of A−1. Ideally, the operator P−1 should be as
close to A−1 as possible without incurring a large computational cost for both computing
and applying the preconditioner. In doing so, using preconditioning reduces the condition
number of the system and can offer significant speed up.

As in previous work, when running the linear harmonic solver in the chosen flow
solver in a distributed-memory parallel computing environment, the implementation
approximates the fluid-only matrix, J ff , used for preconditioning by a block-Jacobi form.
Specifically, when running n parallel processes, the fluid Jacobian matrix (according to
the partitioned mesh) is split into n block rows (one block row per process including
all entries needed for global matrix-vector products), and only the block-diagonal part
of it, local to this process, is used for preconditioning. Note that it was found beneficial
for reasons of rate of convergence and stability to factorise a matrix which combines
Jacobian matrices arising from approximate first-order and exact second-order spatial
schemes (McCracken et al. 2013; Vevek et al. 2022b). This matrix is then factorised by the
incomplete lower–upper method with no fill in, denoted ILU(0). However, such approach
poses a challenge for a fluid–structure coupled system in parallel, as the coupling matrices,
J fs and Jsf , would be discarded, when using an equivalent discipline-level block-Jacobi
formulation extended to the structural degrees of freedom. A new preconditioning
approach, henceforth referred to as the arrowhead preconditioner, was developed in the
parallel implementation to address this coupling challenge. Initial testing was done with a
simple case, specifically the Goland wing, as the corresponding coupled Jacobian matrix
was small enough to fit into memory of a single core and be factorised using ILU(0),
without discarding the coupling blocks. The results from these sequential tests were then
used as a benchmark to verify the implementation of the various code additions in parallel
and assess the performance. Details of the methods are described in the appendices.

3. The NASA common research model

The NASA Common Research Model (CRM) resembles a modern passenger aeroplane
and exists as both a physical model (for wind-tunnel testing) and a computational
model. It was designed as a universal test case for researchers to compare new ideas
and results (Vassberg et al. 2008). The wing has an aspect ratio of 9, a taper ratio
of 0.275 and a 35◦ quarter-chord sweep angle. Herein, the scaled-down wind-tunnel
wing/body/horizontal-tail version is discussed featuring a mean aerodynamic chord of
0.189 m with a full span of 1.586 m and reference area of 0.280 m2. The pylons and
nacelles were discarded and the horizontal tail-setting angle was 0◦. All design details
including aerofoil data can be found in the cited reference.
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Global stability of elastic aircraft

An unstructured computational mesh has previously been generated for the half-span
simulations in Timme (2020) with the SOLAR mesh generator (Martineau et al. 2006)
and, upon mirroring with respect to the symmetry centre plane, the full-span case has
approximately 12.3 × 106 mesh points with 3.3 × 105 points on solid walls. A viscous
wall normal spacing of y+ < 1 is ensured, eliminating the need for wall functions in the
flow model. The spherical far-field boundary is located 100 semi-span lengths away.

The Reynolds number based on mean aerodynamic chord is Re = 5.0 × 106 and the
reference free-stream Mach number is M = 0.85, chosen based on runs 153/182 of the
European Transonic Windtunnel (ETW) test campaign (Lutz et al. 2016). In accordance
with our previous work (Timme 2020), and contrary to the experimental configuration
where the transition location is fixed at 10 % local chord length, herein, a fully turbulent
boundary layer is assumed. Run 182 measured the static deformation of the elastic wing at
several angles of attack. For intermediate angles not measured, but required for our study
around the shock-buffet onset condition, interpolation of the experimentally measured
deformations was used (Keye & Gammon 2018). In contrast to the same previous work,
herein the impact of both static and dynamic aeroelastic deformation is simulated (with
validation results provided in the following) rather than pre-deforming the wing based
on the given experimental data and running the fluid simulations on the then quasi-rigid
wing. As such, additional information on the wind-tunnel configuration and conditions
is required. The density ratio (that is, solid-to-fluid density) is approximately 5000 and
the loading factor (i.e. dynamic pressure over Young’s modulus) is 0.33 × 10−6 for the
case considered herein. The total temperature and total pressure during the runs were
approximately 300 K and 192 kPa, respectively.

The finite-element model used for this study represents the NASA CRM wind-tunnel
geometry (excluding the tunnel itself) and is publicly available. Following a modal
structural analysis, the first 30 normal modes with lowest frequency are kept (Tinoco et al.
2018) which is deemed sufficient considering that the model comes without pylon/nacelle,
vertical tail plane or control surfaces. Importantly, the structural frequency range covers
the shock-buffet frequency range previously identified in Timme (2020). Figure 1 shows
some of these modes, conveniently scaled for visualisation purposes. As expected for such
an aircraft model, the first two modes describe wing bending, as seen for the starboard
wing in figure 1(a). Higher-frequency modes describe various combinations of wing twist
and bending and more complex variations. Other modes primarily capture fuselage (modes
3 to 6) and tail (modes 9 to 11) motions, and these are then not expected to be dominant in
this study.

4. Results and discussion

We start with validating the fluid–structure coupled simulations with respect to available
experimental data. This is followed by a flutter analysis and a recap of the aerodynamic
stability analysis, although assessing the impact of model asymmetry herein not previously
considered in Timme (2020). Last but not least, the majority of the discussion addresses
the aeroelastic stability analysis. All results are stated in their non-dimensional form,
based on the mean aerodynamic chord and reference free-stream values, unless explicitly
specified otherwise. Following the insight gained in previous work, typical parameter
settings for the present eigenvalue computations are summarised in table 1. The
computation of the interaction matrix for the flutter analysis, which relies on the same
linear harmonic solver, uses parameter settings in accordance with the inner iterations of
the eigenvalue solver. Full-span calculations resulting in nearly 74 × 106 complex-valued
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y

z

x

(a) (b) (c)

(d ) (e) ( f )

Figure 1. Representative structural mode shapes for NASA CRM test case with corresponding wind-off
frequencies. Surface colours indicate the modal deformation in z-direction. Peculiar features on the aircraft
surface are the various cut outs on the wind-tunnel model for experimental sensors and to house the
instrumentation. (a) Mode 2, 40.94 Hz; (b) mode 20, 426.74 Hz; (c) mode 25, 526.93 Hz; (d) mode 26,
568.48 Hz; (e) mode 28, 641.54 Hz; ( f ) mode 30, 679.62 Hz.

Parameter Value

Maximum number of eigenmodes per shift 5
Maximum number of outer iterations 1
Size of Krylov space for outer iterations 30
Convergence criterion on outer iterations 10−6

Size of Krylov space for inner iterations 120
Number of deflation vectors for inner iterations 20
Convergence criterion on inner iterations 10−7

Table 1. Typical parameter settings used for inner–outer eigenvalue solver.

degrees of freedom are done on four compute nodes, each having twin Skylake 6138
processors, 40 hardware cores and 384 GB of memory.

4.1. Validation of simulation set-up
The static aeroelastic solution of the aircraft model was computed at angles of attack
α = 3.0◦, 3.5◦, 3.7◦ and 3.75◦ to match the loaded wind-tunnel shape (interpolated from
run 182 in the ETW campaign) and surface pressure data. Figure 2 shows the wing
bending and twist deformations at α = 3.75◦ on the port and starboard wings (evaluated
at 50 % chord) compared with those measured using stereo pattern tracking via markers
distributed over the wing surface. These markers were affixed to the lower surface of
the port wing (Lutz et al. 2016). Overall good agreement can be observed, on par with
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Figure 2. Wing deformation showing (a) bending and (b) twist over dimensionless span η at angle of attack
α = 3.75◦ comparing experimental data from the ETW campaign and static aeroelastic results emphasising
differences on port and starboard wings.

other fluid–structure coupled simulations (Tinoco et al. 2018), with a maximum bending
of approximately 18 mm and a washout twist of −1.2◦ at the wing tip. Note the variability
in the experimental data themselves, specifically for the twist deformation in figure 2(b),
previously reported in Keye & Rudnik (2015). The figure includes error bars describing the
confidence interval encompassing 90 % of all recorded values for a single data point. The
relevant deformation data for our study were available only for angles of attack α = 3.0◦
and 4.0◦ during the pitch-pause polar. Considering that the difference in the fluctuation
range for these two angles of attack was quite small, linear interpolation was used for the
intermediate α = 3.75◦ (similar to obtaining the mean deformation itself). Importantly, an
asymmetry between the port and starboard wing is also clearly visible in the numerical
data. The cause of this asymmetry lies in the high fidelity of the finite-element model
which takes into account the different cut outs on each wing to house experimental
sensors and related instrumentation as well as the asymmetric inner structure of the model
itself. These features propagate to the normal mode shapes and their frequencies. For
instance, the first two modes are wing bending for port (at wind-off structural frequency
39.4 Hz) and starboard (40.9 Hz), respectively, with the latter seen in figure 1(a). The
corresponding surface pressure coefficient of the steady base flow can be found in figure 3
with good agreement to the experimental measurements at most spanwise stations. Herein,
the interest is below and around onset conditions of a global instability which means, in
our modelling framework, the time-invariant, static aeroelastic solution is approximately
equal to the time-averaged mean state, which is what is shown for the experimental data.
A discussion on the seemingly missing experimental data points around the mid semi-span
was given in Tinoco et al. (2018) and Timme (2020). Differences in the surface pressure
between port and starboard wing are minor and not noticeable to the naked eye. Similar
levels of agreement were found in the comparison for all other angles of attack used in this
study. Overall, the results are reassuring that the fluid–structure coupling has been done
correctly (such as defining the mass ratio ϑ and various scalings) and the models are of
sufficient fidelity.

967 A4-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

41
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.413


J. Houtman and S. Timme

1.0

η = 0.131 η = 0.283 η = 0.397 η = 0.502

η = 0.603 η = 0.727 η = 0.846 η = 0.95

DLR-TAU
Experiment

0.5
–C̄P

0

–0.5

1.0

0.5
–C̄P

x/c x/c x/c x/c

0

–0.5

0 0.5 1.0

1.0

0.5

0

–0.5

1.0

0.5

0

–0.5

0 0.5 1.0

1.0

0.5

0

–0.5

1.0

0.5

0

–0.5

0 0.5 1.0

1.0

0.5

0

–0.5

1.0

0.5

0

–0.5

0 0.5 1.0

0 0.5 1.0 0 0.5 1.0 0 0.5 1.0 0 0.5 1.0

(a) (b) (c) (d )

(e) ( f ) (g) (h)

Figure 3. Comparison of experimental and numerical surface pressure coefficient data at angle of
attack α = 3.75◦ and eight spanwise locations. Streamwise coordinate x is normalised by corresponding local
chord length c.

4.2. Flutter analysis
Initially, eleven samples of the interaction matrix Sc were computed using the linearised
frequency-domain solver, assuming simple harmonic structural motion at reduced
frequencies in the range ω = 0 to 3 in increments of 0.3. The sampling frequency range
corresponds to the wind-off structural frequencies, once made dimensionless based on the
actual wind-tunnel flow conditions. Specifically, computing a matrix Sc(ω) involves first
solving linear systems with the frequency-shifted fluid Jacobian matrix, (J ff − iωI), for
each of the m columns of (J f η + iωJ f η̇) and, second, the projection with the matrix Jsf .
Combining the 2m columns of the matrix J fs into m columns has been discussed at
length in other work and is not repeated herein (Badcock et al. 2011; Timme, Badcock
& Da Ronch 2013). This was done at three angles of attack α = 3.0◦, 3.5◦ and 3.75◦.
Upon inspection of the results at the highest angle of attack, additional samples were
added in regions of significant activity, bringing the total to 23. Figure 4 shows both the
absolute value and phase of some selected entries of matrix Sc, specifically of its submatrix
G = (ΦT∂ f /∂wf )(J ff − iωI)−1(J f η + iωJ f η̇), at two angles of attack. Values at angle of
attack α = 3.0◦ were found to be almost identical to those at α = 3.5◦ and are not shown
here for clarity. At the lower angle of attack shown in the figure, the matrix elements
describe a smooth trend with respect to the frequency. At the higher angle of attack,
which corresponds to a shock-buffet condition in the fluid-only analysis, the entries have
significant variation in absolute value and phase in the frequency range where the band
of aerodynamic modes with increased decay rate is observed (Timme 2020), concretely
between approximately ω = 2 and 3, indicating, first, a strong aerodynamic response to
a structural forcing and, second, a strong coupling between the fluid and structure as
discussed shortly. The cause lies both in the proximity of the sampling frequency to some
eigenvalues of the fluid system and in the non-normality of the governing equations (He &
Timme 2020). For instance, the significant peaks at a forcing frequency of approximately
ω = 2.7 coincide with one computed eigenvalue, labelled c′, of the band of shock-buffet
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Figure 4. Log magnitude (a–d) and phase (e–h) of complex entries of matrix G at angles of attack α = 3.5◦
and 3.75◦ over sampling frequency ω. Indices above the plots refer to matrix entries Gij. Symbols indicate
sample locations.

modes shown in figures 5 and 7 below. It must be noted though that interpreting a
linearised frequency-domain aerodynamic response to a structural forcing in the globally
unstable flow at angle of attack α = 3.75◦ should be done carefully. Also observe the
jumps in the phase going from −π to π which is due to visualisation purposes, whereas
the actual flutter calculations with the matrix Sc are done with the equivalent Cartesian
complex numbers instead of the modulus and phase shown in the figure.

Once the interaction matrices have been computed and assessed, they feed into the flutter
stability calculation, specifically (2.11). Figure 5 shows the predicted eigenvalues from
the flutter analysis at angles of attack α = 3.0◦, 3.5◦, 3.7◦ and 3.75◦ at the target flow
condition encountered in the wind-tunnel environment. Since tracing the eigenmodes from
the uncoupled system state is somewhat arbitrary and would depend on how the test point
is reached in the wind tunnel, we chose to increase the density until the simulated flow
condition matches the experiment, while keeping all other variables, specifically velocity,
temperature and pressure, frozen at the target condition. The target corresponds to a density
of approximately 1.53 kg m−3. It should be emphasised that, while the chosen approach to
tracing the modes is arbitrary and does not necessarily agree with how the target condition
is reached in the wind tunnel, the mode tracing agrees with the direct calculation using
the Arnoldi method, as shown in § 4.4. The figure itself appears rather busy, hence a
moment is taken to explain it step by step. The eigenvalues are shown in the complex plane.
While the focus is on the eigenmodes originating in the structural system for wind-off
conditions, specifically those of the matrix Jss, the figure also includes the shock-buffet
modes, labelled b and c′ hereafter consistent with previous work (Timme 2020), in faint
colour for angles of attack α = 3.7◦ (mode b) and 3.75◦ (mode c′), to demonstrate the
connection with the results presented in figure 7. Strictly speaking, denoting the aeroelastic
modes as either structural or fluid modes would not be correct due to the coupled nature
of the problem. For ease of writing, however, we will do so nevertheless, when the origin
of the modes in the uncoupled case can be unambiguously traced to either the structure or
the fluid, as is the case in our investigation.
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Figure 5. Eigenvalues originating in structural system based on pk-type flutter analysis at α = 3.0◦, 3.5◦,
3.7◦ and 3.75◦ at the flow condition encountered in the wind-tunnel environment. Mode 28 at α = 3.75◦,
denoted �, failed to converge and the proper value, computed with the Arnoldi method, is therefore also shown.
A close-up view, indicated by the red box in (a), is shown in (b) for clarity. The fluid modes denoted by b and
c′ correspond to the leading buffet and destabilised modes, respectively, found with the Arnoldi method and
are included to show their proximity to the structural modes.

In the figure, the eigenvalues at angles of attack α = 3.0◦ and 3.5◦ show no instabilities
and the modes do not migrate significantly with increasing angle of attack. At angles of
attack α = 3.7◦ and 3.75◦, it is evident that modes with frequencies below approximately
ω = 1.7 have changed also very little compared with the lower angles of attack. At the
same time, instabilities are found for different structural modes at these two higher angles
of attack. Modes 29 and 30 are unstable at α = 3.7◦, but decrease greatly in growth/decay
rate at α = 3.75◦. This strong decrease is also seen for modes 22, 23 and 25. In contrast,
modes 19 to 21 are destabilised further to have an increased growth rate, bringing these
modes into the unstable half-plane. However, mode 28 at angle of attack α = 3.75◦
(denoted by symbol �), did not trace correctly despite all efforts and the additional
samples in this frequency range to avoid heavy reliance on interpolation of the matrix Sc.
Instead it jumped onto an odd state. This was attributed to the fact that the entries of
the interaction matrix Sc, and therefore S(λ) in (2.12), show extreme variation due to the
shifted fluid Jacobian matrix, (J ff − λI), being close to singular due to the proximity to
the mode labelled c′ in figure 7. Indeed, mode c′ crosses the imaginary axis when going
from a fluid-only to the coupled system, passing in close distance to the troublesome
mode 28 while increasing the value of fluid density. This provides another reason for
the use of the Arnoldi method, besides the ability to compute fluid modes in the first
place. It can distinguish between fluid and structural modes in highly contested regions.
The correct mode 28 coming from the ARPACK calculation is therefore also included
in the figure, denoted by the green square labelled ‘Mode 28’. It has been noted that the
second term of matrix Jss = D + ϑEΦT∂ f /∂ws can often be discarded (Timme et al.
2011). This was confirmed herein by evaluating the sensitivity of the generalised forces,
ΦT f , with respect to the modal amplitudes η (at fixed base-flow solution). The added term
had negligible influence on the results. Viscous force contributions were also discarded for
similar reasons, as outlined earlier.
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To identify the composition of the structural entries of an eigenmode, we adopted and
adapted the modal assurance criterion (MAC) (Allemang 2003), defined herein as

MAC(i, j) = |eT
i η̂j|2

(eT
i ei) (η̂

H
j η̂j)

, (4.1)

with ei as linearly independent unit basis vectors to represent one free-vibration mode
shape at a time and η̂j indicating the structural part of the coupled eigenmodes. In general
terms, the MAC gives an indication of the consistency between modes (such as those
measured experimentally and computed from a numerical model) and can take a value
between 0 and 1, with 1 indicating fully consistent mode shapes. Figure 6 shows the
MAC of the structural part, η̂, of the structural eigenmodes computed using the Schur
complement method compared with the amplitudes of the wind-off normal modes for
angles of attack of α = 3.0◦, 3.5◦ and 3.75◦. (Mode 28 at angle of attack α = 3.75◦
uses the solution from the Arnoldi method, as explained earlier.) Recall that the aircraft
deformation results from xs = Φη with Φ as the column matrix of spatial orthogonal
normal mode shapes. The structural part of the six fluid modes, specifically the pairs a, b
and c, computed using the Arnoldi method are included as well for the highest considered
angle of attack as it is rather instructive. For the structural modes at all angles of attack, the
MAC is dominated by the diagonal, indicating the largest contributions to the eigenmodes
come from the corresponding normal modes. This also gives a means of identifying
whether a mode originates in the fluid or structural system, as the MAC for a structural
mode is likely to be dominated by a single entry. At angles of attack α = 3.0◦ and 3.5◦,
no discernible difference is present and all off-diagonal entries are at least an order of
magnitude lower, as no significant input from other modes is present. Noteworthy are the
three pairs of modes, specifically modes 1/2, 14/15 and 19/20, which have a comparably
high MAC between them. This can be explained by these pairs having similar mode
shapes and/or close wind-off frequencies. For instance, modes 1 (39.4 Hz) and 2 (40.9 Hz)
are both wing bending emphasising either port or starboard deformation. At angle of
attack α = 3.75◦, the MAC for modes 1 to 18 shows rather similar features compared
with the two lower angles of attack. However, the structural parts of the aeroelastic
eigenvectors 19 to 30 now come with a significant contribution from a wide range of
normal modes. This observation agrees with the discussion around figure 5. Modes 20 to
25, the frequencies of which lie around the frequency of the leading fluid modes, seem
to have a particularly salient interconnection, indicating that the aerodynamics related
to the shock-buffet phenomenon can cause a strong coupling between structural degrees
of freedom. In addition, a clear contribution gap of normal modes 3 to 6 and 9 to 11
to those active higher-frequency aeroelastic modes is noticeable. Upon inspection of the
free-vibration mode shapes, it can be said that modes 3 to 6 are dominated by fuselage
bending and modes 9 to 11 are dominant on the horizontal tail. Indeed, the shock-buffet
unsteadiness on the wings (and its wake) does not heavily impact on the horizontal tail in
this study. Finally, the structural parts of the shock-buffet modes (a to c), discussed in more
detail below, have contributions from most normal modes (except those aforementioned
fuselage and tail modes) and, in particular, from those in the same frequency range as the
shock-buffet dynamics.

4.3. Aerodynamic global stability analysis
The interest now turns to elucidating the impact of the asymmetrically deformed full-span
wing geometry on the aerodynamic stability characteristics at angles of attack α = 3.7◦
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Figure 6. Visualisation of modal assurance criterion correlating the structural part of the aeroelastic
(structural) modes with the amplitudes of the wind-off finite-element method (FEM) modes at different angles
of attack. At angle of attack α = 3.75◦ the corresponding values of the leading aeroelastic (fluid) modes,
labelled a, b and c, are included (with mode c′ in final column).

and 3.75◦. For the eigenspectra computed with the shift-invert Arnoldi method, multiple
shifts were used to cover the relevant frequency range. Figure 7(a) shows the eigenspectra
of the fluid-only system, as computed on the perfectly symmetric case (symmetric with
respect to the fuselage centre plane) and the asymmetric case from our static aeroelastic
simulation, cf. the deformation presented in figure 2. The full-span symmetric data are
taken from Timme (2020) and the labelling follows accordingly. While the symmetric,
pre-deformed geometry (corresponding to deformations measured in run 182 of the
experimental campaign) gives two nearly identical unstable eigenvalues at approximately
λ = 0.16 + 2.37i, the asymmetric geometry from the static coupling simulation results in
two visibly distinct eigenvalues. In the symmetric case, the corresponding eigenvectors
revealed symmetric/anti-symmetric coherent spatial features of equal amplitudes on
both wings. An interpretation is that unsteadiness on the two wings is more or less
independent (leaving some coupling effects from the global flow field aside). Interestingly,
for the asymmetric, statically deformed geometry, on the other hand, the coherent spatial
structures of the two unstable modes, while appearing similar to the coherent features
on the symmetric geometry, now dominate one wing each, as presented in figure 8.
The figure shows the magnitude of the unsteady surface pressure coefficient of the two
unstable global shock-buffet modes, labelled b in figure 7, and a visualisation of coherent
structures through the volumetric iso-surfaces of the real part of the x-momentum ρ̂u at
values of ±0.75. Note that the mode with the highest growth rate (in figure 8a) shows
activity on the port wing. Recall from Timme (2020) that those modes are discrete
realisations of the continuous band of medium-wavelength modes reported on infinite
swept wings (Crouch et al. 2019; Paladini et al. 2019a; He & Timme 2021). Hence,
the fluid modes a to c (and additional modes visualised in Timme 2020), linked to
shock buffet on a finite swept wing, all come with similar coherent structures with a
spanwise wavelength/wavenumber correlated with the frequency. Note that the distinct
mode labelled c′ migrated significantly, approaching the unstable region, due to the
increased physical realism of simulating an asymmetric static aeroelastic deformation and
we will return to discussing this mode shortly.

4.4. Coupled aeroelastic global stability analysis
The ramifications of including an elastic aircraft structure in the shock-buffet stability
analysis are now addressed. Figure 7(b) gives the eigenspectra as computed by ARPACK
for the fluid-only system and for the coupled system (and should be examined in unison

967 A4-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

41
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.413


Global stability of elastic aircraft

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

–0.3 –0.2 –0.1

Re(λ) Re(λ)

Im
(λ

)

c′ c′

a

a

b
b

c

c

0 0.1 0.2

Sym (fluid) 3.7° (fluid)
3.7° (FSI)
3.75° (fluid)
3.75° (FSI)

Mode 28

Asym (fluid)

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

–0.3 –0.2 –0.1 0 0.1 0.2

(b)(a)

Figure 7. Comparison of eigenspectra showing (a) fluid-only results for symmetric (sym) vs asymmetric
(asym) static deformation at angle of attack α = 3.75◦ and (b) asymmetric fluid-only vs coupled aeroelastic
results, all computed with the Arnoldi method. Modes are labelled according to Timme (2020), along
with mode c′, which migrates into the unstable half-plane in the coupled system. For reference in (b), all
faint-coloured fluid–structure interaction (FSI) modes are structural modes with the red-dashed box indicating
the relevant region from figure 5.
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Figure 8. Magnitude of unsteady surface pressure coefficient |Ĉp| and volumetric iso-surfaces of real part of
x-momentum ρ̂u at values of ±0.75 of (a) leading and (b) second unstable global modes from fluid-only
stability analysis on statically deformed, asymmetric geometry at angle of attack α = 3.75◦. Underlying
eigenvectors are scaled to unit length with respect to the inner product, specifically 〈ŵf , ŵf 〉 = 1. The base-flow
zero-skin-friction line is also shown on the surface.

with figure 5). Although this figure also shows results for angle of attack α = 3.7◦ for
completeness to demonstrate the impact a fluid–structure coupled approach can have in the
vicinity of instability onset, the focus here is on angle of attack α = 3.75◦. Emphasising
it again, all structural modes found with the earlier pk-type flutter method (bar the
aforementioned difficulties with mode 28) discussed in § 4.2 were also identified by the
Arnoldi method applied to the coupled system, further confirming that the implementation
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is correct. Multiple interesting features can be observed. The discussion focuses on three
regions of the eigenspectrum, specifically the leading shock-buffet modes b, the unstable
structural modes near the angular frequency ω = 1.8, and the unstable modes 27, 28 and
c′ at approximately ω = 2.7.

First, the two unstable shock-buffet modes, denoted b, are also observed in the coupled
system, albeit at slightly decreased frequencies and increased growth rates. This suggests
that including an elastic structure could destabilise an otherwise stable fluid-only mode
at a reduced angle of attack (Nitzsche et al. 2019). The results indicate that this change
in onset angle of attack is small (particularly when compared with other typical factors
having an impact on this type of simulation, such as turbulence modelling). However, it is
important to point out that the migration of the leading buffet-related modes for the current
test case is rather rapid (cf. figure 6 in Timme 2020). Specifically, the leading modes b
only emerge from the dense cloud of spurious non-descript modes, to become identifiable
from a global stability analysis, at an angle of attack of approximately α = 3.6◦. Also
observe, as exemplified for the near-onset angle of attack α = 3.7◦ in our test case, that
the leading shock-buffet modes b are influenced in their migration by structural mode 26.
These shock-buffet modes again emphasise a separate wing each, as pictured in figures 9(a)
and 9(b), and the surface flow characteristics (not included in the plot for reasons of clarity)
and the volumetric iso-surfaces are very similar to their fluid-only counterparts in figure 8.
An interpretation could be that the shock-buffet unsteadiness remains the dominant physics
even when including the elastic wing structure. Having said this, the structural part of the
eigenvectors shows highest activity (i.e. deformation) on the same wing as the coherent
spatial flow features, possibly revealing a coupling effect. To be clear, the unsteady wing
deformation is visualised through the relation x̂s = Φ η̂ and the real part of the dominant
z-component (predominantly normal to the wing surface) is shown in the figure. To
aid reproducibility of the results, when plotting the structural part of eigenvectors in
physical space herein, the underlying vector η̂ was scaled so that the phase of its modal
degree-of-freedom with the highest magnitude was forced to be zero. In addition, the plot
of the MAC (cf. figure 6) describing the composition of the structural part of these fluid
modes indicates a strong contribution from, and hence coupling with, most of the wind-off
structural mode shapes (bar the aforementioned fuselage and empennage modes). The
largest contributions come from modes 19 to 24, having wind-off frequencies close to
the lower shock-buffet frequency range. Consequently, the structural motion described
by these coupled fluid modes is a mix of several wind-off structural mode shapes that
combine in a non-trivial manner. When visualised over a period of oscillation via x̃s(t) =
Φ η̂ eλt + c.c. (with c.c. denoting the complex conjugate eigensolution, cf. figures 9(a)
and 10a), the wing deformation resembles a stationary oscillation predominantly along
the trailing edge towards the outboard region of the large scale coherent flow structures.
The differences in deformation magnitude between port and starboard wings must be
interpreted together with the static deformation in figure 2. Likewise, the adjoint modes
(shown as a representative slice at constant span for the leading eigenmode in figure 9d) are
again very similar to their fluid-only counterpart. As is often found with adjoint modes in
external aerodynamics, coherent features reveal both a strong upstream support compared
with their corresponding direct mode (in figure 9c) and little spatial overlap. A triangular
structure is visible, resembling the observations for the span-periodic modes on infinite
wings (Paladini et al. 2019a; He & Timme 2020). Similarly, for the two-dimensional
adjoint aerofoil mode (and accordingly the span-uniform mode on the infinite wing) it
was argued that the oblique lines, impinging near the shock foot and therefore likely to be
important in the global dynamics, coincide with so-called characteristic lines (Sartor et al.
2015).
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Figure 9. Visualisation of (a) leading and (b) second shock-buffet modes of fluid–structure coupled system
(labelled b in figure 7) at angle of attack α = 3.75◦. Surface contours show real part of deformation in
z-direction derived from structural part η̂ of coupled eigenvector, while volumetric iso-surfaces illustrate real
part of x-momentum ρ̂u at values of ±0.75. Underlying direct eigenvectors are unit length with respect to the
inner product, specifically 〈ŵ, ŵ〉 = 1, whereas the adjoint eigenvector additionally satisfies bi-orthonormality,
specifically 〈w̌, ŵ〉 = 1. Slices of (c) direct mode at dimensionless span η = 0.66, (d) adjoint mode at η = 0.55
and (e) momentum-only wavemaker at η = 0.576 are also shown. The inset of (e) shows iso-surfaces of the
wavemaker at values of θf = 5 × 102, 1 × 103 and 1 × 104. All slices include the base-flow sonic line (solid
black). The base-flow zero-skin-friction line is also shown in (a), (b) and inset of (e).

Figure 9(e) visualises the fluid wavemaker (computed with only the momentum
components of the direct and adjoint solution vectors) for the leading shock-buffet
mode as a slice at constant span alongside three volumetric iso-surfaces over the wing
surface. Discernible sensitivity to localised feedback can be pinpointed in (and above)
the separation region behind the shock foot, having relatively little activity around the
shock wave itself, with quite a narrow span extent overall. Close inspection of the inset
plot shows the highest value of the wavemaker, θf = 1 × 104, right at the shock foot
where shock-induced boundary-layer separation initiates. This is an important result of
our study, showing the wavemaker related to shock buffet on a finite wing for the first
time and extends the insight gained from previous aerofoil and infinite-wing studies
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Figure 10. Visualisation of structural part of leading shock-buffet mode b showing imaginary part of
deformation in z-direction for (a) direct (cf. the real part in figure 9a) and (b) adjoint mode. Corresponding
structural wavemaker is given in (c). The base-flow zero-skin-friction line is also included for orientation.

(Paladini et al. 2019a). This also reinforces recent arguments trying to establish the active
localities involved in the instability. Paladini et al. (2019b) identified the shock foot as the
core of the instability and the separated boundary layer and the shock front as essential
in the dynamics. Moise et al. (2022) bring arguments that feedback loops involving wave
propagation mechanisms, as suggested by Lee’s model (Lee 1990), are not at the heart of
aerofoil shock buffet and question the role of the shock wave as either passive or active
in combination with the separated boundary layer. The structural wavemaker is shown in
figure 10(c) with the direct and adjoint structural deformations given in figure 10(a,b). To
be precise, for visualisation purposes, what is shown in figure 10(c) is a modification of
the structural wavemaker, defined earlier for modal coordinates in (2.10), using physical
Cartesian coordinates xs = (xs, ys, zs) instead, specifically,

θs,i = ‖Rix̌s‖2 ‖Rix̂s‖2 + ‖Riǔs‖2 ‖Riûs‖2, (4.2)

where the diagonal matrix Ri extracts the direct and adjoint structural solution at a given
spatial location i, and the vector 2-norm is indicated by ‖·‖2. Considering the values of
the respective wavemakers, this would suggest that the buffet phenomenon can be most
effectively influenced by providing feedback through the fluid degrees of freedom. This
would agree with the observation that the shock-buffet unsteadiness does not require
structural vibration to initiate or self-sustain. Having said this, the spatial distribution of
the structural wavemaker is interesting in that it emphasises the trailing edge region of
the wing approximately where the large scale coherent flow perturbations are located.
However, trying to relate the wavemaker to the stiffness and mass properties of the
underlying wing structure is a rather intricate discussion. Nevertheless, our identification
of the fluid and structural wakemakers could also be useful for realising effective
control strategies for the buffet phenomenon, and the interested reader is referred to e.g.
D’Aguanno, Schrijer & van Oudheusden (2019) and Sartor et al. (2020).

Second, in figures 5 and 7(b), for the group of modes near angular frequency ω = 1.8,
the Arnoldi method does indeed identify three unstable structural modes, specifically
modes 19, 20 and 21, also found by the earlier flutter analysis. The coherent flow features
of these modes’ eigenfunctions (not explicitly shown herein for reasons of brevity) closely
resemble those of the shock-buffet modes. Having said this, as noted earlier, a correlation
between the frequencies of shock-buffet modes and their spatial amplitudes (specifically
the spanwise wavelength of coherent flow features) was reported in Timme (2020), which
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Figure 11. Visualisation of (a) structural mode 28 and (b) unstable mode c′ of the coupled system. Variables
and plotting styles are identical to those in figure 9.

is also seen in the flow features of the structural modes. For instance, the spanwise
wavelengths are larger than those of the shock-buffet modes b, in accordance with their
lower frequencies. In figure 6, the entries of the MAC for these modes are largest in their
respective underlying wind-off structural modes, as is expected, while also revealing a
strong coupling activity with neighbouring modes.

Third, in figure 7(b), for the group of eigenmodes near angular frequency ω = 2.7,
one must first be able to identify and distinguish the different modes unambiguously,
considering that the pk-type Schur complement method was unable to trace mode 28
(cf. the discussion surrounding figure 5). The coherent flow features of eigenmodes 27
and 28 are similar to the shock-buffet modes b (and indeed modes c and c′), specifically
the one emphasising the port wing, but have smaller spanwise wavelengths, as is expected
according to their respective higher frequencies (Timme 2020). The entries of the MAC
in figure 6 are dominated by the corresponding wind-off modes. This strong diagonal
dominance in the MAC for the structural eigenmodes no matter the angle of attack has been
observed throughout, e.g. it is also the case for the second group of interesting (unstable)
modes near angular frequency ω = 1.8. Hence, even though the Schur complement
method failed for one mode, when traced from wind-off conditions, the success using the
Arnoldi method clearly identifies it as the missing mode 28, originating in the structural
system. Mode 28 is visualised in figure 11(a). Besides the now familiar coherent flow
features, the structural contribution in the eigenvector mainly describes, in agreement
with the discussion on the MAC, the wind-off structural mode seen in figure 1(e) that
accounts for wing twist in the outer span stations. Mode 27 (not shown in figure 1) comes
with a strong deformation on the horizontal tail plane. For complementary insight into
these unstable structural modes such as a frequency syncing, the reader is referred to
the unsteady time-marching fluid–structure coupled simulations on the same test case,
while focusing both on the initial growth of disturbances and the nonlinear saturation, in
Belesiotis-Kataras & Timme (2021). Turning the attention to the last unstable mode in
the third group of interesting modes, the entries of the MAC for mode c′ (last column in
figure 6) are largest for wind-off structural modes 28 and 29, suggesting it is indeed a fluid
mode. However, its proximity to the structural modes gives it a notably different behaviour
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Figure 12. Coupling ratio for coupled modes at various angles of attack. Fluid and structural modes are
denoted with half- and fully filled markers, respectively.

in the MAC than the other fluid modes, with a larger emphasis on the nearby structural
modes. Compared with the other fluid modes, which all show a non-trivial combination
of wind-off modes to isolate the structural activity where the flow unsteadiness sits
(cf. figure 9a,b), mode c′ reveals dominant deformation from mode 28 on the starboard
wing and a somewhat stronger deformation from mode 29 on the port side, as seen in
figure 11(b). Note that wind-off structural mode 29 appears anti-symmetric to mode 30
shown in figure 1( f ). The fluid mode c′, which has now migrated into the unstable
half-plane due to strong fluid–structure interaction, has coherent flow features around the
port wing and these are very similar to those of its fluid-only counterpart (not shown
herein). Besides our earlier statement that the coupling of aerodynamics with an elastic
wing structure could destabilise the global flow field earlier, a second finding in this regard
is the ability to destabilise additional, otherwise stable, fluid modes.

To further quantify the strength of fluid–structure coupling in the different direct
eigenmodes, we took inspiration from a visualisation idea presented in Negi, Hanifi &
Henningson (2021). In figure 12, the coupling ratio defined as 〈ŵs, ŵs〉/〈ŵ, ŵ〉 (with
〈ŵs, ŵs〉 = x̂H

s K x̂s + ûH
s M ûs, cf. § 2.2) is plotted for a selection of eigenmodes in the

shock-buffet frequency range. The ratio defines the weight of the structural and fluid
components in the eigenvector and can also be used to identify whether a mode originates
in the structural or fluid system. Generally, if its value is low, it is a fluid-dominated
mode. Vice versa, if it is high, the structural components dominate suggesting an origin
in the structural system. Importantly, considering the variety of possible vector norms that
can be used, the coupling ratio is best interpreted for a chosen norm while looking at
the trend for a changing significant parameter, such as angle of attack in our study. The
figure reveals interesting features for the different angles of attack presented. Note, results
for angle of attack α = 3.7◦ are similar to those at α = 3.75◦ and therefore not shown
here. First, at angles of attack α = 3.0◦ and 3.5◦, both below buffet onset, all relevant
modes in the spectrum have relatively high values in the coupling ratio, confirming
that they are indeed structural modes and no strong coupling is present. Second, near
buffet onset, all structural modes have approximately two to three orders of magnitude
lower values in the coupling ratio due to more weight in the fluid entries. The physically
relevant fluid modes a to c (only discernible for angle of attack α = 3.75◦) have the lowest
coupling ratio, indicating they are indeed fluid modes with relatively lower weight in the
structural entries. Since the projection of the unstable shock-buffet (fluid) eigenmodes onto
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the structural degrees of freedom is nevertheless non-trivial, one can expect an aeroelastic
response. Third, fluid mode c′ at angle of attack α = 3.75◦ appears in the ratio similar
to its neighbouring structural modes, distinguishing it from the other fluid modes. The
strong coupling of fluid and structure, which eventually causes the destabilisation of this
mode, further shows itself in this visualisation. Also, while the applied vector norm must
be assumed, comparing with the incompressible pitching aerofoil results at transitional
Reynolds numbers presented in Negi et al. (2021) that indicate several orders of magnitude
separation in the ratio between high-frequency fluid and low-frequency aeroelastic modes,
our results would suggest stronger fluid–structure coupled interactions with fluid and
structural modes in close frequency proximity.

5. Conclusion

The interaction between an elastic wing structure and the shock-buffet phenomenon that is
a self-sustained flow unsteadiness even in the absence of wing vibration was investigated
herein. For this purpose the necessary modifications to the linear harmonic incarnation
of the industrial DLR-TAU solver were outlined that implemented a fluid–structure
coupled formulation enabling its global mode computation using the shift-invert implicitly
restarted Arnoldi method as outer iteration together with an inner sparse iterative
linear equation solver. The critical component of the inner Krylov method is effective
preconditioning that accounts for the discipline coupling and for that a novel approach
based on the manipulation of a so-called block-arrowhead matrix was selected that offers
speed up gains in parallel computation needed for a stiff aircraft case in turbulent transonic
flow. These code extensions permitted the first computation of dominant fluid modes
related to shock buffet alongside modes originating in the structural system, even in close
frequency proximity, when a conventional pk-type flutter analysis can fail. The chosen
academic test case was the well-known high-speed NASA CRM with available pressure
and deformation data from a previous experimental wind-tunnel test campaign.

Validating the simulation set-up for a free-stream Mach number of 0.85, a chord
Reynolds number of 5 × 106 and several angles of attack below and in the vicinity of
shock-buffet onset, static aeroelastic deformations together with the steady base-flow
pressure distributions showed good agreement with measured wind-tunnel data, and those
results were used as base state for all subsequent linearised analyses. Importantly, an
asymmetric wing deformation (with respect to the fuselage centre plane), as a consequence
of using a finite-element structural model of the actual wind-tunnel geometry, was
observed, which effectively resulted in breaking up the symmetric/anti-symmetric pairs
of full-span modes found in a previous study using almost perfect symmetric wing
deformation. For routine flutter analysis, generalised aerodynamic influence coefficient
matrices were computed with the linear harmonic solver with respect to modal structural
excitation at distinct frequencies. It was shown how a conventional pk-type flutter method
can fail tracing all structural modes unambiguously, owing to a strong interaction of the
structural degrees of freedom with a passing fluid mode. The importance of having access
to a coupled eigenmode solver, such as the one presented herein, was hence demonstrated.
Consequently, the coupled approach succeeded in identifying all modes, both fluid and
structure, no matter the flow condition. Near shock-buffet onset the overall dynamics
becomes very active with several unstable structural modes appearing in the characteristic
frequency range of the flow phenomenon. With the calculation of direct/adjoint pairs of
eigenmodes, the core of the instability, colloquially called (fluid) wavemaker, was located
right at the shock foot and its downstream separated boundary layer. This observation
supported recent conclusions from the literature for buffeting aerofoils and infinite wings
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while at the same time extending those ideas to a finite wing. Similarly, the best region to
introduce local feedback in the structural system points, somewhat intuitively, to the wing
trailing edge at the span location of the buffet unsteadiness.

Overall it can be said that including the elastic structure adds physical realism to
a high-fidelity aerodynamic analysis with the leading-order effects of the resulting
aeroelastic study being asymmetric wing deformation, the potential for earlier shock-buffet
onset and richer fluid–structure coupled dynamics. Otherwise pure fluid modes show a
non-trivial projection onto the structural degrees of freedom in their coupled counterpart,
hence giving an explanation for structural response, such as buffeting, resulting from
unsteady flow. The work underpins the interest of the technical community towards more
discipline coupling in this edge-of-the-flight-envelope regime.
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Appendix A. Verification of coupled eigenmode solver

For debugging and verification purposes, the Goland wing test case was introduced. This
wing is cantilevered with a constant 4 % thick, symmetric, parabolic-arc aerofoil and
a (semi-)span of 20 ft and chord of 6 ft. The structure is modelled by a finite-element
method, with details to be found in Beran et al. (2004), and, through a free-vibration
analysis, the four lowest-frequency wind-off modes are kept for the study. Those mode
shapes mapped to the aerodynamic surface mesh and structural frequencies are provided in
figure 13(a) for the sake of completeness. Two hexahedral fluid meshes are considered; one
coarse mesh with approximately 20 000 points and one finer mesh with 400 000 points.
Inviscid Euler flow at a reference free-stream Mach number of M = 0.845 and zero
degree angle of attack is assumed. The target altitude (to establish air density and velocity
according to the standard atmosphere) for the aeroelastic analysis is 30 000 ft. A slip
boundary condition is imposed at the solid wing surface, while that at the wing-root
plane is symmetry and the far-field boundary is described as free-stream flow through
a characteristic boundary condition.

Solely for debugging purposes, the relevant aeroelastic eigenmodes were first computed
on the coarse mesh using three different methods, specifically the herein introduced
coupled eigenmode solver (running both in sequential and parallel executions), the Schur
complement approach and, after exporting the coupled matrix, MATLAB functions
for sparse matrices (which also make use of the implicitly restarted Arnoldi method
with shift-invert transformation, but with direct methods for matrix inversion), and the
agreement was excellent throughout. The same modes were computed on the finer
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Figure 13. Goland wing test case showing (a) free-vibration mode shapes and (b) part of the eigenspectrum.
The eigenspectrum is computed by a pk-type method, showing the trace with respect to altitude and the
eigenvalues at target altitude of 30 000 ft, compared with implicitly restarted Arnoldi method (IRAM)
as implemented in DLR-TAU through coupling with ARPACK library. An exact p-type analysis, without
approximations on the linearised aerodynamic response, is also shown.

mesh, using the Schur complement approach as both a pk- and p-type method, with
details discussed in Bekemeyer & Timme (2019), as well as our fluid–structure coupled
inner–outer iterative method. Results are shown in figure 13(b). Note that direct matrix
inversion is ruled out for the bigger mesh for obvious reasons. For the ARPACK
calculation, 25 outer iterations and 1 restart were set with a convergence criterion of
10−6. The Krylov space for the inner iterations was 150 with 20 deflation vectors and
a convergence criterion of 10−10. This was done twice at shifts ζ = 0.05 + 0.15i and
0.05 + 0.45i, corresponding to the vicinity of the wind-off structural frequencies. For
the Schur complement approach, the p-type analysis was performed to check the pk-type
results. To offer some explanation, a p-type analysis differs from a pk-type analysis in
that it does not simplify the aerodynamic response to be simple harmonic but instead
allows the aerodynamics to be included for the correct damping value (i.e. growth/decay
rate). Essentially, the interaction matrix is evaluated as Sc(λ) instead of Sc(ω). This
ensures more accurate tracing as the method can properly represent the aerodynamics
when departing from the imaginary axis. Indeed, the agreement between the different
methods in the figure, specifically for modes 2 and 4 (having a larger distance to the
imaginary axis) when comparing the new coupled solver and the p-type analysis, supports
the notion that the coupled eigenmode solver was implemented correctly, opening up the
tool to larger, more practical cases.

Appendix B. Details of arrowhead preconditioner

When using the fully coupled Jacobian matrix in parallel, block-Jacobi preconditioning
discards the coupling matrices, Jsf and J fs. Therefore, incorporating these matrices in the
formulation grants a better approximation of the inverse. This is possible by utilising an
identity presented by Stanimirović, Katsikis & Kolundžija (2019), which gives the inverse
of a block-arrowhead matrix based on the Sherman–Morrison–Woodbury formula.
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Algorithm 1 Preprocessing stage of arrowhead preconditioner

Require: ILU decomposition of (J ff ,i − ζ I) ≈ (LU)i, coupling matrices J fs,i and Jsf ,i (all
local to process i) and (Jss − ζ I)

1. Compute Y i = (LU)−1
i J fs,i

2. Compute Gi = Jsf ,i Y i and sum globally G = ∑
i Gi

3. Compute F on each process by inverting ((Jss − ζ I) − G)

Block-arrowhead matrices have the sparsity pattern of an arrow (hence the name)

P =

⎛⎜⎜⎜⎜⎜⎝
A1 0 0 . . . B1
0 A2 0 . . . B2

0 0
. . .

...
...

... An Bn
C1 C2 . . . Cn D,

⎞⎟⎟⎟⎟⎟⎠ (B1)

resembling our specific problem, where we define Ai = (J ff ,i − ζ I) (i.e. the local diagonal
blocks of the shifted fluid Jacobian matrix J ff ) and accordingly Bi = J fs,i, Ci = Jsf ,i
and D = (Jss − ζ I). Subscripts i = 1, . . . , n denote the process number. Here, although
all off-diagonal blocks of (J ff − ζ I) are discarded like before for the fluid-only problem,
all elements of the other matrices are kept. The exact analytical inverse of P can then be
derived as

P−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
A−1

1 0 0 . . . 0
0 A−1

2 0 . . . 0

0 0
. . .

...
...

... A−1
n 0

0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎝
A−1

1 B1
A−1

2 B2
...

A−1
n Bn
−I

⎞⎟⎟⎟⎟⎟⎠ · F · (C1A−1
1 C2A−1

2 . . . CnA−1
n − I), (B2)

where matrix F is defined as

F =
(

D −
n∑

i=1

Ci A−1
i Bi

)−1

, (B3)

and I is the identity matrix, both with the same (small) dimensions as matrix D. Computing
the factors A−1

i Bi in (B2) essentially requires applying the ILU factorisation of the
shifted fluid Jacobian matrix, (J ff ,i − ζ I), to the 2m columns of matrix J fs,i (for each
process locally). However, this needs to be done only once and for all, so computing
Y i = A−1

i Bi and F can be done as a preprocessing step, described in Algorithm 1. The
additional memory requirements are for matrix Y of size J fs and matrix F of size Jss.
Preconditioning an arbitrary vector v is explained in Algorithm 2. Compared with applying
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Algorithm 2 Application stage of arrowhead preconditioner

Require: ILU decomposition of (J ff ,i − ζ I) ≈ (LU)i, Y i, F , coupling matrix Jsf ,i, fluid
vector vf ,i (all local to process i) and structural vector vs

1. Compute wf ,i = (LU)−1
i vf ,i

2. Compute zi = Jsf ,i wf ,i and sum globally z = ∑
i zi

3. Compute ws = −F · (z − vs)
4. Compute wf ,i = wf ,i − Y i ws

the block-Jacobi variant, besides operations on the negligible size of the structural system,
only two additional matrix-vector products (one with matrix Jsf ,i and one with matrix Y i),
a vector–vector addition of the size of the fluid domain and one global sum of size of the
structural problem are needed, which makes the computational overhead acceptable, with
details provided below. Note, since the structure-to-fluid coupling matrix Jsf is very sparse
with the only non-zero entries coming from the surface points where the generalised forces
are integrated, matrix-vector products with this matrix are relatively cheap. Similarly, the
fluid-to-structure coupling matrix J fs is not a dense matrix as it results from residual
evaluations on the deformed mesh using a radial basis function tool which linearly reduces
the applied deformation to zero within a specified distance from the wall. Hence, disturbed
volume mesh points (and consequently non-zero residuals) are confined to the vicinity of
the wall.

The performance of different preconditioning approaches is now discussed. The speed
up gained by using the block-arrowhead preconditioner compared with the block-Jacobi
preconditioner (easily implemented by setting all elements of the coupling blocks, J fs and
Jsf , in the preconditioner to zero) was insignificant for the inviscid Goland case without
strong shock waves (see Appendix A). However, for the larger aircraft case with turbulent
shock-wave/boundary-layer interaction, the inclusion of the arrowhead preconditioner gave
significant speed up when compared with the block-Jacobi preconditioner. Figure 14 shows
such a comparison of performance using the preconditioned GCRO-DR iterative solver
algorithm for 20 successive inner linear solutions required by the shift-invert Arnoldi
method. The convergence criterion was set to 10−7 with 120/20 Krylov/deflation vectors.
Two shifts, ζ = 0.05 + 2.63i and 2.63i, were chosen with the latter deliberately defining
a challenging problem due to its proximity to an eigenmode for angle of attack α = 3.7◦,
but nonetheless represents a typical set-up encountered in many simulation scenarios and
exemplifies the benefits of the arrowhead preconditioner.

Figure 14(a) presents a benign scenario for shift ζ = 0.05 + 2.63i. Although the
block-Jacobi method does converge, the arrowhead preconditioner shows consistent
superior performance on average in terms of iteration count. This behaviour is also
reflected when comparing computation times. A single application of the arrowhead
preconditioner takes approximately 50 % longer when compared with block Jacobi due to
the additional operations involved. However, a complete linear solution to the specified
tolerance is roughly 25 % faster, due to preconditioning only accounting for a small
part of the total computation time in each Krylov iteration with most of the cost
coming from the orthogonalisation of the Arnoldi vectors, increasing with the size of
the subspace. This speed up in computation time therefore matches the reduction in
the average number of iterations needed to reach convergence. Figure 14(b) for shift
ζ = 2.63i not only demonstrates clear performance gains of the arrowhead preconditioner,
but more importantly its robustness. Down to a convergence level of 3 × 10−6, the
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Figure 14. Typical convergence behaviour of preconditioned GCRO-DR iterative solver (with 120 Krylov and
20 deflation vectors) showing 20 linear solution histories for NASA CRM eigenvalue problem at angle of
attack α = 3.7◦ with shifts (a) ζ = 0.05 + 2.63i and (b) ζ = 2.63i, contrasting arrowhead and block-Jacobi
preconditioners.

discipline-coupled preconditioner takes roughly half the number of iterations needed by
block Jacobi, largely due to the superior rate of convergence in the initial iterations.
Beyond that, the block-Jacobi preconditioner is entirely inadequate, as illustrated through
the stalled iterations. Additionally, in our investigation, the block-Jacobi preconditioner
never outperformed the arrowhead preconditioner, even when performance gains were
low. While we show next that an inner convergence level in the range 10−7 to 10−5 is
often sufficient to achieve reasonably converged results in the outer Arnoldi iteration, the
robustness of the arrowhead method is preferred and was hence the default choice in our
study.

Appendix C. Assessment of inner–outer iterative Krylov method

An assessment of convergence properties of the inner–outer iterative Krylov method
follows next. Table 2 summarises the impact of the specified convergence level for the
iterative Krylov linear solver on both the relative error of the eigenmode, |1 − λ/λ10−9 |,
and the resulting outer residual norm, ‖Jŵ − λŵ‖, to ensure the accuracy of the results,
subject to the inherent iterative error of the methods exercised herein. The remaining
settings are identical to those in § 4. The two chosen eigenmodes are the fluid mode
labelled c′ and hard-to-converge structural mode 28, shown in figures 5 and 7. It is found
that the residual norm is roughly an order of magnitude higher than the tolerance of
the linear solver. Also, as usual, the frequency converges quicker than the growth rate.
A tolerance of 10−3 is clearly insufficient, as the precision required on the eigenvalues,
especially the growth rate, is greater than what can be reached. A tolerance of 10−7 to
10−5 is sufficiently precise for an engineering accuracy. The ultimate decision would
depend on the scope of a specific study. For instance, choosing a tolerance of 10−9 could
be useful to demonstrate consistency between different methods but would add little added
insight into the physics that warrants the greatly increased computational cost. From these
observations, a tolerance of 10−7 was selected as the best option.
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Inner tolerance λ Per cent error (Re(λ), Im(λ)) ‖Jŵ − λŵ‖
10−3 0.02273046 + 2.709709i (2.3, 0.05) 5.0 × 10−3

0.00208733 + 2.731635i (64.0, 0.02) 9.3 × 10−3

10−5 0.02221602 + 2.708473i (0.01, 0.0002) 3.5 × 10−5

0.00127437 + 2.731229i (0.05, 0.0001) 9.7 × 10−5

10−7 0.02221461 + 2.708468i (0.000, 0.0) 6.3 × 10−7

0.00127379 + 2.731227i (0.001, 0.0) 1.8 × 10−6

10−9 0.02221461 + 2.708468i — 6.3 × 10−9

0.00127378 + 2.731227i — 2.0 × 10−8

Table 2. Impact of inner solution tolerance on outer convergence at angle of attack α = 3.75◦ using shift ζ =
2.7i. The eigenvalues correspond to fluid mode c′ and hard-to-converge structural mode 28 (cf. figures 5 and
7). The relative error is shown for the growth rate and frequency separately and calculated, e.g. for the real
part, as |1 − Re(λ)/Re(λ10−9 )|, with λ10−9 denoting the solution with tolerance 10−9 and bold decimal places
indicating unconverged digits with respect to λ10−9 .
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