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Abstract. We show that there is a distortion element in a finitely generated subgroup G of
the automorphism group of the full shift, namely an element of infinite order whose word
norm grows polylogarithmically. As a corollary, we obtain a lower bound on the entropy
dimension of any subshift containing a copy of G, and that a sofic shift’s automorphism
group contains a distortion element if and only if the sofic shift is uncountable. We obtain
also that groups of Turing machines and the higher-dimensional Brin–Thompson groups
mV admit distortion elements; in particular, 2V (unlike V) does not admit a proper action
on a CAT(0) cube complex. In each case, the distortion element roughly corresponds to the
SMART machine of Cassaigne, Ollinger, and Torres-Avilés [A small minimal aperiodic
reversible Turing machine. J. Comput. System Sci. 84 (2017), 288–301].
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1. Introduction
We begin with an introduction to automorphism groups and the topic of distortion in §1.1,
as this is the motivation and context for our main results listed in §1.2.

The proofs of the main results are based on rather different ideas, namely conveyor belts,
‘ducking’, dynamics of Turing machines, permutation groups, and also some ideas from
computer science, namely reversible computation and logical gates. Some background for
these ideas is given in §1.3.

1.1. Automorphism groups and distortion. A recent trend in symbolic dynamics is
the study of automorphism groups of subshifts. Typical activities include the study of
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2 A. Callard and V. Salo

restrictions that dynamical properties of the subshift put on these groups, and in turn
constructing complicated automorphism groups or subgroups thereof.

The former activity has been most successful in the low-complexity setting, see [43] for
a recent account of the state of the art. For example, minimal subshifts with upper entropy
dimension less than 1/2 have amenable automorphism groups [18], and (as discussed
in more depth below) zero-entropy subshifts do not admit elements with exponential
distortion [17].

The latter activity has been most successful on sofic shifts. In particular, a lot is known
about the finitely generated subgroups of automorphism groups of full shifts: see [47]
for a listing of properties that have been exhibited. For instance, let us mention that these
groups G, while not finitely generated, contain finitely generated ‘f.g.-universal subgroups’,
namely ones that contain isomorphic copies of all finitely generated subgroups of G. The
class of subgroups of automorphism groups is also quite robust, being closed under graph
products [46, 47]. A classical reference for the study of automorphism groups of transitive
SFTs (an important subclass of sofic shifts) is [10].

In this paper, we study the group-theoretic notion of distortion, introduced by Gromov
[26], in the context of automorphism groups of subshifts. If G is a finitely generated group,
we say g ∈ G is a distortion element, or distorted, if g is of infinite order and the word norm
|gn| grows sublinearly (with respect to some, or equivalently any, finite generating set). For
groups that are not finitely generated, we say that an element is distorted if it is distorted
in some finitely generated subgroup. While distortion elements are usually allowed to have
finite order, in this paper, we focus on distorted elements of infinite order.

Two basic examples of groups with distortion elements are the Heisenberg group
with presentation 〈a, b | [[a, b], a], [[a, b], b]〉, where the element [a, b] has quadratic
distortion, meaning we can represent an element of the form [a, b]�(n2) by composing n

generators; and the Baumslag–Solitar group BS(1, 2) with presentation 〈a, b | ab = a2〉,
where a is easily seen to be exponentially distorted, meaning the word norm of an grows
logarithmically.

The previous examples show that distortion elements can appear in nilpotent and
metabelian linear groups. It is known that they cannot appear in biautomatic groups [25],
certain types of mapping class groups [21], and the outer automorphism group of the free
group [1]. See [12, 13, 23, 24, 27, 36, 40, 44] for other distortion-related works.

Getting back to automorphism groups, it is an open problem (that we solve in the present
paper) whether the automorphism group of any subshift can contain a distortion element
[17]. It is not known whether the Heisenberg group [33] or the Baumslag–Solitar group
BS(1, 2) embed in Aut(AZ), or indeed in the automorphism group of any subshift, and
these problems stay open. (It is also open whether the additive group of dyadic rationals
Z[ 1

2 ] ≤ BS(1, 2) embeds in Aut(AZ) [10].)
In addition to being an interesting group-theoretic notion, the quest for distortion

elements in automorphism groups of subshifts is motivated by several purely symbolic
dynamical considerations. First, [18, Theorem 1.2] shows that finitely generated
torsion-free subgroups of the automorphism group of a subshift of polynomial complexity
are virtually nilpotent. See [20, Theorem 5.5] for a similar conclusion for inverse limits
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Distortion element in the automorphism group of a full shift 3

of bounded step nilsystems. If we could rule out distortion in such examples, we could
conclude virtual abelianness.

Second, it is known that the Baumslag–Solitar group, more generally any group with
an exponentially distorted element, does not embed in the automorphism group of a
zero-entropy subshift [17]. More precisely, it was observed there that the Morse–Hedlund
theorem allows one to translate a distortion element into a lower bound on the complexity
of a subshift. This is notable, as this is the only known restriction for automorphism
groups of general zero-entropy subshifts. Thus, distortion looks like a natural candidate
for restrictions on automorphism groups of general subshifts (as far as the authors know,
no restrictions are known on countable subgroups of automorphism groups of general
subshifts).

Third, distortion is tied to an intrinsic notion in automorphism group theory, namely
the growth of the radius (as known as range) of the automorphism, when seen as a
cellular automaton. Namely, distortion in the group sense implies sublinear growth of
the radius [16]. It is not immediately obvious that even sublinear radius growth is possible
(indeed this was left open in [16]), but several examples of sublinear radius growth have
been constructed. The most relevant for us is the observation from [28] that one can even
obtain sublinear radius growth in the automorphism group of a full shift: the so-called
SMART machine, when simulated by an automorphism, gives rise to such growth.

While distortion elements have not previously been exhibited in automorphism groups
of subshifts, some facts are known about their dynamics (mostly related the notion of
radius). Links to expansive directions and Lyapunov exponents are shown in [16]. A related
result is shown in [6], namely distortion elements of automorphism groups of general
expansive systems can not themselves be expansive. Links to the dimension group action
and inertness are discussed in [16, 50].

1.2. Results. The main result of the present paper is that the automorphism group
of some full shift (thus any full shift by standard embedding theorems [33]) contains
a distortion element with ‘quasi-exponential’ distortion, in the sense that the distortion
function grows like exp( 4

√
�(n)). It is more convenient to work directly with word

norms than with the distortion function, so we take this approach in the paper. Note that
for well-behaved functions, the word norm growth is just the inverse of the distortion
function.

THEOREM A. For any non-trivial alphabet A, the group Aut(AZ) has an element g of
infinite order such that |gn|F = O(log4 n) for some finite set F.

Here, by a non-trivial alphabet, we mean a finite set A with 2 ≤ |A| <∞; we also use
the standard shorthand log4 n = (log n)4.

A simple counting argument shows that the word norms of nth powers of a group
element cannot be o(log n) with respect to a fixed finite generating set. For our specific
automorphism, one can strengthen this: the radius of gn as a cellular automaton is
�(log n), so the true growth of word norms of powers of our automorphism is between
�(log n) and O(log4 n).
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4 A. Callard and V. Salo

Our theorem solves the second subquestion of [17, Question 5.1] in the affirmative. Most
of the present paper deals with the proof of this theorem. The element g in this theorem is
essentially the SMART machine [14], so morally this also confirms a conjecture of [28],
although the embedding we use is slightly more involved than the specific one considered
in [28]. The group we use in the proof is given in Lemma 5.14.

The generators of our group are relatively simple, but we have little idea what kind of
group they generate. The finitely generated group 〈F 〉 can of course be taken to be larger
(the distortion function can only become faster-growing this way), so one can take a more
canonical choice of generators, say, all reversible cellular automata with biradius 1 (on the
huge alphabet we use).

One can perform some further massage to get a simpler-sounding example: it is
known that the automorphism group of a full shift contains so-called finitely generated
(f.g.)-universal subgroups, namely ones containing copies of all f.g. groups of reversible
cellular automata [48]. Any such group can be used in the result (although the element g

will be more complicated). In particular, one can pick as F the symbol permutations and
the partial shift σ × id on the product full shift {0, 1}Z × {0, 1, 2}Z.

From the main theorem, we obtain several corollaries of interest, which are proved in §6.
First, we obtain the characterization of the class of sofic shifts whose automorphism groups
have distortion elements.

THEOREM B. Let X be a sofic shift. Then Aut(X) contains a distortion element if and only
if X is uncountable.

It is well known that for sofic shifts, uncountability is equivalent to having positive
entropy.

As another immediate consequence, using the argument of [17], we obtain that the
automorphism group of a full shift cannot be embedded in the automorphism group of
a low-complexity subshift. Recall that the lower entropy dimension [37] of a subshift is
defined by the formula

D(X) = lim inf
k→∞

log(log Nk(X))

log k
,

where Nk(X) is the number of words of length k that appear in X. The lower entropy
dimension of a (one-dimensional) subshift with positive entropy is of course 1. The upper
entropy dimension is defined analogously, with lim sup in place of lim inf.

LEMMA 1.1. Let X be a subshift with lower entropy dimension less than 1/d. If
f ∈ Aut(X) satisfies |f n| = O(logd n), then f is periodic.

THEOREM C. The group Aut(AZ) has a finitely generated subgroup G such that every
subshift X with G ≤ Aut(X) has lower entropy dimension at least 1/4.

Theorem C is of course an immediate corollary of Lemma 1.1. It states a low-complexity
restriction on the automorphism group, that is, it states that automorphism groups of
subshifts with low enough complexity (growth of the number of admissible words) cannot
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have some property. The above theorem seems to be the first low-complexity restriction on
automorphism groups where:
(1) the complexity bound is superpolynomial;
(2) there are no additional dynamical restrictions; and
(3) the prevented behavior can be exhibited in the automorphism group of another

subshift.
There are previously known restrictions satisfying any two of these items. For items (1)
and (2), zero entropy prevents exponential distortion [17]; for items (1) and (3), [18] shows
that if X is minimal and has upper entropy dimension less than 1/2, then it is amenable
(while Aut(AZ) is not); for items (2) and (3) (very low complexity restrictions), there are
many results, see [43].

The subgroup where our distortion element lies can itself be seen as a group of Turing
machines, indeed restricting its action to a certain sofic subshift directly gives rise to a
subgroup of the group RTM(n, k) studied in [3], leading to the following theorem.

THEOREM D. Let n ≥ 2, k ≥ 1. Then the group of Turing machines RTM(n, k) contains a
distortion element; indeed there is a finitely generated subgroup G = 〈F 〉 and an element
f such that |f n|F = O(log4 n).

All groups of Turing machines in turn embed in the higher-dimensional Brin–Thompson
mV for m ≥ 2 introduced by Brin [11], and we obtain the following theorem.

THEOREM E. The Brin–Thompson group mV contains a distortion element; indeed there
is an element f such that |f n| = O(log4 n).

This theorem provides a new restriction for geometries of 2V . Namely, it is known that
Thompson’s group V admits a proper action by isometries on a CAT(0) cube complex [22].
By [29, Theorem 1.5], a group with distortion elements does not admit such an action, thus
we have the following corollary.

COROLLARY 1.2. The Brin–Thompson group mV does not act properly on a CAT(0) cube
complex for m ≥ 2.

Of course, a similar fact is true for the other groups where we exhibit distortion
elements.

We conclude with previously known (but possibly not well known) related distortion
facts that are easy to prove. First, the fact the automorphism group of a full shift contains
finitely generated subgroups that are distorted is essentially classical, namely F2 × F2

embeds in Aut(AZ) [33] and has subgroups with arbitrarily bad (recursive) distortion
essentially by [38]. (Given a subgroup H and an overgroup G equipped with their respective
word norms, the subgroup H is distorted in G if min{‖h‖G | h ∈ H and ‖h‖H ≥ n} =
o(n). In this sense, a distorted element corresponds to a distorted cyclic subgroup.) To
give a more down-to-earth example, Z2 � Z2, which embeds in Aut(AZ) by [47], contains
a polynomially distorted copy of itself, by a nice geometric argument [19]. One can also
construct distorted subgroups directly by more intrinsic automorphism group techniques.
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6 A. Callard and V. Salo

Second, in the setting of general expansive homeomorphisms, finding distortion
elements is very easy. Namely, if S is the invertible natural extension of the ×2-map
on the circle, Aut(Sn) contains a natural copy of GL(n, Z) by simply summing tracks
to each other [34]. For n = 3, the group GL(n, Z) contains the Heisenberg group, thus has
distortion elements.

1.3. Turing machines and gates. While our results in the previous section are stated
fully in terms of homeomorphism groups, our proof methods rather belong to the theories
of dynamical Turing machines and of reversible gates. In this section, we outline some
history of these ideas.

1.3.1. Turing machines. As mentioned in §1.1, our automorphism group element sim-
ulates a ‘Turing machine’, that is, a dynamical system where a single head moves over
an infinite tape of arbitrary data (over a fixed finite alphabet), and all the action happens
near the head (which may move around the tape, such movement depending on the content
of the tape; or modify said content). The dynamics of Turing machines, also known as
one-head machines, is an important branch of symbolic dynamics. This can be seen as
initiated in the 1997 paper of Kůrka [35], which explicitly defined the moving-head
and moving-tape dynamics of Turing machines (although many relevant dynamical ideas
appeared in the literature before this [30, 39, 45]).

One of the most-studied behaviors of Turing machines is aperiodicity, meaning that
the action of the Turing machine has no periodic points. This property is particularly
interesting in the moving tape model, where the head is seen as fixed and only the
tape moves. Kůrka originally conjectured that Turing machines cannot be aperiodic,
but an explicit aperiodic Turing machine was exhibited in 2002 by Blondel, Cassaige,
and Nichitiu [7] (inspired by a technique of Hooper from 1966 [30]). Later, reversible
aperiodic Turing machines (ones whose action is a homeomorphism) were found, the first
by Kari and Ollinger [32]. This culminated in the discovery of the SMART machine
S by Cassaigne, Ollinger, and Torres-Avilés [14], a machine with only four states and
three tape-letters, which is reversible and aperiodic, and whose moving-tape dynamics is a
minimal homeomorphism on the Cantor space, see also [41].

Turing machines, in the moving-head dynamics where the tape is not shifted and the
head moves over it, can be directly seen as automorphisms of a sofic shift [3]. In fact, it
is well known that Turing machines can be ‘embedded’ into automorphism groups of full
shifts Aut(AZ). There are multiple ways of doing so; in this paper, we use the conveyor
belt technique similar to the one used in [28].

For the purpose of establishing distortion, the first important consideration, already
discussed in §1.1, is the ‘speed’ of a Turing machine: a Turing machine with positive
speed, meaning the existence of tape contents such that the head moves to infinity at a
positive rate, could not possibly give rise to a distortion element. This is because the linear
movement of the head (even on a single configuration) means that the radius of powers
of the corresponding automorphism must grow at a linear rate as well, which prevents
distortion.
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It was shown in [31] that all aperiodic Turing machines have zero speed, and in [28],
this was strengthened by proving that the maximal offset by which such a machine can
move in t time steps is O(t/ log t). For the SMART machine S, more is known: in t steps,
it can only move by an offset of at most O(log t). This makes S a perfect candidate for
a distortion element of a subshift automorphism group, and indeed it was conjectured in
[28] that it is one.

1.3.2. Gates. The next ideas come from the study of reversible gates. By this, we refer
to the study of permutation groups acting on (a sublanguage of) An, where A is a finite
alphabet, which are generated by ‘reversible gates’: that is, permutations that only consider
a bounded subset of coordinates at a time. More precisely, if k ≤ n and π ∈ Sym(Ak), then
we can apply π to the subword starting at i by the formula π̂(u · v · w) = u · π(v) · w,
where u ∈ Ai , v ∈ Ak , w ∈ An−k−i . From now on, we use the term ‘gate’ for reversible
gates and ‘classical gate’ to refer to the usual not necessarily reversible gates (in the few
places where they are needed).

A fundamental lemma in this topic is that Alt(An) admits a generating set with bounded
k, namely it is generated by the even permutations of A2 if the cardinality #A is at
least 3 (when we consider them as gates, and allow their applications at any position
i = 0, . . . , n− 2). A more complete statement appears in [48], while earlier proofs are
given in [8, 9, 51].

The connection between gates and Turing machines is as follows. Let us consider
generalized Turing machines in the sense of [3], meaning the machine can look at and
modify multiple cells at once, although only at a bounded distance from the head. Now,
walking on a cyclic tape containing an element of An, we can apply permutations of Ak

at different relative positions i: simply move by i steps, apply the permutation locally,
and then move back by −i steps. The above paragraph translates to the fact that there
is a finite set of generalized Turing machines that can perform any even permutation of
the tape content (relative to the head position). Actually, it turns out that since Turing
machines carry a state, k = 1 suffices, that is, the generating Turing machines need not be
of a generalized type.

2. Definitions
2.1. General notions. We have N = {0, 1, 2, . . .}, Z+ = N \ {0}, and Z� = Z/�Z is
integers modulo �. For S a finite set, we denote by #S the cardinality of S. For
i, j ∈ N, denote �i, j� = {n ∈ N : i ≤ n ≤ j} and �n� = �0, n− 1�. If w ∈ {0, 1, . . . ,
k − 1}∗, write vk(w) for the value w represents in base k (the leftmost digit having
the highest significance by default), that is, vk(w) =∑|w|−1

i=0 k|w|−1−iwi ; and we write
n(k) ∈ {0, . . . , k − 1}∗ for the number n ∈ N written in base k (with length determined
from context or specified in text), that is, vk(n(k)) = n.

For � a finite set, called an alphabet, denote by �∗ =⋃∞
n=0 �n the set of finite

words over �. For w ∈ �∗, denote by len(w) the length of w, that is, the integer n

such that w ∈ �n. For a word w ∈ �∗, denote by w the reverse (or ‘mirror image’)
of w, that is, if w = w0 · w1 · · · wn−1, then w = wn−1 · wn−2 · · · w0. For w ∈ �n and
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8 A. Callard and V. Salo

J ⊆ �0, n− 1�, define w|J = wj0 · wj1 · · · wjk
as the restriction of w to J, for J =

{j0, . . . , jk} and j0 ≤ · · · ≤ jk . Given a ∈ � and j ∈ �0, n− 1�, the cylinder [a]j
denotes the set of words {w ∈ �n | wj = a}. Usually our alphabets are non-trivial, by
which we mean |�| ≥ 2.

In Lemma 4.10, we denote NC1 for ‘Nick’s Class’ of complexity of level 1, that is, the
class of languages L ⊆ �∗ such that L is decidable by Boolean circuits with a polynomial
number of gates, with at most two inputs and depth O(log n) (see for example [2]). The
reader need not be familiar with this class to follow our argument. The main technical
result we need is Barrington’s theorem from [4] (but this is also proved from scratch in our
context).

For a, b elements of a group, the commutator of a and b is [a, b] = a−1b−1ab. The
conjugation convention is ab = b−1 ◦ a ◦ b. If π ∈ Sym(A) is a permutation, we may
regard it as a permutation of A× B by π((a, b)) = (π(a), b). Our groups always act from
the left. If g1, . . . , gn are commuting elements of a group, we write

∏n
i=1 gi for their

ordered product gn · · · g1. In groups of bijections on a set (which almost all our groups
are), we denote composition by ◦.

Given a finitely generated group G generated by the finite set S, a presentation of g ∈ G

is a word w = sn · · · s1 ∈ (S ∪ S−1)∗ such that g = sn · · · s1, and we write w ≡ g. The
word norm ‖g‖S of g ∈ G relative to S is then the length of a shortest presentation of
g, that is, ‖g‖S = min{n ∈ N : there exists w ∈ (S ∪ S−1)n, w ≡ g}. This word norm is
also the distance in the Cayley graph of G between 1G and g. In this context, an element
g ∈ G is said to be distorted if ‖gn‖S = o(n).

For sets X, Y , and Z, we say that a map f : X→ Y lifts into f̃ : X × Z→ Y × Z (or
that f̃ is the lift of f ) if f̃ (x, z) = (f (x), z). For S ⊆ X a subset of X, and f : X→ X,
we call extended restriction of f to S the map f/S : X→ X defined as

f/S(x) =
{

f (x) if x ∈ S,

x otherwise,

that is, f/S is the extension of the restriction f |S back to the full domain X, by fixing
elements outside S.

2.2. Subshifts and cellular automata. Let � be a finite alphabet. An element x ∈ �Z

is called a configuration. An element w ∈ �∗ is called a word or a pattern, and a pattern
w ∈ �∗ is said to appear in a configuration x ∈ �Z, denoted w � x if there exists some
i ∈ Z such that xi+j = wj for every j ∈ �0, len(w)− 1�.

We endow �Z with the product topology. This topology is generated by the
cylinders [a]j = {x ∈ �Z : xj = a} for a ∈ � and j ∈ Z. The left shift σ : �Z→ �Z

defined by σ(x)i = xi+1 is a Z action on �Z. Closed and shift-invariant subsets X
of �Z are called subshifts. For X a subshift and n ∈ N, we denote by Ln(X) the
set of finite words of length n that appear in X, and by L(X) =⋃

n∈N Ln(X) its
language. We say that a subshift X is sofic if L(X) is a regular language. If X
and Y are subshifts, a continuous and shift-equivariant map f : X→ Y is called a
morphism. It is an endomorphism if X = Y and an automorphism if, in addition,
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Distortion element in the automorphism group of a full shift 9

it is bijective (in which case f−1 is also an endomorphism). Endomorphisms are
sometimes called cellular automata, and automorphisms reversible cellular automata. For
f : X→ Y a morphism between two subshifts, its radius (as a cellular automaton) is the
minimal r such that f (x)i is a function of x�i−r ,i+r�. The biradius of an automorphism is
the maximum of the radii of f and f−1.

2.3. Turing machines. In this article, we use Turing machines as a specific kind of
action on subshifts. We note that despite the terminology, it is not necessarily helpful to
think of them as computational devices. (We will later perform computation in a group of
Turing machines, but this computation is not related to the usual type of Turing machine
computation, in that the iteration of a single machine is not going to be used to perform
computation.)

Let Q be a finite set called the state set, and � be a finite set called the tape alphabet.
In the model of [32] (this model is equivalent to the usual definition of Turing machines,
but handles reversibility better), a Turing machine is a tripleM = (�, Q, 	), where 	 ⊆
(Q× {+1, −1} ×Q) ∪ (Q× � ×Q× �) is the transition table. A transition (q, δ, q ′) ∈
Q× {+1, −1} ×Q is called a move transition, and a transition (q, a, q ′, b) ∈ Q× � ×
Q× � is called a matching transition.

In the rest of this paper, we focus on the action of Turing machines on two families of
objects: bi-infinite tapes and finite cyclic tapes.

2.3.1. Bi-infinite tapes. In the alphabet � ∪ (Q× �), elements of H = Q× � are
called heads. Denote by

X = {
x ∈ (� ∪ (Q× �))Z | for all i, j ∈ Z : i �= j

�⇒ xi ∈ � ∨ xj ∈ �
}

the set of bi-infinite tapes with at most one head somewhere. We can associate to M
its so-called moving-head model [35], that is, the binary relation →M on X defined by
x →M x if x ∈ X contains no head (that is, x ∈ �Z); and if x ∈ X contains a head at
position, say i0 ∈ Z with xi0 = (q, a) for some q ∈ Q and a ∈ �, then x →M x′ if there
exists t ∈ 	 such that:

if t = (q, a, q ′, b) ∈ 	 : x′i =
{

(q ′, b) if i = i0,

xj otherwise;

if t = (q, δ, q ′) ∈ 	 : x′i =

⎧⎪⎪⎨
⎪⎪⎩

a if i = i0,

(q ′, xi) if i = i0 + δ,

xi otherwise.

The binary relation →M on X (denoted → for short if the context is clear) is the
reachability relation. We write →k

M its kth power, and →∗M its transitive closure. We
say thatM reaches the configuration x ′ from x in k ∈ N steps if x →k

M x′. A transition
x →∗M x′ is called a move.

https://doi.org/10.1017/etds.2023.67 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.67


10 A. Callard and V. Salo

The machineM is deterministic if→M defines a partial function, complete determinis-
tic if it defines a total function (which is then continuous and, obviously, shift-commuting),
and complete reversible (or reversible for short) if it defines a bijection (which is then
a homeomorphism). When M is complete deterministic (which all our machines are),
when using the relation →M as a function, we write it as TM : X→ X, which is an
endomorphism of the subshift X. Similarly, when the machine M is reversible, it is an
automorphism of X.

2.3.2. Finite cyclic tapes. The set of cyclic configurations of length � ∈ Z+ is the set

C� =
{
x ∈ (� ∪ (Q× �))Z/�Z | for all i, j ∈ Z/�Z, i �= j

�⇒ xi ∈ � ∨ xj ∈ �
}

of finite configurations containing at most one head. We always assume � ≥ 2 in what
follows (the case � = 1 makes sense, but requires notational modifications and is the least
interesting case anyway).

The machineM defines a binary relation→M on C� by considering these finite tapes
as cyclic, that is, we define x →M x if x ∈ C� contains no head (that is, x ∈ �Z/�Z); and
if x ∈ C� contains a head at position, say i0 ∈ Z/�Z with xi0 = (q, a) for some q ∈ Q and
a ∈ �, then x →M x′ if there exists t ∈ 	 such that:

if t = (q, a, q ′, b) ∈ 	 : x′i =
{

(q ′, b) if i = i0,

xi otherwise;

if t = (q, δ, q ′) ∈ 	 : x′i =

⎧⎪⎪⎨
⎪⎪⎩

a if i = i0,

(q ′, xi) if i = i0 + δ mod �,

xi otherwise.

As above, the relation→M is called the reachability relation. IfM is complete determinis-
tic, the function→M will be denoted by T�,M : C� → C�. Note that it is an endomorphism
of the shift action of Z (or Z�) which translates the cyclic tape around.

Finally, for any machineM = (Q, �, 	), denote by m : N→ N its movement function,
that is, m(n) is the maximal number of cells the machine can visit in n steps. More
precisely, m(n) is the length r − l + 1 of the largest interval �l, r� ⊆ Z such that there
exists a sequence of n steps of computation x0 →M x1 →M · · · →M xn (with xi ∈ X)
such that for every position i ∈ �l, r�, at least one of the tapes xk (0 ≤ k ≤ n) has its head
at position i.

3. The SMART machine on cyclic tapes
Let SMART be the Turing machine (Q, �, 	), where Q = {�1, �1, �1, �1} ∪
{�2, �2, �2, �2}, � = {0, 1, 2} and 	 is the transition table as shown in Figure 1.

We refer to �1, �2, �1, �2 (respectively �1, �2, �1, �2) as filled (respectively hollow)
triangles.
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FIGURE 1. An arrow from q to q ′ labeled � (respectively �) denotes a transition (q, +1, q ′) (respectively
(q, −1, q ′)). An arrow from q to q ′ labeled a|b denotes a transition (q, a, q ′, b).

Remark 3.1. The SMART machine was introduced with a slightly different formalism
in [14], and slightly revised in [41] (states were renamed and permuted). The machine
above adapts the latter in the model of [32] for Turing machines: in other words, we
duplicate the states. We kindly advise readers already familiar with the SMART machine to
read these definitions and propositions carefully.

Namely, while our SMART machine is in a sense completely equivalent, in the formulas
in Proposition 3.2 describing traversals of SMART over zeroes, the patterns corresponding
to filled and hollow initial states are of the same length (unlike the corresponding ones
in [14]). This will be helpful later, when we encode the position in the sweep into the
corresponding area on the tape without any extra space.

In this section, we consider the action of this machine on finite patterns (denoted with
rounds brackets) like

( 1 1 0k 2
�2

)

The argument applies whether or not these are finite subpatterns of a finite cyclic tape, or of
an infinite configuration. When specifying a move (with some number of transition steps)
between two patterns, it is implicit that the initial and final patterns have the same domain,
and the machine does not exit this domain during the intermediate steps. Complete cyclic
configurations (where the notation specifies the contents of all � cells) will be denoted
similarly, but with square brackets.
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PROPOSITION 3.2. (Adapted from [14, Lemma 1]) Let f (k) = 3k+1 − 2. For all k, s∗ ∈
{0, 1, 2}, and s+ ∈ {1, 2}, the following moves hold:

M�(k) :
(
s+ 0k s∗
�2

)
→f (k)

(
s+ 0k s∗

�1

)
M�(k) :

(
s∗ 0k s+

�2

)
→f (k)

(
s∗ 0k s+
�1

)

M�(k) :
(
s∗ 0k s+
�2

)
→f (k)

(
s∗ 0k s+

�1

)
M�(k) :

(
s+ 0k s∗

�2

)
→f (k)

(
s+ 0k s∗
�1

)

Additionally, the cell containing s∗ is only visited at the last (respectively first) step of the
sequences of transitions M� and M� (respectively M� and M�). And the cell containing
s+ is never modified.

Proof. This proof adapts the proof of [14, Lemma 1], and highlights the recursive/nested
aspects of these moves. In the case k = 0, one can check that indeed the formula
describes a single transition. We reason by induction, and assume M�(k), M�(k), M�(k),
and M�(k) hold. We only prove M�(k + 1) and M�(k + 1), by symmetry between � and
� (respectively � and �). Since f (k + 1) = 3f (k)+ 4, we should find 3 recursions and
4 extra steps. This is what happens:

M�(k + 1)

(
s+ 0k 0 s∗
�2

)
Apply M�(k)

→f (k)
(
s+ 0k 0 s∗

�1

)
Apply one step

→
(
s+ 0k 1 s∗

�2

)
Apply M�(k)

→f (k)
(
s+ 0k 1 s∗
�1

)
Apply one step

→
(
s+ 0k 1 s∗
�2

)
Apply M�(k)

→f (k)
(
s+ 0k 1 s∗

�1

)
Apply one step

→
(
s+ 0k 0 s∗

�2

)
Apply one step

→
(
s+ 0k 0 s∗

�1

)

M�(k + 1)

(
s∗ 0 0k s+
�2

)
Apply one step

→
(
s∗ 0 0k s+

�1

)
Apply one step

→
(
s∗ 2 0k s+

�2

)
Apply M�(k)

→f (k)
(
s∗ 2 0k s+

�1

)
Apply one step

→
(
s∗ 2 0k s+

�2

)
Apply M�(k)

→f (k)
(
s∗ 2 0k s+

�1

)
Apply one step

→
(
s∗ 0 0k s+

�2

)
Apply M�(k)

→f (k)
(
s∗ 0 0k s+

�1

)

3.1. Action of SMART on cyclic tapes. This section studies the action of SMART on
cyclic tapes of length � ≥ 2. We call initial configurations the following four cyclic
configurations:
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C� =
[
0 0�−1

�1

]
C� =

[
0 0�−1

�1

]

C� =
[
0 0�−1

�1

]
C� =

[
0 0�−1

�1

]

PROPOSITION 3.3. Let � ≥ 2. The action of the (2 · 3�)th power of SMART on C� and
C� (respectively C� and C�) is a right-shift (respectively left-shift). Furthermore, the
intermediate configurations are all distinct even up to a shift.

Proof. By symmetries between � and � (respectively � and �), we prove the result for
C� and C�. [

0 0 0�−2

�1

]
Apply one step

→
[
1 0 0�−2

�2

]
Apply M�(�− 1)

→f (�−1)

[
1 0 0�−2

�1

]
Apply one step

→
[
1 0 0�−2

�2

]
Apply M�(�− 1)

→f (�−1)

[
1 0 0�−2

�1

]
Apply one step

→
[
0 0 0�−2

�2

]
Apply one step

→
[
0 0 0�−2

�1

]

[
0 0 0�−2

�1

]
Apply one step

→
[
2 0 0�−2

�2

]
Apply M�(�− 1)

→f (�−1)

[
2 0 0�−2

�1

]
Apply one step

→
[
2 0 0�−2

�2

]
Apply M�(�− 1)

→f (�−1)

[
2 0 0�−2

�1

]
Apply one step

→
[
0 0 0�−2

�2

]
Apply one step

→
[
0 0 0�−2

�1

]

We used moves M�(�− 1), M�(�− 1), M�(�− 1) and M�(�− 1) in patterns that
overlap themselves on their first and last letters in the cyclic tape. This is valid, because
the cell containing s∗ is only visited at the last (respectively first) step of M� and M�
(respectively M� and M�).

For the last claim, by shift-commutation and bijectivity of the action, it is enough to
show that a shifted copy of the initial configuration does not appear before the last step.
This is clear from looking at the first columns, which have positive values on all but the
first step and the two last steps.

LEMMA 3.4. For � ≥ 1, the action of SMART on cyclic tapes of length � is composed of
four disjoint cycles of length 2� · 3�, which are the orbits of the four initial configurations.
Additionally, the action of the (2 · 3�)th power of SMART on a cyclic tape is a right-shift
(respectively left-shift) on the orbits of C� and C� (respectively C� and C�).

Proof. This is an immediate consequence of Proposition 3.3: the orbits are each of length
2� · 3� (number of shifts × number of steps for each shift), and are disjoint (by looking at
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14 A. Callard and V. Salo

the first column in the previous proof). As there are 8� · 3� different cyclic configurations
containing a head (eight different states with � possible positions and a ternary tape
of length �), any configuration belongs to one of these four orbits: this concludes the
proof.

3.2. Encoding SMART configurations. Recall that for the SMART machine, � =
{0, 1, 2} and Q � {�, �, �, �} × {1, 2}. Lemma 3.4 implies that the set of cyclic SMART
configurations of length � that contain a head

{x ∈ (� ∪ (Q× �))Z/�Z | there exists i ∈ Z/�Z, xi ∈ Q× �}
is conjugate (as a finite dynamical system or as a permutation) to a disjoint union of four
(depending on whether the head is in state �, �, �, or �) disjoint systems of counters
ranging in �0, �− 1�× {1, 2} × {0, 1, 2}� (respectively for the position of the head, the
second component {1, 2} of Q, and the tape of alphabet �). Each of these counters encodes
2� · 3� different values, which is exactly the length of any SMART cycle by Lemma 3.4.

We pick a natural conjugacy E� : C� → C�, a shift-invariant bijection that encodes a
SMART configuration into its orbit position in base 2� · 3�. We refer to the conjugacy E�

as the encoding map.
More precisely, if w ∈ C� contains a head, then by Lemma 3.4, there exists

some 0 ≤ n < 2� · 3� such that w = (T�,S)n(Cq) for some initial configuration Cq

(q ∈ {�, �, �, �}), and the map E� encodes the tuple (q, n) in C� as

E�(w) = σ−ε·a
([

c1 c2 . . . c�

qb

])

where:
• q is stored in the first component of the state {�, �, �, �};
• b · c ∈ {1, 2} · {0, 1, 2}� encodes n mod 2 · 3�, that is, c is a ternary word satisfying

v(3)(c) = n mod 3�, and b stores (�n/3�� mod 2)+ 1 in the second component of the
state;

• a is the quotient of n by 2 · 3�, and is encoded in how much the cyclic configuration is
shifted;

• ε = +1 if q ∈ {�, �} (respectively ε = −1 if q ∈ {�, �}) shifts to the right
(respectively left) if q ∈ {�, �} (respectively q ∈ {�, �}),

and if w ∈ C� contains no head (that is, w ∈ �Z/�Z), then we set E�(w) = w.
In other words, given a configuration w = (T�,S)n(Cq) for some initial configuration Cq

(q ∈ {�, �, �, �}) and 0 ≤ n < 2� · 3�, the map E� encodes the tuple (q, n) as plainly
(and humanly readable) as possible.

In the next two sections (§§3.3 and 3.4), we detail how this bijection can be computed
inductively, that is, we define piecewise-defined bijective maps Finit, Fk→k+1 (for 0 ≤ k ≤
�− 2), and F�,final acting on C� such that

E� = F�,final ◦
( �−2∏

k=0

Fk→k+1

)
◦ Finit.
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The precise definition of these maps is not strictly necessary to understand the rest
of this paper (it is only used in Lemmas 4.18 and 4.20, where we need the piecewise
defined functions to satisfy the requirements described in §4.2.3). On a first reading,
we recommend the reader simply remembers the idea of encoding configurations into a
counter, and goes directly to §4 about the finitary distortion of the SMART machine.

3.3. Analysis of SMART configurations. We now explain how, given a cyclic SMART
configuration w of length �, we determine which orbit it belongs in and its position in
this orbit, that is, the number of steps required to obtain it from its corresponding initial
configuration C�, C�, C� or C�.

We say that a cyclic configuration w ∈ C� is performing the j th step of computa-
tion of M�(k) (respectively M�(k), M�(k), M�(k)), for 0 ≤ k ≤ �− 1 and 0 ≤ j ≤
f (k), if it contains the j th pattern of the sequence of transitions M�(k) (respectively
M�(k), M�(k), M�(k)) of Proposition 3.2. At this point, it may not be clear that this is
unique, but this will follow from our argument.

If a configuration is performing some step of computation from one of the moves
M�(k), M�(k), M�(k), or M�(k), we refer to this move as its computation of level k.

3.3.1. Initialization. We call the following patterns special patterns of level k (for 1 ≤
k ≤ �− 1):

s(�2, k) =
(
s+ 0k−1 0

�2

)
s(�1, k) =

(
s+ 0k s∗

�1

)

s(�2, k) =
(

0 0k−1 s+
�2

)
s(�1, k) =

(
s∗ 0k s+
�1

)

s(�2, k) =
(
s∗ 0k s+
�2

)
s(�1, k) =

(
0 0k−1 s+
�1

)

s(�2, k) =
(
s+ 0k s∗

�2

)
s(�1, k) =

(
s+ 0k−1 0

�1

)
and the following are special patterns of level �:(

0 0�−1

�2

) (
0 0�−1

�2

)
(

0 0�−1

�2

) (
0 0�−1

�2

)
The latter appear exactly in the shifts of the configurations S−1(Cq), for Cq the initial

configurations (q ∈ {�, �, �, �}).
By the proof of Proposition 3.2, we see that if a cyclic configuration contains a

special pattern s(�2, k), s(�1, k), s(�2, k), or s(�1, k) (respectively s(�2, k), s(�1, k),
s(�2, k), or s(�1, k)), then it performs the last two steps of M�(k) or M�(k) respectively
(respectively the first two steps of M�(k) or M�(k)).

CLAIM 3.5. Given a cyclic configuration w of length � containing a head, exactly one of
the following holds:
• w is the shift of an initial configuration;
• w performs some step of computation of level 0 from either M�(0), M�(0), M�(0),

or M�(0);
• w contains a special pattern of level 1 ≤ k ≤ �.
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16 A. Callard and V. Salo

FIGURE 2. Bottom-up analysis of SMART configurations: k→ k + 1. Intermediate steps of moves of level k + 1
(patterns of length k + 3) corresponding to sub-moves of level k. We darken the part of the pattern of length
k + 2 performing the sub-move of level k. Circled ternary letters are not modified by the sub-move of level k, and

hence can be used to perform a case-analysis.

Proof. The patterns of M�(0), M�(0), M�(0), and M�(0) (eight in total), along with the
special patterns of every level, disjointly cover all the non-initial configurations with a head
(the level is determined by the distance to the nearest non-zero symbol in an appropriate
direction).

3.3.2. Inductive analysis k→ k + 1 (for k + 1 ≤ �− 1). Let k ≤ �− 2 be an integer
and w be a non-initial cyclic configuration. If w performs some computation of level k (for
0 ≤ k ≤ �− 2), then it performs some computation of level k + 1: indeed, Figure 2 shows
that any computation of level k belongs to some computation of level k + 1, and that the
latter is uniquely determined by considering the value of two cells (circled on the figure)
which are left unmodified by the computation of level k.

Additionally, if we know that w performs the j th step of some computation of level k

(for 0 ≤ j ≤ f (k)), then the same case-analysis determines j ′ (0 ≤ j ′ ≤ f (k + 1)) such
that w performs the j ′th step of its computation of level k + 1.
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Example 3.6. For example, consider the cyclic configuration of length � = 6:

w =
[ 1 2 1 1 2 0

�2

]

First, w performs step 0 of M�(0) (by simply considering all the computations of
level 0). Indeed, the highlighted pattern inside the configuration below is the 0th pattern of
the move M�(0):

w =
[ 1 2 1 1 2 0

�2

]

Then, by looking at Figure 2 (four cases, with three subcases each), we deduce
successively that:
(1) by considering Figure 2 (case M�(0), second subcase),

w =
[ 1 2 1 1 2 0

�2

]

we deduce that w performs step 2 = 0+ (f (0)+ 1) of M�(1). Additionally, the
computation extends to the left, that is, the move M�(1) appears in the following
highlighted pattern:

w =
[ 1 2 1 1 2 0

�2

]

(2) by considering Figure 2 (case M�(1), third subcase),

w =
[ 1 2 1 1 2 0

�2

]

we deduce that w performs step 4 = 2+ 2 of M�(2). Additionally, the computation
extends to the right and the move M�(2) appears in the following highlighted
pattern:

w =
[ 1 2 1 1 2 0

�2

]

(3) by considering Figure 2 (case M�(2), first subcase),

w =
[ 1 2 1 1 2 0

�2

]

we deduce that w performs step 58 = 4+ (2f (2)+ 4) of M�(3). Additionally, the
computation extends to the right and the move M�(3) appears in the following
highlighted pattern (remember that configurations are cyclic):

w =
[ 1 2 1 1 2 0

�2

]

(4) by considering Figure 2 (case M�(3), second subcase),

w =
[ 1 2 1 1 2 0

�2

]

https://doi.org/10.1017/etds.2023.67 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.67


18 A. Callard and V. Salo

we deduce that w performs step 218 = 58+ (2f (3)+ 2) of M�(4). Additionally,
the computation extends to the left and the move M�(4) appears in the following
highlighted pattern:

w =
[ 1 2 1 1 2 0

�2

]
(5) by considering Figure 2 (case M�(4), second subcase),

w =
[ 1 2 1 1 2 0

�2

]
we deduce that w performs step 460 = 218+ (f (4)+ 1) of M�(5).

On the final step, we should extend to the right; since we run out of cells on the
tape, this means that we should interpret the circled 2-cell as both the first and last
cell of the M�(5)-computation, that is, the move M�(5) appears in the following
highlighted self-overlapping pattern:

w =
[ 1 2 1 1 2 0

�2

]

So we claim that w performs step 460 = 218+ (f (4)+ 1) of M�(5). And one can
verify by a direct calculation (for example, by computer) that

( 2 0 0 0 0 0 s∗
�2

)
→460

( 2 1 1 2 0 1 s∗
�2

)

as we just deduced.

3.3.3. Conclusion. Let w ∈ C� be a cyclic tape of length � containing a head. By the
claim above, there are three different cases.

Either w is the shift of an initial configuration, in which case the state of w determines
which orbit w belongs to, and counting the shift (and multiplying it by 2 · 3�) is enough
to know the position of the configuration w in its orbit. A similar reasoning applies for
configurations w that contain a special pattern of level �.

However, assume w contains some computation of level 0. Then w contains computa-
tions of every level k for 0 ≤ k ≤ �− 1 by the previous induction. Similarly, if w contains a
special pattern of level k for some 0 ≤ k ≤ �− 1, then w corresponds to either the last two
steps of M�(k) or M�(k), or the first two steps of M�(k) or M�(k). Then w corresponds
to computations of every level k′ for k ≤ k′ ≤ �− 1 by the previous induction.

Finally, the structure of each SMART cycle (detailed in the proof of Proposition 3.3)
enables to conclude about which orbit the configuration w belongs to, and its position in
said orbit.

Example 3.7. Consider once again the cyclic configuration of length � = 6,

w =
[ 1 2 1 1 2 0

�2

]

By the previous example, w performs step 460 of M�(5) on the following
(self-overlapping) pattern:
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w =
[ 1 2 1 1 2 0

�2

]

Considering the proof of Proposition 3.3, only the orbits of C� and C� have a
cell containing tape-letter 2 that is left unchanged during a computation of level �− 1.
Additionally, out of these two, only the orbit of C� contains the move M�(5).

So w belongs in the orbit of C�. From the proof of Proposition 3.3, we deduce that,
modulo 2 · 3�, the position of w in said orbit is 1+ 460. Finally, 2 being the second cell of
the tape, one shift already happened in the orbit: we conclude that the position of w in the
orbit of C� is 2 · 3� + 461 = 1919.

Indeed, one can verify by a direct calculation that[ 0 0 0 0 0 0
�1

]
→1919

[ 1 2 1 1 2 0
�2

]
as we just deduced.

3.4. Encoding cyclic configurations into their orbit positions in C�. Denote by S the
SMART machine introduced above. Recall the encoding map E� : C� → C� defined in
§3.2 as

E�(w) = σ−ε·a
([

c1 c2 . . . c�

qb

])

if w contains a head (in which case, there exists n and q ∈ {�, �, �, �} such that
w = T n

�,S(Cq), and we set b · c ∈ {1, 2} · {0, 1, 2}� to encode n mod 2 · 3�, and a is the
quotient of n by 2 · 3�); and if w ∈ C� contains no head, then we set E�(w) = w.

3.4.1. Inductive encoding. In this section, we use the analysis performed in §3.3 to
provide a linear-time algorithm that computes this encoding E� : C� → C� inductively.

Figure 3 describes a piecewise-defined bijection Finit : C� → C�: each case describes

how a pattern of length 2 (e.g.
(1 s∗
�2

)
) is bijectively replaced by another (in the previous

example, by
(1 s∗

�1

)
). In other words, if a cyclic configuration w contains a sub-pattern

of length 2 that matches with one case of Figure 3, then Finit replaces this sub-pattern in
w by its image in the figure.

Similarly, Figures 4 and 5 together describe a piecewise-defined bijection Fk→k+1 :
C� → C� that replaces sub-patterns of length k + 4. Intuitively, Figure 4 (defining the first
half of Fk→k+1) encodes moves of level k + 1 into counters, while Figure 5 (the second
half of Fk→k+1) encodes special patterns of level k + 1.

Finally, Figure 6 describes a similar bijection F�,final : C� → C�.
We can then prove the following lemma.

LEMMA 3.8. Let w be a cyclic configuration of C�. Then,

E�(w) =
[
F�,final ◦

�−2∏
k=0

Fk→k+1 ◦ Finit

]
(w).
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FIGURE 3. Encoding SMART configurations: Finit. Finit rewrites sub-patterns of length 2 in cyclic SMART
configurations.

Sketch of proof. Let w be a configuration and k be some integer k ≤ �− 1. If w is neither
the shift of an initial configuration nor a special configuration of level > k, then there
exists some q ∈ {�, �, �, �} and a unique word p = p0 · · · pk+1 of length k + 2 such
that p � w and p computes the j th step of Mq(k) for some 0 ≤ j ≤ f (k) = 3k+2 − 2.
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FIGURE 4. Encoding SMART configurations: Fk→k+1 (Part 1: k→ k + 1). First half of rewriting cases of
Fk→k+1, which rewrites sub-patterns of length k + 4. Letters ∗ are unmodified. Fk→k+1 extends the word
c ∈ {0, 1, 2}k+1 with one additional letter and, considering c as a counter, adds a number of steps in accordance
with Lemma 3.2. Note that at k + 1 = �− 2 (respectively k + 1 = �− 1), the ∗-cells overlap on each other

(respectively the counter), because we reach the length of the cyclic tape.
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FIGURE 5. Encoding SMART configurations: Fk→k+1 (Part 2: special→ k + 1). Second half of rewriting cases
of Fk→k+1, which rewrites sub-patterns of length k + 4. Letters ∗ are unmodified. Encodes special configurations
of level k + 1 by replacing the k + 2 other letters by a counter of {0, 1, 2}k+2 in accordance with Lemma 3.2, and
preserves special configurations of level > k + 1. Note that at k + 1 = �− 2 (respectively k + 1 = �− 1), the
∗-cells overlap on each other (respectively the counter), because we reach the length of the cyclic tape.
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FIGURE 6. Final encoding step of SMART configurations: F�,final. Rewrites complete cyclic configurations
of length �. F�,final acts according to the proof of Proposition 3.3: it maps encodings of level �− 1 to their
final encodings, and ‘corrects’ the position the head and shifts the counter when required (in the encodings of

M�(�− 1) and M�(�− 1), or in initial configurations, whose heads were moved when applying Finit).

Then by induction on k, one sees that the partial composition

k−1∏
k′=0

Fk′→k′+1 ◦ Finit,

when applied on w, replaces p in w by another pattern p′ of the same length defined as
follows:

p′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
c0 . . . ck pk+1

�b

)
(where b = p0 ∈ {1, 2}) if p performs M�(k),(

p0 c0 . . . ck

�b

)
(where b = pk+1 ∈ {1, 2}) if p performs M�(k),(

p0 c0 . . . ck

�b

)
(where b = pk+1 ∈ {1, 2}) if p performs M�(k),(

c0 . . . ck pk+1
�b

)
(where b = p0 ∈ {1, 2}) if p performs M�(k),
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where c ∈ {0, 1, 2}k+1 is a ternary counter such that v3(c) = j + 1. Notice that 0 ≤ j ≤
f (k)− 2, where f (k) = 3k+2 − 2; so that 1 ≤ j + 1 ≤ f (k)− 1 fits exactly in the space
of non-zero counters. The zero counters are reserved for (shifts of) initial and special
configurations.

Finally,

F�,final ◦
�−2∏
k=0

Fk→k+1 ◦ Finit

is equal to E� by considering how F�,final acts in accordance with the structure of the four
disjoint cycles of SMART (detailed in the proof of Proposition 3.3).

Example 3.9. Consider once again the cyclic configuration of length � = 6 from Exam-
ple 3.6, and let us use the formulas above to encode it into a counter value. This process
will roughly mirror Examples 3.6 and 3.7, except that due to our coding convention, the
counter value is one larger than the correct one until the very last step. First, we apply Finit,
which observes based on the highlighted cells

w =
[ 1 2 1 1 2 0

�2

]

that the first case of M�(0) applies, and rewrites this as

w =
[ 1 2 1 1 2 0

�1

]

Next, we apply F0→1. Based on the highlighted cells, the fourth case of M�(0) applies
and we rewrite this as

w =
[ 1 2 1 1 0 0

�2

v3(1)+ f (0)+ 1 = 3]

Next, we apply F1→2. Based on the highlighted cells, the fifth case of M�(1) applies
and we rewrite this as

w =
[ 1 2 0 1 2 0

�1

v3(10)+ 2 = 5 ]

Next, we apply F2→3. Based on the highlighted cells, the first case of M�(2) applies
and we rewrite this as

w =
[ 1 2 2 0 1 2
�1

v3(012)+ 2f (2)+ 5 = 59]

Next, we apply F3→4. Based on the highlighted cells, the third case of M�(3) applies
and we rewrite this as

w =
[ 0 2 2 2 0 1

�1

v3(2012)+ 2f (3)+ 2 = 219]
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Next, we apply F4→5. Based on the highlighted cells, the fourth case of M�(4) applies
and we rewrite this as

w =
[ 2 1 2 2 0 0

�2

v3(22010)+ f (4)+ 1 = 461]

Finally, we apply Ffinal (in Figure 6). We are in the fourth case, where we do not touch
the counter and just change the state to �1:

w =
[ 2 1 2 2 0 0

�1

]

This gives the expected result: as v3(122002) = 461, and the head is shifted once to the
right in the tape, this configuration has position 1 · (2 · 3�)+ 461 = 1919 in the orbit of the
initial configuration corresponding to state �1.

4. Finitary distortion for SMART
In this section, we first introduce the group G� generated by Turing machines instructions
(§4.1.2), and we slightly alter the SMART machine S (§4.1.1): we call it the decorated
SMART since we add some additional components to its states. The action of the SMART
machine extends trivially to the new decorations—new components are added as a
Cartesian product, and the head simply carries its new components without modifying
or reading them.

Denoting by T�,S : C� → C� the finite action of this decorated SMART on the cyclic
tapes of C�, we then establish Lemma 4.2, an intermediary result about T�,S. Namely,
this automorphism is ‘finitarily distorted’ in G�, in the sense that all its powers (including
those exponential in �) have word norm polynomial in � under the fixed generators (which
is exponentially lower than the order of the group would suggest). The rest of this section
is dedicated to the proof of this lemma.

Later in §5, we prove that every non-trivial full shift contains a distortion element
of infinite order. Technically, §5 focuses on transporting the finite actions T�,S of the
decorated SMART into an infinite action on a full shift (and showing that this transposition
preserves distortion). In other words, the ‘distortion’ aspect of Lemma 5.1 entirely comes
from Lemma 4.2, that is, from the main result of this section.

4.1. Context and results

4.1.1. Decorated SMART on C�. Let S(o) = (Q(o), �(o), 	(o)) be the SMART machine
(see §3). Define the decorated version of the SMART machine as Sdec = (Q, �, 	), with

Q =Q(o) ×D ×G,

� = �(o),

	 =
⋃

(d,x)∈D×G

{((q, d , x), a, (q ′, d , x), b) : (q, a, q ′, b) ∈ 	(o)}

∪
⋃

(d,x)∈D×G

{((q, d , x), δ, (q ′, d , x)) : (q, δ, q ′) ∈ 	(o)}
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for D = {d1, d2} and G = �0, 5�, that is, the states of SMART now carry a state q(o) ∈
Q(o) of the original machine S, a special symbol d ∈ D called the duck, and a ghost
symbol x ∈ G. We have |Q| = 96.

Technically, the two SMART machines Sdec and S are different: for one, they act on
different sets of cyclic tapes (since they have different sets of states). However, they have
very similar behaviors, as the decorated machine only carries its decoration unmodified in
its state while acting on tapes. To refer to the original set of states of SMART, we will use
Q(o), and Q will denote Q = Q(o) ×D ×G.

Since the remainder of this article only uses the decorated version of SMART, in what
follows, S will refer to the decorated version of the machine, despite lacking the ‘dec’
subscript. This should not cause confusion, as the machines act on different sets.

The point of the ghost �0, 5� is to allow us to condition the application of gates, and to
build the permutations we perform in §4.2. The duck d ∈ {d1, d2} will be important during
intermediate steps of computation in §4.2, to realize piecewise defined functions.

For S ⊆ C� a subset of finite cyclic tapes, we denote by S[d1] and S[d2] the subsets of
the tapes of S containing a head, and whose ducks respectively are d = d1 and d = d2. For
d ∈ {d1, d2} and a function f : S → S, we abuse notation and denote by f/d the extended
restriction f/S[d] of f to S[d]:

f/d(w) =
{

f (w) if w ∈ S[d],

w otherwise.

4.1.2. Group of Turing machine instructions on finite cyclic tapes. Recall that C� is
the set of finite cyclic tapes of length � ≥ 2 (see §2) with states Q and tape-alphabet �,
containing at most one head (that is, a letter in Q× �).

Let G� be the finitely generated subgroup of Sym(C�) generated by state-dependent
moves, and the unary gates permuting heads. Formally, for g ∈ Sym(Q× �), define the
unary gate πg ∈ Sym(C�) as

πg(w)j =
{

g(wj ) if wj ∈ (Q× �),

wj if wj ∈ �,

for a cyclic tape w ∈ C�. In addition, for q ∈ Q, define the state-dependent right move
ρq ∈ Sym(C�) as

ρq(w)j =

⎧⎪⎪⎨
⎪⎪⎩

(q, wj) if wj−1 mod � ∈ ({q} × �),

π�(wj ) if wj−1 mod � /∈ ({q} × �) ∧ wj ∈ ({q} × �) ∪ �,

wj if wj−1 mod � /∈ ({q} × �) ∧ wj ∈ ((Q \ {q})× �),

for w ∈ C� and π� : � ∪ (Q× �)→ � the natural projection.
We then define the group G� ≤ Sym(C�) generated by these permutations:

G� = 〈{πg : g ∈ Sym(Q× �)} ∪ {ρq | q ∈ Q}〉.
We can see the group G� as the group generated by the instructions of Turing machines:

moving heads based on their states, or permuting their values. To ease notation, we denote
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∏
q∈Q ρq by ρ. This (finite) group is equipped with a metric, that is, the word norm given

by the generators πg and ρq .
It is easy to see that for any reversible Turing machineM of states Q and tape-alphabet

�, T�,M is an element of G�. Indeed, a step of computation is the composition of a head
permutation α of Q× �, followed with state-dependent moves β+1 and β−1:

α(q, a) =
{

(q ′, b) if (q, a, q ′, b) ∈ 	,

(q ′, a) if (q, ±1, q ′) ∈ 	,

β+1 =
∏

q ′| there exists q,(q,+1,q ′)∈	
ρq ′ ,

β−1 =
∏

q ′| there exists q,(q,−1,q ′)∈	
ρq ′
−1.

Finally, we denote by δ(�, n) the word norm of (T�,M)n in G�. In this section, we focus
on proving that δ(�, n) is polynomial in � for powers of the decorated SMART machine
(even for powers exponential in �).

Remark 4.1. It can be shown that G� is, for large enough �, |Q|, and |�| (in particular
for all versions of the SMART machine we consider and for � ≥ 2), of bounded index
in the automorphism group of C� under the shift action of Z�. This is not particularly
useful, however, as what we need it for is to provide a group where the SMART machine
corresponds to an element of small word norm (far smaller than the radius of the group).

4.1.3. Main result: finitary distortion of the decorated SMART. Recall that m : N→ N

is the movement function, that is, m(n) is the maximal number of cells the machine S can
visit in n steps; and that δ(�, n) is the word norm of (T�,S)n in G�.

LEMMA 4.2. Let S be the (decorated) SMART machine.
(1) TS has infinite order.
(2) There exist some C, C′ > 0 such that m(n) ≤ C log n+ C′.
(3) There exists some p > 0 such that δ(�, n) = O(�p).
In fact, for S, we can take C = ln(2)/ ln(3) and p = 4.

Any finite order T satisfies the latter two items, and any non-trivial state-dependent
shift satisfies the first and the third items. Achieving the first two items is already
difficult and to our knowledge, these properties have only been explicitly shown (in the
reversible case) for the SMART machine and the binary SMART machine [15]. We
expect that the Kari–Ollinger construction in [32] can be used to produce more examples
of machines satisfying these two properties (at least m(n) = O(n/ log n) follows from
general principles for all these machines [28]).

4.1.4. Proof of Lemma 4.2. For the second item, the logarithmic speed of SMART is
well known. To sketch a proof, consider the following computation: after less than 18
steps, the head of SMART is in state �1 or �1 reading a 0 (ignoring the ghost and the
duck). Then SMART is either at the left (for �1) or right (for �1) extremity of some word
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0m for some m ≥ log3(k)+ 2 or by [14, Lemma 4], it builds around this position some
pattern in the set Cm for m ≥ log3(k)+ 2 (with the notation of [14, Lemma 4]). Either
way, after this point, k steps of computations cannot read more than log3(k)+ 2 different
cells.

The proof of the third item is a matter of programming powers of the machine efficiently
with the generators of G�, which can be considered as the primitive reversible instructions
of Turing machines. To achieve this, we encode configurations into their orbit position with
the automorphism E� (defined in §3.2), perform an addition on these positions (as defined
below), and decode back, as summarized in the commuting diagram below:

(T�,S)n0(Cq) (T�,S)n0+n(Cq)

(q, n0) (q, n0 + n mod 2� · 3�)

(T�,S)n

E� E−1
�

+n

More precisely, we prove the two following lemmas.

LEMMA 4.3. Let E� : C� → C� be the encoding map defined in §3.2. There exists some
Ẽ� : C� → C� in G� with word norm O(�4) such that

w ∈ C�[d1] �⇒ Ẽ�(w) = E�(w),

where C�[d1] is the set of cyclic tapes w ∈ C� having a head with duck d = d1.

Note that we say nothing about the action of Ẽ� on tapes having duck d = d2. This
restriction comes from our use of the ducking trick to build Ẽ�, which produces ‘garbage’
(that is, acts with no reasonable interpretation) on heads having duck d = d2. See §4.2.3
for more details.

LEMMA 4.4. Let (+n)� be the bijection of C� that performs the addition of n ∈ N in base
2� · 3� on the orbits positions encoded by E�. Recall that (+n/d1)� : C� → C� is defined as

(+n/d1)�(w) =
{

(+n)�(w) if w ∈ C�[d1],

w otherwise.

Then (+n/d1)� belongs to G� with word norm O(�3).

We give a more detailed definition of (+n)� in §4.3.2. Informally, (+n)� adds n to the
counter E�(w) that encodes the orbit position of the SMART configuration w.

Then, these two lemmas are enough to prove the third item of Lemma 4.2 about the
decorated SMART being distorted on cyclic tapes of length � (more precisely, δ(�, n) =
O(�4)). Indeed, combining the two previous results, we obtain the following lemma.
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LEMMA 4.5. Denoting again:

T�,S/d1(w) =
{

T�,S(w) if w ∈ C�[d1],

w otherwise,

then for any n ∈ N, (T�,S/d1)
n belongs to G� with word norm O(�4).

Proof. Let (+n/d1)� be given by Lemma 4.4. With Lemma 4.3, one can conjugate (+n/d1)�

with Ẽ� and obtain a bijection on C� that maps configurations of C�[d1] to their nth iterate
by S and is the identity on C�[d2]. In other words,

(T�,S/d1)
n = ((+n/d1)�)

Ẽ� .

Indeed, the addition of (+n/d1)� is only performed on heads having duck d1, so the
garbage generated by Ẽ� on ducks d = d2 is canceled in the conjugation; additionally, the
shift of the tape (which happens when the addition modulo 2 · 3� overflows) is performed
to the right (respectively to the left), exactly like (T�,S)2·3�

acts on configurations C� and
C� (respectively C� and C�).

And this lemma then leads to the following proof.

Proof of Lemma 4.2, third item. Let d ′ = d1 ↔ d2 ∈ Sym(D) be the involution that swaps
ducks d1 and d2, and d = id× d ′ × id× id ∈ Sym(H) its lift to H = Q× � (where Q =
Q(o) ×D ×G). We have

(T�,S)n = (πd ◦ (T�,S/d1)
n ◦ πd) ◦ (T�,S/d1)

n

because (T�,S/d1)
πd = T�,S/d2 .

4.1.5. Overview. The following subsections deal with the proofs of Lemmas 4.3 and
4.4, which respectively prove that the encoding and the addition can be implemented in G�

with respective word norms O(�4) and O(�3).
More precisely, §4.2 contains our main technical results, which define and implement

conditional permutations. It also contains an exposition of the ducking trick, a method we
use to implement piecewise-defined bijections. Section 4.3 contains the proofs of Lemmas
4.3 and 4.4.

4.2. Permutation engineering in C�. In this section, we develop two methods. In §4.2.1,
we consider permutation conditioning, which consists in building permutations πg,C (for
some g ∈ Sym(Q× �) a permutation of the head, and some C ⊆ (Q× �)× ��−1) that
apply the permutation g if the condition C holds. We prove (Lemma 4.10) that if C
has a simple enough description, then πg,C has polynomial word norm in �. In §4.2.3,
we consider the ducking trick, which allows us to efficiently build piecewise-defined
bijections.

4.2.1. Permutation conditioning. We call conditions the subsets C of (Q× �)× ��−1.
For g ∈ Sym(Q× �), if C (considered as a subset of C�) is a πg-invariant subset, we can
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define the bijection πg,C : C� → C� as πg,C(w) = w if w ∈ C� contains no head; and if
w ∈ C� contains a head at position, say, i0 ∈ Z/�Z, we set πg,C(w) to

πg,C(w)i =

⎧⎪⎪⎨
⎪⎪⎩

wi if i �= i0,

g(wi) if i = i0 and wi · wi+1 · · · w�−1 · w0 · · · wi−1 ∈ C,

wi if i = i0 and wi · wi+1 · · · w�−1 · w0 · · · wi−1 /∈ C.

We then call πg,C the conditional application of g under condition C.
Recall that the states of Q have a ghost component G. We split Q into two components:

Q = Q′ ×G (so, with the notation Q = Q(o) ×D ×G, we have Q′ = Q(o) ×D; but the
exact structure of Q′ has no importance in this section).

Then, the set H = Q× � also splits into H = H ′ ×G, where H ′ = Q′ × �. Note
that for any permutation g ∈ Sym(G), the permutation idH ′ × g belongs to Sym(H);
and similarly, if g ∈ Sym(H ′), the permutation g × idG belongs to Sym(H). Finally, all
conditions we define below will be of the form C = C ′ ×G, for C′ ⊆ H ′ × ��−1.

In this section, we prove Lemma 4.7: for gates g ∈ Sym(H ′) and πg×id-invariant
conditions C = C′ ×G (for some C′ ⊆ H ′ × ��−1), the conditioned gates πg×id,C belong
to G�. We also provide upper bounds on the word norm of πg×id,C depending on C. This
is essentially Barrington’s theorem [4].

As a first step, we consider the opposite case: instead of leaving the ghost component
of the head intact while permuting, we consider permutations that only permute the
ghost component G. As conditions C = C′ ×G (for C′ ⊆ H ′ × ��−1) are trivially
πid×g-invariant for any g ∈ Sym(G), the conditioned gates πid×g,C are always defined and
we obtain the following lemma.

LEMMA 4.6. For any g ∈ Alt(G) and condition C = C′ ×G (for some C′ ⊆ H ′ × ��−1),
the conditioned gate πid×g,C belongs to G�. Let T : P(H × ��−1)→ N be the optimal
function such that ‖πid×g,C‖ ≤ T (C) for all g ∈ Alt(G). Then T satisfies the following
inequalities:

T ([a]j ×G) ≤ |min(j , �− j)|,
T ((C′ ∩ C′′)×G) ≤ 2(T (C′ ×G)+ T (C′′ ×G)),

T ((C′ ∪ C′′)×G) ≤
{

T (C′ ×G)+ T (C′′ ×G) if C′ ∩ C′′ = ∅,
2(T (C′ ×G)+ T (C′′ ×G))+ 5 otherwise,

T ((C′c)×G) ≤ T (C′ ×G)+ 1.

Proof. We prove by induction over C′ ⊆ H ′ × ��−1 that, denoting C = C′ ×G, every
πid×g,C (for g ∈ Alt(G)) has word norm that checks the aforementioned inequalities.

Case 1. If C′ = B ′ × ��−1 for some B ′ ⊆ H ′, then any such πid×g,B ′×G already appears
in the set of generators of G�.

Case 2. If C′ = [a]j � H ′ × �j−1 × {a} × ��−j−1 for some j ∈ �1, �� and a ∈ �,
define B ′ = (Q′ × {a})× ��−1. Then one can conjugate πid×g,B ′×G (which belongs to
G� by the first item) with either the right-move ρj or the left-move ρ−(�−j): the resulting
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permutation applies g on the ghost symbol if and only if j cells away from the head, the
content of the tape is a.

Case 3. If C′ = (C′1)c, then πid×g,C′×G = πid×g−1,C′1×G ◦ πid×g .
Case 4. If C′ = C′1 ∩ C′2, we use the ‘commutator trick’: as G has cardinality at least 5,

g is a commutator by Ore’s theorem [42, Theorem 7], so there exist g1, g2 such that g =
[g1, g2]. By the induction hypothesis and a straightforward calculation, we conclude that

πid×g,(C′1∩C′2)×G = [πid×g1,C′1×G, πid×g2,C′2×G].

Case 5. If C = (C′1 ∪ C′2)×G with C′1 ∩ C′2 = ∅, then

πid×g,(C′1∪C′2)×G = πid×g,C′1×G ◦ πid×g,C′2×G.

Case 6. If C = (C′1 ∪ C′2)×G, then

πid×g,(C′1∪C′2)×G = πid×g,(C′c1 ∩C′c2 )c×G.

We conclude that πid×g,C ∈ G�, and that the provided upper-bounds are correct.

Note that for any g ∈ Sym(H ′), g × idG ∈ Sym(H) is an even permutation since |G|
is even. Combining this with the previous lemma, we obtain the following result which
allows the conditioning of gates depending on conditions of the form C ′ ×G, and controls
their word norm in G�.

LEMMA 4.7. Let T : P(H × ��−1)→ N be given by the previous lemma. Assume that
g ∈ Sym(H ′) is a permutation and C = C′ ×G is a πg×id-invariant condition, for some
C′ ⊆ H ′ × ��−1. Then the permutation πg×id,C belongs to G� with word norm O(T (C)).

We divide the proof of this lemma in three parts.

CLAIM 4.8. For g ∈ Alt(H ′ ×G) a 3-cycle and C = C′ ×G a πg-invariant condition,
the permutation πg,C belongs to G� with word norm O(T (C)).

Proof. Let g = ((h1, x1), (h2, x2), (h3, x3)) be a 3-cycle of Sym(H ′ ×G) and C = C′ ×
G be a πg-invariant condition for some C′ ⊆ H ′ × ��−1.

Consider the condition B = B ′ ×G where B ′ = C′ ∩ [h1]0, and for y1, y2, y3 ∈ G

three distinct elements, let us define the following permutations:

g′G = (y1, y2, y3) ∈ Alt(G),

g′ = ((h1, y1), (h1, y2), (h1, y3)) ∈ Alt(H ′ ×G).

By Lemma 4.7, πid×g′G,B belongs to G� with word norm O(T (B)) = O(T (C)).
However, πid×g′G,B = πg′,C , since B ′ = C′ ∩ [h1]0. This proves that πg,C belongs to G�

with word norm O(T (C)), since g and g′ (hence πg,C and πg′,C) are conjugated by the
involutions (hi , xi)↔ (h1, yi) of Sym(H).

CLAIM 4.9. For g ∈ Sym(H ′) a cycle of support S and C = C′ ×G a πg×id-invariant
condition, the condition C is πg′-invariant for every g′ ∈ Sym(S ×G).
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Proof. Let g′ ∈ Sym(S ×G), (h, x) ∈ H ′ ×G, and γ ∈ ��−1. Let us denote g′(h, x) =
(h′, x′). As g is a cycle, there exists k such that gk(h) = h′. Then πg′((h, x) · γ ) =
g′(h, x) · γ = (gk(h), x′) · γ , so that

πg′((h, x) · γ ) ∈ C′ ×G

⇐⇒ (gk(h), x′) · γ ∈ C′ ×G

⇐⇒ πk
g ((h, x′) · γ ) ∈ C′ ×G

⇐⇒ (h, x′) · γ ∈ C′ ×G as C′ ×G is πg-invariant

⇐⇒ (h, x) · γ ∈ C′ ×G.

We can now conclude the proof.

Proof of Lemma 4.7. Let g ∈ Sym(H ′) and C = C′ ×G be a πg×id-invariant condition
for some C′ ⊆ H ′ × ��−1. Without loss of generality, we can assume that g is a cycle,
whose support we denote as S.

Then, g × id belongs to Alt(S ×G), since G has even cardinality. Additionally,
Alt(S ×G) is generated by its 3-cycles since |S ×G| ≥ 3. Let us write g × id = c1 ◦
· · · ◦ ck for c1, . . . , ck 3-cycles of Alt(S ×G). Then C is πci

-invariant for every ci by the
second claim, so by the first claim, each πci ,C belongs to G� with word norm O(T (C)).

As Alt(S ×G) ≤ Alt(H) is finite, k is bounded (with bound independent from �), and
πg×id,C is the composition of this bounded number of πci ,C . This concludes the proof.

We finally state an (optional) rephrasing of Lemma 4.7. Readers with a background in
complexity theory will find the following version of the statement useful; it is immediate
from the definition of the complexity class NC1.

LEMMA 4.10. Let L ⊆ H ′ × �∗ be a language in NC1, and Ln ⊆ H ′ × �n−1 its words
of size n. For any g ∈ Alt(H ′), the conditioned gates fg×id,Ln×G belong to G� with
polynomial word norm in n.

4.2.2. Examples. To clarify Lemma 4.7, we consider several examples: the permutation
of adjacent letters, lexicographic comparisons, and (cyclic) ternary additions.

Permuting two adjacent tape-letters

LEMMA 4.11. Consider the permutation p ∈ Sym(C�) of two adjacent tape-letters around
the head, that is, the shift-equivariant action on patterns of size 2:

p :
(
w0 w1
q

)
→

(
w1 w0
q

)

for any w = w0w1 ∈ �2 and q ∈ Q.
Then p belongs to G� with constant word norm.

Proof. The permutation p is the composition of finitely many commuting p(a,b) that only
permutes adjacent tape-letters when they differ and belong to the set {a, b} ⊆ �, that is,
for a �= b ∈ �, the involution p(a,b) ∈ Sym(C�) is defined as
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(
a b

q

)
↔

(
b a

q

)
for any q ∈ Q. So we only need to prove that every p(a,b) belongs to G�.

Let a �=b∈�. Define g� ∈Sym(�) as the involution g�=a↔b. Then g′ = idQ′ ×g�

is a permutation of Sym(H ′), and g = g′ × idG is a permutation of Sym(H). By Lemma
4.7, both πg,[a]1×G and πg,[a]−1×G belong to G� with word norm independent of �, and we
have p(a,b) = �, where

� = (ρ−1 ◦ πg,[a]−1×G ◦ ρ) ◦ (πg,[a]1×G) ◦ (ρ−1 ◦ πg,[a]−1×G ◦ ρ)

and ρ denotes the right rotation of the head. Indeed, for any q ∈ Q, we calculate

�

((
a b

q

))
=

(
b a

q

)
,

�

((
b a

q

))
=

(
a b

q

)
,

�

((
a a

q

))
=

(
a a

q

)
,

and nothing of interest (other than the head moving back and forth) happens on other
patterns.

Remark 4.12. The previous permutation p can be conditioned on any value of the state
q ′ ∈ Q′ by simply replacing the conditions [a]1 ×G (respectively [a]−1 ×G) with ([a]1 ∩
[{q ′} × �]0)×G (respectively ([a]−1 ∩ [{q ′} × �]0)×G).

Lexicographic comparisons. Let us consider the case of conditions that lexicographically
compare the content of the tape with arbitrary fixed words (word equalities and compar-
isons). By reducing the movement of the head, we obtain better upper bounds than what a
strict reading of Lemma 4.6 would suggest.

LEMMA 4.13. Given a lexicographic equality/comparison ∼ ∈ {=, <, ≤, >, ≥} and a
word c ∈ {0, 1, 2}l for some l ≤ �, consider a condition C ⊆ H × ��−1 of the form ∼ c,
that is,

(
a0 . . . al−1 al . . . a�−1
q

)
∈ C ⇐⇒ a0 · · · al−1 ∼ c0 · · · cl−1.

Then T (C) = O(|c|2).
Proof. To prove this result, we use a divide and conquer approach: given l ≤ �, any integer
l′ ≤ l, and two words w ∈ {0, 1, 2}l and c ∈ {0, 1, 2}l ,

w = c ⇐⇒ (w�0,l′−1� = c�0,l′−1�) ∧ (w�l′,l−1� = c�l′,l−1�),

w < c ⇐⇒ (w�0,l′−1� < c�0,l′−1�)

∨ ((w�0,l′−1� = c�0,l′−1�) ∧ (w�l′,l−1� < c�l′,l−1�)).
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So if C is the condition = c and g1, g2 ∈ Alt(G), then

πid×[g1,g2],=c = [πid×g1,=c�0,l′−1�
, ρ−l′ ◦ πid×g2,=c�l′ ,l−1�

◦ ρl′].

Taking l′ = �l/2� and iterating, we obtain T (C) = O(l2) = O(|c|2). Similarly, if C is
the condition < c, we obtain T (C) = O(|c|2). The other cases follow using elementary
Boolean algebra on the operators of {=, <, ≤, >, ≥}.
Remark 4.14. The previous lemma can still be used to compare words w and c at
non-contiguous positions. Denote by • a wildcard symbol that represents positions
which will be ignored when performing the comparison w ∼ c, that is, for any two
words w0 · · · wl−1 ∈ {0, 1, 2}l and c0 · · · cl−1 ∈ ({0, 1, 2} ∪ {•})l , if i0 < · · · < in are
the non-wildcard positions in c (that is, ci �= • if and only if i ∈ {i0, . . . , in}), we say
that w ∼ c if the usual lexicographic comparison wi0 · · · win ∼ ci0 · · · cin is true.

Then the previous lemma still holds for comparisons w ∼ c for w ∈ {0, 1, 2}l and
c ∈ ({0, 1, 2} ∪ {•})l .

(Cyclic) ternary addition. Finally, let us consider ternary additions, that is, adding the
number v3(k) for k ∈ {0, 1, 2}∗ to the |k| letters on the right side of the head by considering
them as a counter in base 3.

LEMMA 4.15. For k ∈ {0, 1, 2}∗, |k| ≤ �, let addk ∈ Sym(C�) be defined as the following
shift-equivariant action:

addk :
(

a0 . . . a|k|−1 a|k| . . . a�−1
q

)
→

( a′0 . . . a′|k|−1 a|k| . . . a�−1

q

)
,

where v3(a
′
0 · · · a′|k|−1) = v3(a0 · · · a|k|−1)+ v3(k) mod 3|k|.

Then addk belongs to G� with word norm O(|k|3).
Proof. Let r = idQ × (0, 1, 2) ∈ Sym(Q× �) denote the rotation of the tape-letter by
the 3-cycle (0, 1, 2) ∈ Alt(�). To perform additions modulo 3|k|, we apply the standard
‘school algorithm’, whose main difficulty consists in performing carries.

The application of a carry only needs to be performed when the addition of the
previously added digits has overflowed, that is, when the digits on which the addition has
already been performed (from right to left) have a smaller value than the rightmost digits
of k. This is exactly what we do.

First, move the head to the right of the counter by applying ρ|k|−1. Then, apply either πr

if the last digit of k is 1 (that is, k|k|−1 = 1), or πr2 if k|k|−1 = 2, or nothing if k|k|−1 = 0.
Then, for j ∈ �1, |k| − 2�, do the following.

(1) Move the head to the left with ρ−1.
(2) Apply either πr if k|k|−j−1 = 1, or πr2 if k|k|−j−1 = 2, or nothing if k|k|−j−1 = 0.
(3) Perform the carry: denoting k′ = k�|k|−j ,|k|−1�, apply πr ,<•k′ where • is the wildcard

symbol, using the notation of Lemma 4.13 and Remark 4.14.
Then addk is the composition of O(|k|) permutations of G�, each having word norm
O(|k|2) (according to Lemma 4.13). This concludes the proof.
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Remark 4.16. The addition addk can be conditioned on any value of the state q ′ ∈ Q′ by
simply intersecting all the conditions for applying πr (or πr2 ) with [{q ′} × �]0 ×G.

4.2.3. The ducking trick. Recall that the set Q splits into Q = Q′ ×G, and that Q′
itself splits into Q′ = Q(o) ×D: the states Q(o) = {�, �, �, �} × {1, 2} of the original
SMART machine, and the duck D = {d1, d2}. Recall that for S ⊆ C�, we denote by S[d1]
(respectively S[d2]) the subset of tapes in S containing a head whose duck is d = d1

(respectively d = d2).
In this section, we introduce the ducking trick: this method uses this ducking component

D to realize piecewise-defined bijections, in particular in the proof of Lemma 4.3 that
follows.

Let f = f (o) × idD×G : Q× �� → Q× �� be a map defined on patterns of length �

by some f (o) : Q(o) × �� → Q(o) × ��. Assume that f is a piecewise-defined bijection,
that is, that there exist partitions "p

i=1U
(o)
i and "p

i=1V
(o)
i of Q(o) × �� and maps f

(o)
i :

U
(o)
i → V

(o)
i such that f (o) =⊔

f
(o)
i (as the union of graphs of functions).

In what follows, we denote Ui = U
(o)
i ×D ×G ⊆ Q× �� and Vi = V

(o)
i ×D ×G ⊆

Q× ��, and fi = f
(o)
i × id : Ui → Vi , so that f =⊔

i fi .
Assume the following.

(1) There exist maps gi ∈ G� with polynomial word norm in � such that gi agrees
with fi on Ui[d2] (that is, gi |Ui [d2] = fi), and is the identity on Ui[d1] (that is,
gi |Ui [d1] = id).

(2) Each Ui has a simple description. Specifically, we should have a Boolean circuit of
type NC1 for it.

In our application, the descriptions of the Ui involve only numerical comparisons and
direct letter comparisons, and the simplicity is encapsulated in the formulas in §4.2.2. The
maps gi differ from fi in the following way: instead of having domain Ui , they act on the
whole set of patterns of length �, and are only required to act on Ui[d2] as fi does (and
be the identity on Ui[d1]).

CLAIM 4.17. (Ducking trick) Consider F : Q× �� → Q× �� defined as

F(w) =

⎧⎪⎪⎨
⎪⎪⎩

f (w) if w ∈ Q× ��[d1],

f−1(w) if w ∈ Q× ��[d2],

w otherwise.

Under the assumptions above, F belongs to G� with polynomial word norm in �.

Proof. Denote by d ′ ∈ Sym(D) the involution d ′ = d1 ↔ d2. Then d = idQ(o) × d ′ ×
idG × id� ∈ Sym(H) is an involution. As the sets Ui are πd -invariant, by Lemma 4.7,
each πd,Ui

belongs to G� with word norm O(T (Ui)) (which is polynomial in �, because of
the NC1-description).

Now conjugate the permutations πd,Ui
by their respective g−1

i , to get

Fi = (πd,Ui
)(g
−1
i ) = gi ◦ πd,Ui

◦ g−1
i .
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This is an involution that acts like fi on Ui[d1] (and flips the duck), like f−1
i on Vi[d2]

(and flips the duck), and is the identity on the rest of Q× ��. Indeed, πd,Ui
exchanges

words w ∈ Ui[d1] with πd(w) ∈ Ui[d2]. Conjugating it with g−1
i effectively means that

we translate the domain of this permutation by gi . More precisely, this is the involution

Fi : gi(Ui[d1])↔ gi(Ui[d2]),

gi(w)↔ gi(πd(w)).

As gi acts like fi on Ui[d2] and is the identity on Ui[d1], we have in fact:

Fi : U [d1]↔ Vi[d2],

w↔ fi(πd(w)).

Additionally, Fi has polynomial word norm because gi and πd,Ui
have polynomial word

norm.
Finally, each time Fi acts non-trivially, it also flips the duck, so all the Fi have disjoint

support. Composing them in any arbitrary order, we obtain that F = πd ◦∏
i Fi belongs

to G� with polynomial word norm in �.

4.3. Implementing encodings and additions

4.3.1. Proof of Lemma 4.3. In this section, we use the previous lemmas to implement
the inductive encoding of §3.4 in G�. More precisely, recall the statement of Lemma 4.3.

LEMMA 4.3. Let E� : C� → C� be the encoding map defined in §3.2. There exists some
Ẽ� : C� → C� in G� with word norm O(�4) such that

w ∈ C�[d1] �⇒ Ẽ�(w) = E�(w),

where C�[d1] is the set of cyclic tapes w ∈ C� having a head with duck d = d1.

This section is dedicated to the proof of this lemma. Informally, we use the inductive
decomposition of E� into

E� = F�,final ◦
( �−2∏

k=0

Fk→k+1

)
◦ Finit

defined in §3.4, and build every Finit, Fk→k+1, and F�,final in the group G�. Each of these
steps being defined as piecewise-defined bijections, we use the ducking trick mentioned in
§4.2.3: with the duck D = {d1, d2}, we write each bijection as a product of involutions that
swap ducks d1 and d2.

Let F be one of Finit, Fk→k+1, or F�,final. Here, F rewrites patterns as explained in §3.4,

and copies all other symbols unchanged. Let U
F#−→ V be one of the cases of F, that is, one

of the rules of pattern rewriting that defines F. (Apart from the proof of Lemma 4.19, there
is no need to actually know what U, V, and F precisely are to understand the following
statements.)
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Define

F̃U ,V : U [d1]↔ V [d2]

w↔ πd(F (w))

as the involution of Sym(C�) that swaps words w ∈ U [d1] with words πd(F (w)) ∈ V [d2],
where πd is the duck-flipping involution. The involution F̃U ,V applies F forward on tapes
with duck d1 and swaps the duck, and applies F backwards on tapes with duck d2 and
swaps the duck.

LEMMA 4.18. For any such case U
F#−→ V , the permutation F̃U ,V belongs to G� with norm

O(�3).

The proof relies on the structure of the different cases U
F#−→ V defined in §3.4.

Sketch of a proof. Let U
F#−→ V be such a piece.

The condition U checks the state of the head, the value of a few distinct tape-letters,
and a counter being non-zero (in the case of Figure 4) or full-zero (in the case of Figure 5).
Denoting by d = idQ(o) × d ′ × idG × id� ∈ Sym(H) for d ′ : d1 ↔ d2 ∈ Sym(D) the
involution that swaps the duck, the gate πd,U conditioned on U belongs to G� with norm
O(�2).

By conjugating πd,U by a sequence of permutations conditioned on the duck being d2,
we can then build ẼU ,V with norm O(�3) in G�.

Example 4.19. On an example, consider U
F#−→ V to be the following transformation

between levels k and k + 1 (this is the third rewrite in Figure 4):

( ∗ c 1 ∗
�1

)
→

( ∗ [v3(c)+ f (n)+ 1](3) ∗
�1

)

Then the condition U is the conjunction of the head being in state �1, on top of the
tape-letter 1, and the k + 1 tape-letters on its left being non-zero. By Lemma 4.13, πd,U

belongs to G� with norm O(k2).
To obtain ẼU ,V , we then conjugate πd,U with the sequence of inverses of the following

permutations, all of which are conditioned on the head having duck d2.
(1) At first, when πd,U is conjugated by nothing (that is, the identity), we have

( ∗ c 1 ∗
�d1

1

)
↔

( ∗ c 1 ∗
�d2

1

)

and, again, this permutation is only applied if c is a non-zero counter. (Note that we
see here the full support of the permutation.)

(2) Let g′ = (1, 0) ∈ Sym(�), and g = idQ(o) × {d2} × idG × g′ ∈ Sym(H). Apply the
gate πg , which has word norm O(1) in G�. At the moment, we have the permutation:

( ∗ c 1 ∗
�d1

1

)
↔

( ∗ c 0 ∗
�d2

1

)
(3) Using the permutation p from Lemma 4.11 (that exchanges two adjacent letters)

conditioned on the duck being d = d2 (see Remark 4.12), and moving the head using
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the generator ρ of G�, we move the counter c one step to its right and the tape-letter
0 under the head k + 1 steps to its left. At the moment, we have the permutation:

( ∗ c 1 ∗
�d1

1

)
↔

( ∗ 0 c ∗
�d2

1

)

(4) For w ∈ {0, 1, 2}k+2 such that v3(w) = f (k)+ 1, we apply addw from Lemma 4.15
(namely, the permutation that adds f (k)+ 1 to the ternary number of length k + 2
to the right of the head) conditioned on the duck being d = d2 (see Remark 4.16). It
has word norm O(k3). Then, apply ρ−1 on ducks d = d2. At the moment, we have
the permutation:

( ∗ c 1 ∗
�d1

1

)
↔

( ∗ [v3(c)+ f (k)+ 1](3) ∗
�d2

1

)

(5) Let g′ = �d2
1 ↔ �d2

1 ∈ Sym(Q) and g = g′ × id� ∈ Sym(H). We apply πg and
finally obtain F̃U ,V :

( ∗ c 1 ∗
�d1

1

)
↔

( ∗ [v3(c)+ f (k)+ 1](3) ∗
�d2

1

)

Having built each case of the piecewise-defined function F, we complete the ‘ducking’
process and obtain an immediate corollary.

LEMMA 4.20. For F being either Finit, Fk→k+1, or F�,final, define

F̃ (w) =

⎧⎪⎪⎨
⎪⎪⎩

F(w) if w ∈ C�[d1],

F−1(w) if w ∈ C�[d2],

w otherwise.

Then F̃ belong to G� with word norm O(�3).

Proof. Each of these transformations F is composed of finitely many cases U
F#−→ V , and

by the previous lemma, each F̃U ,V belong to G� with word norm O(�3). Denote by d ∈
Sym(H) the involution that swaps ducks d = d1 and d = d2. As the F̃U ,V commute (since
they have disjoint support), the involution F̃ can be written as the composition of finitely
many F̃U ,V and πd .

We then conclude and obtain Lemma 4.3.

Proof of Lemma 4.3. Recall that the encoding map E� from §3.2 is defined as E� =
F�,final ◦∏�−2

k=0 Fk→k+1 ◦ Finit.
By the previous lemma, there exists F̃init, F̃k→k+1, and F̃�,final in G� with word norm

O(�3) that agree on C�[d1] with their respective F�,final, Fk→k+1, and Finit. As the set
C�[d1] is stable by these permutations, we define

Ẽ� = F̃�,final ◦
�−2∏
k=0

F̃k→k+1 ◦ F̃init.
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Then the map Ẽ� satisfies:

w ∈ C�[d1] �⇒ Ẽ�(w) = E�(w) ∈ C�[d1].

One should note that, on configurations w ∈ C�[d2], Ẽ� ‘produces garbage’: we claim
no meaningful interpretation for the image of such w. In particular, we note that while for
w ∈ C�[d2], we have F̃init(w) = F−1

init (w), the composition F−1
�,final ◦

∏�−2
k=0 F−1

k→k+1 ◦ F−1
init

does not equal the inverse of E.

4.3.2. Proof of Lemma 4.4. Let us recall the statement of Lemma 4.4.

LEMMA 4.4. Let (+n)� be the bijection of C� that performs the addition of n ∈ N in base
2� · 3� on the orbits positions encoded by E�. Recall that (+n/d1)� : C� → C� is defined as

(+n/d1)�(w) =
{

(+n)�(w) if w ∈ C�[d1],

w otherwise.

Then (+n/d1)� belongs to G� with word norm O(�3).

More precisely, denoting by qb any state in [qb] = {qb} ×D ×G, the map (+n/d1)�

bijectively acts on the following patterns of length � as

+n/d1

(
c0 . . . c�−1
qb

)
→ σ−εa

((
c′0 . . . c′�−1
qb′

))

if qb ∈ {qb} × {d1} ×G, where b′ · c′ ∈ {1, 2} · {0, 1, 2}� encodes ((b − 1) · 3� +
v3(c))+ n mod 2 · 3�, a is the quotient of ((b − 1) · 3� + v3(c))+ n by 2 · 3�, and ε = +1
if q ∈ {�, �}, ε = −1 if q ∈ {�, �}, and is the identity otherwise.

We now prove Lemma 4.4.

Proof. Using the permutation p of constant word norm from Lemma 4.11, conditioned on
the duck being d = d1 and the state being either in {�, �} or in {�, �} (see Remark 4.12),
we can rotate the tape either right (if � or �) or left (if �, �) at most � times with word
norm O(�2). We can now assume that 0 ≤ n < 2 · 3�.

Let b · k ∈ {1, 2} · {0, 1, 2}� encode n, that is, v3(k) = n mod 3�, and b − 1 be the
quotient of n by 3�. We first add b · k without rotating the tape.

To do so, apply the permutation addk of Lemma 4.15 to add n mod 3� to the cyclic
tape conditioned on d = d1 (see Remark 4.16). Then, very similarly to the proof of the
same lemma, we perform a carry in the component {1, 2} of the state (denoting s = s ′ ×
{d1} × idG × id� ∈ Sym(H), where s′ = (q, 1)↔ (q, 2) ∈ Sym(Q(o)), we perform the
conditioned gate πs,<k defined in Lemma 4.13), and depending on the bit b, we cyclically
rotate the bit carried by state (if b = 2, we apply πs , and if b = 1, we apply the identity).

We are now left with performing a cyclic rotation of the whole tape if the addition
of n in the previous paragraph overflowed. Let s1 ∈ Sym(H) and s2 ∈ Sym(H) respec-
tively flip filled arrows �↔ � and �↔ �, that is, s1 = s′1 × {d1} × id× id ∈ Sym(H)

(respectively s2 = s′2 × {d1} × id× id ∈ Sym(H)), for s′1 = (�↔ �)× id ∈ Sym(Q(o))
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(respectively s′2 = (�↔ �)× id ∈ Sym(Q(o))). By Lemma 4.13, both πs1,C and πs2,C

belong to G� with word norm O(�2), for C the overflowing condition C = < (b · k).
(We slightly abuse notation here when writing < (b · k): these conditions were defined
for comparisons of length ≤ � of tape-letters, here the comparison is of length �+ 1.
Instead of just comparing on the tape, the bit {1, 2} carried in the state is also part of
the comparison.)

Let r� ∈ Sym(C�) (respectively r� ∈ Sym(C�)) be the right cyclic shift of whole tapes
having states in {�} × {1, 2} × {d1} ×G (respectively {�} × {1, 2} × {d1} ×G). These
permutations belong to G� with word norm O(�) by Lemma 4.11.

Then the commutator [πs1,C , r�] (resp. [πs2,C , r�]) shifts the whole tape if and only
if an overflow happened, and it either shifts to the right if the state is in {�} × {1, 2} ×
{d1} ×G (respectively {�} × {1, 2} × {d1} ×G), or to the left if the state is in {�} ×
{1, 2} × {d1} ×G (respectively {�} × {1, 2} × {d1} ×G).

We conclude that +n/d1 , being the composition of the previous paragraphs, belongs to
G� with word norm O(�3).

5. Distortion of automorphisms of the full shift
This chapter contains a proof of Theorem A.

THEOREM A. For any non-trivial alphabet A, the group Aut(AZ) has an element g of
infinite order such that |gn|F = O(log4 n) for some finite set F.

By [33], the automorphism groups of full shifts with different (non-trivial) alphabets
embed in each other, so we only need to prove that there exists � and some g ∈ Aut(�Z)

of infinite order such that |gn|F = O(log4 n) for some finite set F.
We first introduce the conveyor belt construction, which allows to embed a given Turing

machine into a full shift. We then define a group G∗, which contains every Turing machine
on a given set of states and alphabet, along with some instructions to modify the conveyor
belt structures in configurations. Then, we state Lemma 5.1: every finitarily distorted
Turing machineM gives rise to a distorted automorphism inG∗. Overall, the proof consists
in transporting the already existing (finitary) distortion into a full shift.

We finally add some various optimizations in the case of the SMART machine. All
our results are summarized in Lemma 5.14, which precisely defines a full shift �Z

and a distorted automorphism fS of infinite order which satisfies the aforementioned
polylogarithmic word norm of degree four.

5.1. Context and statements of results

5.1.1. Conveyor belts. Recall that a Turing machineM = (Q, �, 	) acts on the related
subshift X (see §2), that is, on the set of bi-infinite tapes containing at most one head (that
is, one symbol of Q× �).

To make a Turing machine M = (Q, �, 	) act on a full shift instead, we use the
conveyor belt trick (see for example [28, Lemma 3]). Let

� = (�2 × {+1, −1}) " ((Q× �)× �) " (� × (Q× �)),
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where we call conveyor bits the bits of {+1, −1} in (�2 × {+1, −1}), and define the action
ofM on �Z as the following automorphism fM.

Any configuration x ∈ �Z uniquely splits into x = · · · w−2w−1w0w1w2 · · · such that
for every i ∈ Z, we have either

wi ∈ (�2 × {+1})∗(((Q× �)× �) ∪ (� × (Q× �)))(�2 × {−1})∗
or wi ∈ (�2 × {+1})+(�2 × {−1})+

with the exception that on some configurations, there might exist a leftmost or rightmost
word with an infinite number of +1 or −1. (The corresponding decomposition claim in
[28] has a misprint, as it uses Kleene stars also in the second form.) We describe the action
of fM on such finite words w = wi of these two forms: as configurations made of infinitely
many finite w are dense and fM will be uniformly continuous on these, fM will uniquely
extend to an automorphism on the full shift.
• On words w ∈ (�2 × {+1})+(�2 × {−1})+, we do nothing.
• On words w ∈ (�2 × {+1})∗(((Q× �)× �) ∪ (� × (Q× �)))(�2 × {−1})∗, let

w′ ∈ (�2)∗(((Q× �)× �) ∪ (� × (Q× �)))(�2)∗

be the word obtained by erasing the conveyor bits +1 and −1 from w. We see w′ as a
conveyor belt of length 2|w|, that is, the superimposition of a top word u and a bottom
word v, glued together at their borders as if the words were laid down on a conveyor
belt.

More precisely, for π1 and π2 the projections to the first and second component
of the alphabet, let u = π1(w

′) and v = π2(w′), the reverse of π2(w
′). One of these

words is in �+, and the other is in �∗(Q× �)�∗. We makeM act on (uv)Z (despite it
having infinitely many heads, it should be clear what this means, as all the heads move
with the same transition), that is, we define

u′v′ = TM((uv)Z)�0,2|w|−1�.

Note that u′v′ also contains exactly one head. We then rewrap u′v′ into a conveyor
belt of (�2)∗(((Q× �)× �) ∪ (� × (Q× �)))(�2)∗, and add conveyor bits +1
(respectively −1) to the cell symbols in �2 to the left of the head (respectively right).

This defines how fM acts on such words w. This can be summarized as fM
considers such words as a cyclic tape folded in the shape of a conveyor belt, and acts
on the cyclic tape.

Note that x and fM(x) have the same decomposition into a product of conveyor belts,
and that ifM is reversible, then fM is an automorphism of Aut(�Z).

5.1.2. Group of Turing machines on conveyor belts. Similar to the group of Turing
machines G� acting on the finite cyclic tapes of C�, let us define another point of view
on Turing machines acting on full shifts. For g ∈ Sym(Q× �), define f

up
g , f down

g , fg ∈
Aut(�Z) as
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f
up
g (x)i =

{
xi if xi ∈ �2 × {+1, −1} or xi ∈ (� × (Q× �)),

(g(a), b) if xi = (a, b) ∈ ((Q× �)× �),

f down
g (x)i =

{
xi if xi ∈ �2 × {+1, −1} or xi ∈ ((Q× �)× �),

(a, g(b)) if xi = (a, b) ∈ (� × (Q× �)),

fg(x)i =

⎧⎪⎪⎨
⎪⎪⎩

xi if xi ∈ �2 × {+1, −1},
(g(a), b) if xi = (a, b) ∈ ((Q× �)× �),

(a, g(b)) if xi = (a, b) ∈ (� × (Q× �)),

for x a configuration of �Z.
For every q ∈ Q, define ρq as the right movement of heads in state q inside their own

conveyor belts, and ρ =∏
q∈Q ρq . Then define G the group they generate:

G = 〈{f up
g , f down

g , fg | g ∈ Sym(Q× �)} ∪ {ρq | q ∈ Q}〉.
The generators of G� introduced in §4 are in direct correspondence with the generators

{fg | g ∈ Sym(Q× �)} and {ρq | q ∈ Q} of G, and the latter can also be seen as the basic
instructions of Turing machines: moving heads based on their states or permuting their
values.

In §4, we mentioned that every Turing machineM = (Q, �, . . .) belongs to the groups
G�. Similarly, for any such machine, the automorphism fM belongs to G, since it is the
composition β−1 ◦ β+1 ◦ fα:

α(q, a) =
{

(q ′, b) if (q, a, q ′, b) ∈ 	,

(q ′, a) if (q, ±1, q ′) ∈ 	,

β+1 =
∏

q ′| there exists q,(q,+1,q ′)∈	
ρq ′ ,

β−1 =
∏

q ′| there exists q,(q,−1,q ′)∈	
ρq ′
−1.

5.1.3. Decorating Turing machines. Given any two sets �0 and Q0, define

� = �0,

Q = Q0 ×D ×G,

� = (�2 × {+1, −1}) " ((Q× �)× �) " (� × (Q× �)),

where D = {d→, d←} and G = �0, 5�. As in §4.1.1, D is called the duck and G is called
the ghost.

We say that � and Q are the decorated versions of �0 and Q0.

5.1.4. Generalized group G∗ of Turing machines on conveyor belts. Let us now define
an automorphism θ that intuitively moves all (decorated) heads to the right, disregarding
the conveyor belt structure, allowing heads to visit areas outside of their conveyor belts.
This is completely ad hoc, and only used to build three specific automorphisms in §5.2.5.
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First, split G = �0, 5� into G � {+1, −1} × �0, 2�, where {+1, −1} is its sign
component. Now every symbol of � contains a sign {+1, −1}, either in the
sign-component of the state, or as its conveyor bit. Let πsign : �→ {+1, −1} return
the sign of any symbol in � bit, that is,

πsign(z) =

⎧⎪⎪⎨
⎪⎪⎩

ε if z = ((a, b), ε) ∈ �2 × {+1, −1},
ε if z = ((q, a), b) ∈ (Q× �)× � or z = (a, (q, b)) ∈ (� × (Q× �)),

where q = (q0, d , x) and x � (ε, x′) ∈ G.

We can then define the automorphism θ that moves every head to the right while leaving
this sign symbol intact. More precisely, let σsign : Q× {+1, −1} → Q rewrite the sign of
the state:

σsign : ((q0, d , (_, x′)), ε)→ (q0, d , (ε, x′)),

that is, πsign(σsign(q, ε)) = ε, let πup : �→ � return the top tape-letter, πdown : �→ �

return the bottom tape-letter, and πQ : ((Q× �)× �) ∪ (� × (Q× �))→ Q return the
state. Define θ : �Z→ �Z as

θ(x)i =

⎧⎪⎪⎨
⎪⎪⎩

((q ′, a), b) if xi−1 ∈ (Q× �)× �,

(a, (q ′, b)) if xi−1 ∈ � × (Q× �),

((a, b), πsign(xi)) if xi−1 ∈ �2 × {+1, −1},

for x ∈ �Z, where a = πup(xi), b = πdown(xi), and q ′ is the state of xi−1 with sign
component πsign(xi), that is, q ′ = σsign(πQ(xi−1), πsign(xi)).

Then θ is an automorphism of bi-radius 1, and we define by

G∗ = 〈G ∪ {θ}〉
the finitely generated group generated by θ and the Turing machine instructions of G. This
finitely generated group G∗ is where we prove distortion in Lemma 5.1.

5.1.5. Main result: distortion in �Z. Let M0 = (Q0, �0, 	0) be an arbitrary Turing
machine. Denoting by Q = Q0 ×D ×G and � = �0 the decorated versions of Q0 and
�0, we define the symmetrized Turing machineM = (Q, �, 	) that acts forward in time
on ducks d→ and backward on ducks d←:

	 =
⋃
x∈G
{((q, d→, x), a, (q ′, d→, x), b) : (q, a, q ′, b) ∈ 	0}

∪ {((q, d→, x), δ, (q ′, d→, x)) : (q, δ, q ′) ∈ 	0}
∪

⋃
x∈G
{((q ′, d←, x), b, (q, d←, x), a) : (q, a, q ′, b) ∈ 	0}

∪ {((q ′, d←, x), δ, (q, d←, x)) : (q, δ, q ′) ∈ 	0}.
We can now establish Lemma 5.1, which is the main result of this section.
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LEMMA 5.1. Assume some Turing machine M0 satisfies the three properties of
Lemma 4.2. Then, denoting by M its symmetrized (and decorated) version, the
automorphism (fM)n of Aut(�Z) (that is, the action of M on the conveyor belts of
�Z) has word norm O(logp+1 n+ log2 n) in G∗.

Remark 5.2. Note that the assumption in this lemma focuses on the original machineM0

(and notM) verifying the properties of Lemma 4.2, while the conclusion of this lemma
focuses on the symmetrized version (fM)n (and not (fM0)

n).

5.1.6. Overview. As the decorated SMART machine satisfies Lemma 4.2, combining it
with Lemma 5.1 above, we obtain a distortion element of infinite order inG∗, whose powers
have word norm O(log5 n). However, this does not yet prove Theorem A: to obtain an
upper bound O(log4 n) on the word norm, we add a few additional tricks and optimizations
in §5.4.

This section focuses on the proof of Lemma 5.1 and Theorem A.
Intuitively, we prove Lemma 5.1 by applying the �-cyclic automorphism T�,M in the

conveyor belts of length �. The automorphisms T�,M are finitarily distorted, and the
distortion is transported from the cyclic automorphisms to fM.

Section 5.2 develops several tools for this proof. First, we build the tools to condition
the application of automorphisms by the length of conveyor belts, as to apply the correct
T�,M to the conveyor belts of the correct length. Morally, fM is then the infinite product of
all the T�,M.

Then, we develop a method called the two-scale trick to express fM as a product of
finitely many T�,M. It generates temporary conveyor belts of sufficient length so as to
move the head (with finitary distortion) without it ‘seeing’ the temporary borders, and
then erases them.

Section 5.3 then contains the proof of Lemma 5.1. As mentioned above, §5.4 covers
various optimizations in the case of the SMART machine, to obtain the final degree four
of polylogarithmic norm growth.

Remark 5.3. At this point, the reader may think that conveyor belts are a restriction
imposed by the context (as a way to embed Turing machines into a full shift); and that
proving distortion in a similar setting without conveyor belts, for example, on the bi-infinite
tapes of X (that is, in the groups of generalized Turing machines RTM(n, k)) would be
easier.

While the former is true, we think the latter is misleading. Indeed, the idea of temporary
conveyor belts (from the two-scale trick) is a key component of our proof of distortion, even
in the groups RTM(n, k). Without the ability to mark and erase temporary borders, we do
not know how to prove the distortion of (what morally is) the SMART machine.

5.2. Permutation engineering in �Z. Similarly to §4.2.1, in this new setting, the states
of Q once again have a ghost component G. We separate Q into two components:
Q = Q′ ×G (so, with the notation Q = Q0 ×D ×G, we have Q′ = Q0 ×D).
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With similar notation, the set of heads H = Q× � also splits as H = H ′ ×G, where
H ′ = Q′ × �. Note that for any g ∈ Sym(H ′), the permutation g × idG belongs to
Sym(H).

In this section, we focus on building a new sort of gate-conditioning: conditioning on the
structure of conveyor belts. To proceed, we somewhat follow the same ideas that we already
developed in §4.2.1. Finally, we prove that we can modify the conveyor belt structure in
§5.2.5.

5.2.1. Structure conditioning. Let us define by CB the set of conditions that focus on
the structure of conveyor belts.

Given a head and a conveyor belt, we denote by len ∈ N the length of the conveyor
belt (that is, the length of the underlying finite cyclic tape). The integers lr ∈ N and
ll ∈ N refer to the distance between a head and respectively the right and left border of
the conveyor belt. In this context, CB is defined as the smallest set of conditions satisfying
the following.
• For every n ∈ N, the condition len|n (that is, the length of the conveyor belt divides n)

belongs to CB.
• The conditions lr = 0 and ll = 0 belong to CB.
• For n ∈ Z, the condition ρn(C) belongs to CB.
• If C1, C2 ∈ CB, then C1 ∧ C2 ∈ CB.
• If C1, C2 ∈ CB, then C1 ∨ C2 ∈ CB.
• If C ∈ CB, then ¬C ∈ CB.
Here, for C a condition, the condition ρn(C) (for n ∈ Z) holds if and only if C holds after
applying ρn.

For any permutation g ∈ Sym(H) and any condition C ∈ CB, define fg,C to be the
conditioned gate that applies g on a head if and only if this head belongs to a conveyor
belts that verifies the condition C.

LEMMA 5.4. For any permutation g ∈ Sym(H ′) and condition C ∈ CB, the conditioned
gate fg×id,C belongs to G. Additionally, if T : CB→ N denotes the following function:

T (C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n if C is len|n,

1 if C is lr = 0 or ll = 0,

T (C1)+ |n| if C = ρn(C1),

2T (C1)+ 2T (C2) if C = C1 ∧ C2,

2T (C1)+ 2T (C2)+ 5 if C = C1 ∨ C2,

T (C1)+ 1 if C = ¬C1,

then the word norm of fg×id,C in G is O(T (C)).

We divide the proof of this lemma into the following claims.

CLAIM 5.5. Let g ∈ Alt(G) and � ∈ N. Then the conditioned gate fid×g,len|� (that applies
idH ′ × g on conveyor belts whose length divides �) belongs to G with word norm O(�).
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Proof. Let r ′ = (0, 1, . . . , |�| − 1) ∈ Sym(�) and r = idQ × r ′ ∈ Sym(H) (recall
H = Q× �) be the rotation of the tape-letter under the head. This proof relies on the
following trivial observation: applying fr changes the letter at both position 0 and position
� if and only if the length of the conveyor belt divides � (since the tapes are cyclic).

Let C =⋃
a∈�([Q× {a}]0 ∩ [a]�) be the condition that checks whether cells at

position 0 and � have the same tape-letter, and g ∈ Alt(G). Since G has cardinality at least
five, by Ore’s theorem [42, Theorem 7], there exist g1, g2 ∈ Alt(G) such that g = [g1, g2];
and according to Lemma 4.6, both fid×g1,C and fid×g2,C belong to G with word norm
O(�). Then,

fid×g,len|� = [fid×g1,C , fr ◦ fid×g2,C ◦ f−1
r ].

CLAIM 5.6. Let g ∈ Alt(G) and C be a condition lr = 0 or ll = 0. Then the conditioned
gate fid×g,C (that applies idH ′ × g on heads that are respectively on the left or right border
of their conveyor belt) belongs to G with word norm O(�).

Proof. As |G| ≥ 5, by Ore’s theorem, there exists g1, g2 ∈ Alt(G) such that g = [g1, g2].
Applying the commutator trick,

[f up
g1 , ρ−1 ◦ f down

g2
◦ ρ]

applies f[g1,g2] on heads that are exactly in the top-right corner of their conveyor belts.
Similar formulas exist for bottom-right, top-left, and bottom-left corners of conveyor belts,
so that one can condition any fg on being applied on heads that are in the left or right
corners of their conveyor belts with word norm O(1).

We can now proceed with the proof of Lemma 5.4. This proof is very similar to the
proofs of Lemmas 4.6 and 4.7.

Proof of Lemma 5.4. By the proof of Lemma 4.7, we only need to prove that for every
g ∈ Alt(G) and C ∈ CB, the conditioned gate fid×g,C belongs to G.

Let C ∈ CB. If C is len|n, then for any g ∈ Alt(G), the conditioned gate fg,C belongs
to G with word norm O(n) by Claim 5.5. If C is lr = 0 or ll = 0, then fg,C belongs to
G with word norm O(1) by Claim 5.6. If C = ρn(C1) for some C1 ∈ CB, then for any
g ∈ Alt(G), we have fg,C = ρ−n ◦ fg,C1 ◦ ρn.

Finally, if C = C1 ∧ C2, C = C1 ∨ C2, or C = ¬C1, the proof of Lemma 4.6 applies
mutatis mutandis.

Remark 5.7. The very same proof shows that f
up
g×id and f down

g×id can also be conditioned
by CB.

5.2.2. Corollary: conditioning on the length of conveyor belts. For � ∈ N and ∼ ∈ {<,
≤, =, ≥, >}, let us define conditions len ∼ � (comparisons on the length of the conveyor
belt).

LEMMA 5.8. Let � ∈ N and ∼ ∈ {<, ≤, =, ≥, >}. If C = len ∼ �, then C belongs to CB
and T (C) = O(�2).

In other words, for any g ∈ Sym(H ′), the conditioned gates fg×id,C belong to G with
word norm O(�2).

https://doi.org/10.1017/etds.2023.67 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.67


Distortion element in the automorphism group of a full shift 47

Proof. By the proof of Lemma 4.7, we only need to prove that for every g ∈ Alt(G) and
condition C = len ∼ �, the conditioned gate fid×g,C belongs to G.

Assume that ∼ is equality. By going through the divisors of � in decreasing order,
we can build any fid×g,len=� with word norm O(�2).(The number of divisors function d

satisfies d(�) = o(�ε) for any ε > 0, so we even get word norm O(�1+ε) for fid×g,len=�.)
For example, if � = 6,

fid×g,len=6 = fid×g,len|1 ◦ fid×g−1,len|2 ◦ fid×g−1,len|3 ◦ fid×g,len|6.

(Our conveyor belts cannot actually have length 1, so fid×g,len|1 may be dropped.)
If ∼ is ≤, we similarly build fid×g,len≤� with word norm O(�2) by going through the

interval �1, �� in decreasing order and picking suitable powers of g. For example, if � = 6,

fid×g,len≤6 = fid×g−2,len|1 ◦ fid×g−1,len|2 ◦ fid×g0,len|3 ◦ fid×g,len|4 ◦ fid×g,len|5 ◦ fid×g,len|6.

So we obtain fid×g,len∼� for the relations ∼ � with ∼ ∈ {≤, =}. From this, the auto-
morphisms with ∼ ∈ {<, ≥, >} are easy to obtain with elementary boolean algebra: for
example, len > � is the condition ¬(len ≤ �).

Remark 5.9. One may view the above proof as an instance of Möbius inversion. If g

has order m, take K = ⊕Z+Zm the commutative ring of infinitely many copies of Zm.
We see K as keeping track of how many times g is applied at each conveyor belt length.
Define functions ι, γ : Z+ → K where ι(n) as the indicator function of n (as an element
of K), and γ (n) the indicator function of the divisor poset of n. Then γ (n) =∑

d|n ι(d)

so by Möbius inversion, ι(n) =∑
d|n γ (d)μ(d, n), where μ is the Möbius function of the

divisibility poset; thus μ(d, n) tells us which power of g we should use for each divisor to
get ι(n). The values of ι are a basis of K, so we can get other conditional applications of g

with linear combinations.

5.2.3. Corollary: conditioning on the distance to borders. Recall that lr ∈ N and ll ∈ N

denote the distance between the head and the right (respectively left) border of the conveyor
belt.

LEMMA 5.10. For t ∈ N and ∼ ∈ {≤, <, =, >, ≥}, let C be a condition of the form lr ∼ t

(respectively ll ∼ t).
Then C belongs to CB and T (C) = O(t2). In other words, for any g ∈ Sym(H ′), the

conditioned gate fg×id,C belongs to G with word norm O(t2).

Proof. Very similarly to the proof of Lemma 4.13, we rely on a divide and conquer
approach. For example,

lr ≤ t is equivalent to ρ−t/2(lr ≤ t/2) ∨ ρt/2(lr ≤ t/2),

lr = t is equivalent to (lr ≤ t) ∧ ¬(lr ≤ t − 1),

lr < t is equivalent to lr ≤ t − 1.
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The rest of the comparisons on lr follow using basic Boolean algebra; and the case of ll is
symmetric.

5.2.4. Corollary: from cyclic tapes C� to conveyor belts in �Z. For T ∈ G�, there exists
by definition some T1, . . . , TN ∈ {πg | g ∈ Sym(Q× �)} ∪ {ρq | q ∈ Q} such that T =
TN ◦ · · · ◦ T1. Then, as each generator πg with g ∈ Sym(Q× �) (respectively ρq of G�)
corresponds to a generator fg of G (respectively ρq of G), T defines an automorphism fT

of Aut(�Z) of the same word norm. By construction, for any T ∈ G�, the corresponding
fT ∈ G acts like T on conveyor belts of length � (and produces garbage on conveyor belts
of length �= �).

Remark 5.11. The choice of fT is not canonical, in the sense that two different presenta-
tions T1, . . . , TN and T ′1, . . . , T ′

N ′ of T may define two different automorphisms fT (they
would define the same action on conveyor belts of length �, but produce different garbage
on conveyor belts of length �= �). This has no importance in what follows, but for the
sake of cleanliness, fix an arbitrary order on the generators of G� and define fT from the
lexicographically minimal presentation (among the presentations of shortest length) of T.

We now use the previous lemma to condition fT so that it acts only in conveyor belts of
length �. Recall that T/d→ acts like T on ducks d = d→, and is the identity otherwise, and
denote Ts the symmetrized version of T, that is

Ts(w) =

⎧⎪⎪⎨
⎪⎪⎩

T (w) if w ∈ C�[d→],

T −1(w) if w ∈ C�[d←],

w otherwise.

LEMMA 5.12. Assume T/d→ belongs to G�. Then fTs ,len=� ∈ Aut(�Z) belongs to G with
word norm O(‖T/d→‖ + �2).

Proof. Let d ∈ Sym(Q× �) be the involution that swaps d→ and d← on the head. By
Lemma 5.8, fd,len=� has word norm O(�2) and

fTs ,len=� = fd,len=� ◦ (fT/d→ )−1 ◦ fd,len=� ◦ (fT/d→ ).

Remark 5.13. Note that the assumption of this lemma focuses on T/d→ , but the conclusion
focuses on Ts . Note also that while fT is not canonical (see Remark 5.11), fTs ,len=� is.

5.2.5. Creating/erasing conveyor belts. Let τcb = idH ′ × τ ′ ∈ Sym(H), where τ ′ ∈
Sym(G) is the involution that permutes the sign +1↔ −1 in G (when considering G
as G � {+1, −1} × �0, 2�).

For t ∈ N, define

fτcb,→t = θ−t ◦ fτcb ◦ θ t ,

fτcb,t← = θ t ◦ fτcb ◦ θ−t ,

fτcb,t↔t = fτcb,→t ◦ fτcb,t←,
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where θ ∈ G∗ (defined in §5.1.4) is the right movement of heads ignoring the conveyor belt
structure. These automorphisms all belong to G∗ with word norm O(t), and they modify
the conveyor belt structure: they can create or erase conveyor belts.

In general, these modifications to the conveyor belt structure are quite unpredictable
(and meaningless), so we will only apply them through conjugation (that is, by conjugating
automorphisms with ‘small support’ by these automorphisms), so that they effectively only
act in very specific situations.

5.3. Proof of Lemma 5.1. Let us briefly recall the statement of Lemma 5.1. For the
precise context and notation, see §5.1.5.

LEMMA 5.1. Assume some Turing machineM0 satisfies the three properties of Lemma 4.2.
Then, denoting byM its symmetrized (and decorated) version, the automorphism (fM)n

of Aut(�Z) (that is, the action of M on the conveyor belts of �Z) has word norm
O(logp+1 n+ log2 n) in G∗.

Before going into the precise math, here is an overview of the proof. The main idea
consists in building (fM)n (the action of M on the conveyor belts of �Z) from the
automorphisms (T�,M0)

n (each action of M0 on each length � of finite cyclic tapes C�),
the latter being finitarily distorted by hypothesis (that is, having small word norm O(�p)).
Conditioning each (T�,M0)

n on the correct length of conveyor belt with Lemma 5.12, we
can use these automorphisms and the distortion carries from finite cyclic tapes to conveyor
belts.

Informally, (fM)n then becomes the product of infinitely many (T�,M)n. To write (fM)n

as a finite product, consider the movement of M and notice that m(n)—the number of
cells visited by M in n steps—is assumed to be O(log n). As a consequence, a head at
distance more than m(n) from the borders of its conveyor belts will not see the borders in
question. In such a case, we can create temporary conveyor belts of size O(log n), apply the
corresponding (T�,M)n, and erase the temporary borders: the applied operation coincides
with (fM)n in the original large conveyor belt.

Let us formalize these ideas. In particular, generating temporary conveyor belts is not a
reversible operation: to solve this issue, we introduce the two-scale trick (which introduces
not one, but two temporary conveyor belts of different sizes, hence its name).

Proof of Lemma 5.1. Fix an integer, which is the power of fM that we want to build.
Without any loss of generality, we assume that it is even. Indeed, if some 2n+ 1 is odd,
then 2n is even, and ‖(fM)2n+1‖ = ‖(fM)2n‖ +O(1). We denote this even integer by 2n.
With notation from Lemma 4.2, let L = C · log n+ C′. By hypothesis, every (T�,M0)

n has
word norm O(�p) in G�.

First, we use Lemma 5.12 to condition each (T�,M0)
2n to apply only on conveyor belts

of length �. In other words, since M is the symmetrized version of M0, we obtain that
every automorphism

(f(T�,M),len=�)
2n = f(T�,M)2n,len=�
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belongs to G with word norm O(�p), so that we can manage all conveyor belts of length
< 12L with word norm O(L · Lp):

(fM,len<12L)2n =
6L−1∏
�=1

(f(T2�,M),len=2�)
2n

(recall that conveyor belts in �Z are cyclic tapes of even length).
Then, to manage larger conveyor belts, we use what we call the two-scale trick. In the

introductory paragraphs, we mentioned the idea of introducing temporary conveyor belts
to move heads that originally belonged in very large conveyor belts, and then removing the
temporary borders. The difficulty lies in properly removing the temporary conveyor belts
once the machine has been applied. To solve this, we will actually use temporary conveyor
belts twice, with different sizes. We give a visual explanation of this trick in Figure 7.

Define L1 = 4L− 2, L2 = 8L− 2, L3 = 12L− 2. Note that L1 (respectively L2) is
the length of a conveyor belt constructed by fτcb,L↔L (respectivelyt fτcb,2L↔2L) defined in
§5.2.5. Then, let

λn = (fτcb,2L↔2L ◦ (f(TL2,M)n,len=L2) ◦ fτcb,L↔L ◦ (f(TL1,M)n,len=L1)
−1

◦ fτcb,2L↔2L ◦ (f(TL1,M)n,len=L1) ◦ fτcb,L↔L).

Let fi denote the composition of the first i automorphisms on this list, that is, f1 =
fcb,2L↔2L, . . . , f7 = λn. The actions of the inverses of the automorphisms fi are
illustrated in Figure 7 (on a certain subset of configurations).

Then, denote by d ∈ Sym(H) the ducking involution, that is, the involution that
flips ducks d→ and d← in Q = Q0 ×D ×G. Let C ∈ CB be the structural condition
(len ≥ 12L) ∧ (ll ≥ 3L) ∧ (lr ≥ 3L) (see §5.2.1). By Lemmas 5.8, 5.10, and 5.4, the
automorphism fd,C belongs to G with word norm O(L2). Defining

fM,2n,C = (λn)
−1 ◦ (fd,C) ◦ (λn),

we see from Figure 7, reading the successive partial conjugations fd,C
fi top-down, that

fd,C gets conjugated to a map that applies the machine (M)n twice if it is on a conveyor
belt of length ≥ 12L and the head is sufficiently far (that is, at distance at least 3L) from
both its left and right borders; and flips the duck as a side product.

Denoting by Cr the condition (len ≥ 12L) ∧ (ll ≥ 3L) ∧ (lr < 3L) and by Cl the
condition (len ≥ 12L) ∧ (ll < 3L) ∧ (lr ≥ 3L), we can build automorphisms fM,2n,Cr

(respectively fM,2n,Cl ) that manage heads in conveyor belts of size≥ 12L containing heads
at distance less than 3L from their right (respectively left) border.

By a very similar reasoning, fM,2n,Cr , and fM,2n,Cl belong to G∗ with word norm
O(Lp+1 + L2). We need to alter this reasoning only twice: first, instead of using fτcb,�↔�

to create/erase borders both left and right, we use respectively fτcb,�← and fτcb,→� to
create/erase borders only in one direction; second, as the size of the conveyor belt is no
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qd→
←→
f qd←

i i

qd→
←→
f f1

chop at

distance 2L

qd←

i − 2L i + 2L i − 2L i + 2L

Machine runs
backward in time.

Machine runs
forward in time.

q−d→ ←→
move

f f2 q+d←

i − t i + t ′

q−d→ ←→
f f3

chop at

distance L

q+d←

i − t − L i − t + L i + t ′ − L i + t ′ + L

Machine runs
forward in time.

Machine runs
backward in time.

qd→
←→
f f4

move

qd←

qd→
←→
f f5

glue at

distance 2L

qd←

Machine runs
backward in time.

Machine runs
forward in time.

q−d→ ←→
f f6

move

q+d←

i − t i + t ′

q−d→ ←→
f f7

glue at

distance L

q+d←

i − t i + t ′

FIGURE 7. The ‘two-scale trick’. Illustration of the two-scale trick. We show the conveyor belts as lines (without
tape letters). The head may be on either track. The head is in position i in state q initially, was in position i − t

in state q− at time −n, and will be in position i + t ′ in state q+ at time +n. The automorphism f acts trivially
unless we are in the situation of the first line, so the conjugated automorphisms also act non-trivially only in the

shown situation. In particular, f f7 behaves as expected.

longer precisely L1 or L2, but only bounded by L1 or L2, we have to replace occurrences
of (f(T�,M)n,len=�) (for � = L1 or � = L2) in the previous formulas with

�∏
j=1

f(Tj ,M)n,len=j .

In any case, these permutations have disjoint support (because the distance to a
conveyor belt border is checked ‘after n steps of computation’ in the conjugations
λn
−1 ◦ (fd,C) ◦ λn) and word norm O(Lp+1 + L2). We obtain that
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(fM)2n = (fd,len ≥ 12L ◦ fM,2n,Cr ◦ fM,2n,Cl ◦ fM,2n,C) ◦
( 6L−1∏

n=1

(fT�,M,len=2l)
2n

)
,

which concludes the proof.

5.4. Improving the upper bound on SMART. Lemma 5.1 was a general result telling
how finitely distorted machines give rise to distorted automorphisms on full shifts. In the
context of the SMART machine, we provide some additional improvements to get the upper
bound from O(log5 n) to O(log4 n).

These improvements are based on the following idea: the computation of the (T�,S)n
is ‘uniform’ in �, as the kth step of the encoding (from Lemma 4.3) and the kth step of
the addition (from Lemma 4.4) are the same on all conveyor belts of length ≥ k. Thus,
we can compute the action of SMART on all conveyor belts in parallel, improving the
word norm as mentioned. We also make minor optimizations to the alphabet, by joining
the decorations used for the decorated SMART and the decorated automorphism.

All in all, Lemma 5.14 concludes the proof of Theorem A. It also provides a
self-contained result about distortion.

LEMMA 5.14. Let S = (�(o), Q(o), 	(o)) be the original SMART machine introduced in
§3, and define its decorated symmetrized version S = (�, Q, 	) as follows:

� = �(o),

Q =Q(o) ×D ×G,

	 =
⋃
x∈G
{((q, d→, x), a, (q ′, d→, x), b) : (q, a, q ′, b) ∈ 	(o)}

∪ {((q, d→, x), δ, (q ′, d→, x)) : (q, δ, q ′) ∈ 	(o)}
∪

⋃
x∈G
{((q ′, d←, x), b, (q, d←, x), a) : (q, a, q ′, b) ∈ 	(o)}

∪ {((q ′, d←, x), δ, (q, d←, x)) : (q, δ, q ′) ∈ 	(o)},
where D = {d→, d←} and G = �0, 5� � {+1, −1} × �0, 2�; and denote

� = (�2 × {+1, −1}) " ((Q× �)× �) " (� × (Q× �)).

Then (fS)n has word norm O(log4 n) in a finitely generated subgroup G∗ of Aut(�Z).

Proof. Once again, we prove that (fS)n has word norm O(log4 n) in the following
subgroup of Aut(�Z):

G∗ = 〈{f up
g , f down

g , fg : g ∈ Sym(Q× �)}
∪ {ρq | q ∈ Q} ∪ {θ}〉.

We start by explaining the new alphabet. We have dropped the duck {d1, d2} to fuse it
with {d→, d←}. Our assumption in the previous section is that we can efficiently apply
the Turing machine when the duck is d→, while doing nothing on ducks d←, and this is
exactly how the duck was used in §4 (see Lemma 4.5).
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We also have fused the two ghosts: as both ghosts were only used temporarily in our
construction, always returning to their original value after each step of computation, it is
safe to fuse them.

Now we explain the optimization; we only give a high-level explanation, as this is
completely analogous to what was done in the previous section. We only amend the proof
above by proving that both (fM,len<L3)

2n and (fM,len≤L3)
2n have word norm O(L4), as

they are sufficient to manage both small conveyor belts of length < L3 and large conveyor
belts in the two-scale trick.

(1) The encoding (word norm O(L4)). Let F̃ be either F̃init, F̃k→k+1, or F̃�,final, that is,
one of the steps of encoding of S defined in Lemma 4.20. Recall that

F̃ (w) =

⎧⎪⎪⎨
⎪⎪⎩

F(w) if w ∈ C�[d→],

F−1(w) if w ∈ C�[d←],

w otherwise.

As explained in §5.2.4, the generators of G� correspond to generators of G∗, so that F̃

can also be considered as an element f
F̃

of G∗, which acts like F̃ on conveyor belts of
length �, and produces garbage on conveyor belts of length �= �.

The key point of this proof consists in noticing that F̃k→k+1 behaves correctly on
every conveyor belt of length ≥ k + 2, and produces garbage on conveyor belts of length
≤ k + 1.

Recall that each F̃ was a piecewise-defined bijection defined as a product of finitely
many F̃U ,V . Each F̃U ,V was built in Lemma 4.18 by conjugating some conditioned gate
πd,U (d ∈ Sym(H) is the ducking involution, which swaps ducks d→ and d←) with some
automorphism g ∈ G�.

Combining Lemmas 4.7 and 5.2.1, we now condition simultaneously on the content
of the tape (that is, the condition U in the proof of Lemma 4.20) and the structure of
conveyor belts. In other words, for any structural condition C ∈ CB, the automorphism
fd,U∧C belongs to G∗ and we can define

f
F̃U ,V ,C = fg−1 ◦ fd,U∧C ◦ fg

(where fg ∈ G∗ denotes the automorphism g ∈ G� considered as an element of G∗).
Then f

F̃U ,V ,C acts like F̃U ,V on conveyor belts which respect the structural condition C.

And since the word norm of F̃U ,V was already the word norm of g ∈ G�, that is, O(�3), we
obtain that f

F̃U ,V ,C also has word norm O(�3 + T (C)). Composing finitely many of those,

and adding a final fd,C , we obtain automorphisms f
F̃ ,C for F̃ being either F̃init, F̃k→k+1,

or F̃�,final.
Now, we consider the following automorphisms (for 0 ≤ k < L3 − 2):

f
F̃init,len<L3

, f
F̃k→k+1,k+2≤len<L3

, f
F̃�,final,len=�

.

Each of these elements has word norm O(L2
3 + L3

3). Then, define

fencode =
( L3−1∏

�=1

f
F̃�,final,len=�

)
◦

( L3−3∏
k=1

f
F̃k→k+1,k+2≤len<L3

)
◦ f

F̃init,len<L3
.
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The automorphism fencode, which acts on conveyor belts of length < L3 and encodes
SMART configurations with ducks d→ into their correct encoding, and produces garbage
on ducks d←, has word norm O(L4). (A similar automorphism obviously exists for
conveyor belts of length ≤ L3.)

(2) The addition of 2n on ducks d→ (word norm O(L3)). We follow the proof of
Lemma 4.4, which applied the ‘school algorithm’ for additions. The key idea of this proof
is that the j th digit of 2n can be applied with the same automorphism to every conveyor
belt of length ≥ j .

As in the proof of Lemma 4.4, we first manage the addition of 2n modulo 2 · 3�

in every conveyor belt of length � < L3 = 12L− 2 with the school-like algorithm. To
do so, we rely on conditions from Lemma 5.8. To fix notation, for every � < L3, let
k[�] ∈ {1, 2} × {0, 1, 2}� encode 2n mod 2 · 3�.

Let ρd→ =
∏

q∈Q(o)×{d→}×G ρq move heads with duck d→ right. Still denoting by d ∈
Sym(H) the ducking involution and C a condition, the automorphism fd,C ◦ ρ−1

d→ ◦ fd,C ◦
ρd→ moves head in conveyor belts that verify condition C, and heads with duck d→ move
to the right (while heads with duck d← move left). Denote this automorphism ρd→,C .

We now proceed as follows. First, apply (ρd→,len<L3)
−1 to move heads with duck

d→ left, that is, as to go to the last digit of the counter to which we want to add 2n.
Denote by r ′ = (0, 1, 2) ∈ Sym(�) the addition of a single digit, and rd→ = id× {d→} ×
id× r ′ ∈ Sym(H). Then, for 0 ≤ � < L3, we do the following.
(a) Add the second digit of k[�] on the tape in conveyor belts of length � ≤ len < L3:

apply frd→ ,�≤len<L3 if k[�]1 = 1, or frd→ ,�≤len<L3 if k[�]1 = 2.
(b) Perform the carry in conveyor belts of length � ≤ len < L3. Let k′ = k[�]�2,|k|−1� be

the digits of k we want to check an overflow for, and apply frd→ ,(�≤len<L3)∧(<•k′):
this applies the carry if the addition on the cells on the right overflowed.

(c) Add the first digit of k[�] (that is, k[�]0 ∈ {1, 2}) in conveyor belts of length
len = �− 1. Recall that Q(o) = {�, �, �, �} × {1, 2}: denoting b′ = (q, 1)↔
(q, 2) ∈ Sym(Q(o)) and bd→ = b′ × {d→} × id× id ∈ Sym(H), apply fbd→ ,len=�−1

if k[�]0 = 2, and the identity otherwise.
(d) Perform the carry in conveyor belts of length len = �− 1: apply

fbd→ ,(len=�−1)∧(<k[�]�1,|k[�]|−1�), which applies the carry in the state if the addition
on the tape overflowed.

(e) Apply (ρd→,�≤len<L3)
−1 to move heads with duck d→ left (and heads with duck

d← right).
These steps apply the correct addition on heads having duck d = d→. On duck d = d←,

the head simply moves to the right at each step, not modifying anything, until it gets back
to its initial positions. All these steps together have word norm O(L3).

We are left with shifting the tape a times (left or right, depending on the state
{�, �, �, �}), where a = �2n/(2 · 3�)�; and apply a final shift if the addition in the
previous paragraph overflowed. We do so for each length 0 ≤ � < L3 independently.

Let s ∈ Sym(H) be the involution that exchanges states �↔ � and �↔ �. Recall
that ρd→ moves every head with duck d→ to the right, and that pd→ exchanges two
adjacent letters if the head has duck d→: these let us define σd→ =

∏�
i=1 ρd→ ◦ pd→ , the
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left shift of a whole cyclic tape of length � for states in {�, �} × {1, 2} × {d→} ×G. The
automorphism σd→ has word norm O(�).

Denoting by C1 the condition len = � and C2 the overflowing condition (that is, the
lexicographic comparison < k[�]), we successively apply [fs,C1 , (σd→)−a] (of word norm
O(�2)) and [fs,C1∧C2 , (σd→)−1] (of word norm O(�2)).

Let f+2n be the composition of all these steps. Then f+2n performs the addition of 2n

in all the conveyor belts of length < L3 with ducks d→ simultaneously, is the identity on
ducks d←, and has word norm O(L3).

Then, conjugating f+2n by fencode performs (fS)2n on heads with duck d→ on conveyor
belts of length < L3, and is the identity otherwise. Adding the same automorphism
conjugated with fd and composing (for d ∈ Sym(H) the ducking involution), we obtain
(fM,len<L3)

2n with word norm O(L4).
A similar formula exists for (fM,len≤L3)

2n.

Remark 5.15. The word norm of this implementation of (fS)n is O(log n · (ω≤(log n)+
ω+(log n))), where ω≤(N) is the complexity of the lexicographic inequalities on words of
length N, and ω+(N) is the complexity of the ternary addition on words of length N. While
we could not find a way to perform ω+(N) with complexity less than O(N3), it would be
interesting to optimize this specific operation by itself.

6. Corollaries
We prove the other theorems listed in the introduction, all of which are straightforward
corollaries of Theorem A (and its proof).

6.1. Distortion in other subshifts

THEOREM B. Let X be a sofic shift. Then Aut(X) contains a distortion element if and only
if X is uncountable.

Proof. If X is uncountable, then Aut(AZ) ≤ Aut(X) [33, 46]. If X is countable, then
the proof of [49, Proposition 2] shows that every automorphism f ∈ Aut(X) is either
periodic or admits a spaceship, namely a configuration of the form x = ...uuuuvwww...
which is not spatially periodic, and f n(x) = σm(x) for some m �= 0. Clearly this prevents
distortion.

Recall that the lower entropy dimension [37] is

D(X) = lim inf
k→∞

log(log Nk(X))

log k
.

We recall and prove Lemma 1.1 (which was used to prove Theorem C).

LEMMA 6.1. Let X be a subshift with lower entropy dimension less than 1/d. If f ∈
Aut(X) satisfies |f n| = O(logd n), then f is periodic.

Proof. Suppose we have |f n| = O(logd n) for large n. Then the radius of f n is also
O(logd n). It follows that the trace subshift of f has complexity function at most n→
N�C logd n�(X) for some constant C. If f is not of finite order, by the Morse–Hedlund
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theorem, we must have N�C logd n�(X) > n for all n. Substituting �e d
√

n/C� for n, we get

Nn(X) ≥ e
d
√

an for some constant a > 1. Substituting this lower bound into the definition
of lower entropy dimension, we get D(X) ≥ (1/d).

6.2. Distortion in the group of Turing machines. We recall the definition of the group
of Turing machines from [3].

Definition 6.1. Let n ≥ 2 and k ≥ 1. Let Yn be the full shift on n letters, and Xk = {x ∈
{0, 1, ..., k}Z | 0 /∈ {xi , xj } �⇒ i = j}. Then

RTM(n, k) = {f ∈ Aut(Yn ×Xk) | f |Yn×{0Z} = id|Yn×{0Z}}.
THEOREM D. Let n ≥ 2, k ≥ 1. Then the group of Turing machines RTM(n, k) contains a
distortion element; indeed there is a finitely generated subgroup G = 〈F 〉 and an element
f such that |f n|F = O(log4 n).

Proof. We show that it immediately follows from the main theorem that RTM(18, 96) has
a distortion element. We then explain how to conclude this for all RTM(n, k).

Recall that our automorphisms use the alphabet

� = (�2 × {+1, −1}) " ((Q× �)× �) " (� × (Q× �)),

where � = �(o) and Q = Q(o) × {d→, d←} × {+1, −1} × �0, 2�.
We may instead view this as

(�2 × {+1, −1}) " (Q× {↑, ↓} × �2),

by grouping ((Q× �)× �) and (� × (Q× �)) together and replacing the choice with an
arrow from {↑, ↓}. Next, moving {↑, ↓} to the state and dropping {+1, −1} out of it, we
may view this as

(�2 × {+1, −1}) " (Q′ × {+1, −1} × �2),

for a certain set of states Q′ with |Q′| = |Q| = 96.
Consider the sofic subshift Z where a symbol of (Q′ × {+1, −1} × �2) can appear at

most once. We clearly have a conjugacy Z ∼= X96 × Y18, since |�2 × {+1, −1}| = 18.
It is easy to see that all of the generators F defined in Lemma 5.14 fix Z. Furthermore,

our generators only act near the head, so by definition, this restricted action makes them
elements of RTM(18, 96). The element fS coming from the SMART machine clearly has
infinite order, since it acts as the SMART machine on infinite configurations. The word
norm of fS with respect to F of course cannot grow faster after restricting these elements
to an invariant subspace, so we obtain that the subgroup of RTM(18, 96) generated by F
still has a distortion element, and the distortion is at least as bad as on the full shift.

Now, we describe some minor modifications to the main construction that allow to
conclude the result for RTM(n, k). In the construction of the main theorem, in place of
the alphabet recalled above, take any finite set S and use instead

((�2 × {+1, −1}) " S) " (Q′ × ((�2 × {+1, 1}) " S)).
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Imagining elements of S as new empty conveyor belts of size 1, it is clear how most
generators of F should act, as their action is defined by how they act on finite conveyor
belts. The element θ does not respect the conveyor belts, but it is also clear how it should
act (now that we have moved {+1, −1} out of the state onto the tape)—it simply moves all
heads.

Now recall that the only use of θ was to make sure that the automorphisms fτcb,→t

(respectively fτcb,t←) are in our group. These automorphisms apply the involution (+1)↔
(−1) on the sign carried either by �2 × {+1, −1} or by a head, at distance t to the right of
the heads (respectively left of the heads, respectively both left and right of the heads). The
correct extension of these is simply that the flip (+1)↔ (−1) does nothing on symbols
in S. Then θ allows the implementation of natural analogs of the automorphisms fτcb,→t

and fτcb,t← (with the exact same description).
Next, we recall that the automorphisms fτcb,→t are only used ‘through conjugation’, that

is, they are used during the two-scale trick in very specific situations where we already
know the head is on a large conveyor belt, in particular, there are no S-symbols in the
affected part. Thus the proof goes through without any modifications.

The introduction of S with |S| = t changes the group of Turing machines from
RTM(18, 96) to RTM(18+ t , 96), and RTM(18+ t , 96) clearly embeds in RTM(18+
t , 96+ �) for any � ≥ 0 (by behaving as the identity when the head is in one of the �

many new states). In particular, for large enough m, we can pick t , � such that 18+ t = nm

and 96+ � = knm, to get a distortion element in a subgroup of RTM(nm, knm). Finally,
there is an embedding of RTM(nm, knm) into RTM(nm, k), by considering m-blocks of
cells as individual cells, and considering the word on the tape at the origin as part of the
state; and then RTM(nm, k) embeds into RTM(n, k) by moving by m steps at once.

6.3. Distortion in the Brin–Thompson group mV . It was shown by Belk and Bleak
that classical reversible Turing machines embed in the Brin–Thompson group 2V . More
generally, the group of Turing machines embeds in 2V , and indeed this embedding is
entirely transparent. For this, we recall the moving-tape model of Turing machines.

Definition 6.2. Write RTMfix(n, k) for the family of homeomorphisms f : �k�× �n�Z→
�k�× �n�Z such that for some radius r ≥ 1 and local rule floc : {0, 1}r × {0, 1}r × �k�→
{0, 1}∗ × {0, 1}∗ × �k�, we have

f (xu.vy, a) = (xu′.v′y, b) whenever floc(u, v, a) = (u′, v′, b)

and for all u, v, floc(u, v) = (u′, v′, n) satisfies |u′| + |v′| = 2r .

A proof of the following easy fact was outlined in [3]; one simply translates tape shifts
into head movement in the opposite direction.

LEMMA 6.2. The family of homeomorphisms RTMfix(n, k) forms a group under compo-
sition, and there is a canonical group isomorphism RTMfix(n, k) ∼= RTM(n, k).

LEMMA 6.3. The group RTM(n, k) embeds in the Brin–Thompson group mV for all
m ≥ 2, n ≥ 2, k ≥ 1.
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Proof. The group 2V embeds in mV , so it is enough to show this for m = 2. This is very
similar to the proof by Belk and Bleak [5], and was also essentially stated in [3], so we
only outline the proof. First, it is enough to embed RTM(n, 1), since RTM(n, k) embeds
in RTM(n, k + �) for all � ≥ 0, thus in particular in RTM(n, nm) for sufficiently large m,
and this group is isomorphic to RTM(n, 1) (see the end of the proof of Theorem D).

Now pick a complete suffix code C ⊂ {0, 1}∗ of cardinality n, and a complete
prefix code D ∈ {0, 1}∗ of cardinality n. One can uniquely parse any x.y ∈ {0, 1}Z
as · · · u−2u−1.v0v1v2 · · · with u−i ∈ C, vi ∈ D for all applicable i, which gives a
homeomorphism φ : {0, 1}Z→ �n�Z. For g ∈ RTM(n, 1), the map gφ is easily seen to
be in 2V , so this gives a group-theoretic embedding of RTM(n, 1) into 2V .

Dynamically, the proof gives a topological conjugacy between the natural action of
RTM(n, 1) and the natural action of the subgroup of 2V that respects the encoding.

THEOREM E. The Brin–Thompson group mV contains a distortion element; indeed there
is an element f such that |f n| = O(log4 n).

Proof. The embedding of the group RTM(n, k) in particular embeds the group where we
constructed a distortion element. Adding the finite generating set of mV clearly cannot
make the element less distorted.

7. Open questions
Question 7.1. Are there ever distortion elements in Aut(X) for X a minimal subshift? What
about X of zero entropy?

Minimal subshifts are interesting, because at present, we do not know any restrictions
on their automorphism groups, yet all known examples are locally virtually abelian.
Zero entropy is interesting because on the one hand, there are many known examples
of interesting behaviors in their automorphism groups, but [17] shows that exponential
distortion is impossible.

Next, it seems worth recalling the remaining parts of [17, Questions 5.1–5.3].

Question 7.2. Are there more natural (in terms of the group structure) subgroups having
distortion elements in Aut(AZ), or even in Aut(X), where X ⊂ AG is an arbitrary subshift
on an abelian group G? For example, can we embed the Heisenberg group (or more
generally SL(3, Z)), or the Baumslag–Solitar group BS(1, n)?

The Heisenberg group was originally asked about in [33] (though not explicitly due
to distortion concerns). One important note about this group is that every (infinite f.g.
torsion-free non-abelian) nilpotent group contains a copy of it. Nilpotent groups are
considered some of the simplest (in the non-technical sense) kinds of infinite groups after
abelian groups; in the case of automorphism groups of subshifts, we can implement a wide
variety of behaviors, yet embeddability of nilpotent groups remains a mystery.

Embedding the Baumslag–Solitar group is the same as finding an element of infinite
order that is conjugate to a higher power of itself. We believe the SMART machine does
not have this property (before or after an embedding into Aut(AZ)), but we have not
proved this.
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A slightly more abstract question of interest is whether there exists an amenable
subgroup of the automorphism group of a subshift which has distortion elements. One
thing amenability rules out is groups that are too large, for example, f.g.-universal
subgroups. The Heisenberg group and BS(1, n) are of course amenable (even solvable).

Question 7.3. Can a one-sided subshift have distortion elements in its automorphism
group? Does Aut(AN) have distortion elements?

Note that Aut(AN) is simply the subgroup of Aut(AZ) consisting of automorphisms f

such that both f and f−1 have ‘one-sided radius’, that is, f (x)i , f−1(x)i depend only on
x�i,i+r� for some r . We do not even know whether one-sided automorphisms of subshifts
can have sublinear radius growth.

As mentioned in the introduction, the true word norm growth of our automorphism is
between �(log n) and O(log4 n). It would be of great interest to pinpoint the growth up
to a multiplicative constant for our automorphism, or for any other automorphism with
sublinear growth.

Question 7.4. What are the distortion functions (word norm growth rates) of elements of
Aut(AZ) (or Aut(X) for more general subshifts)?

Of course, in the case of a non-finitely generated group like Aut(AZ), the distortion
function depends on the finite generating set chosen. While it is of interest to implement
distortion functions with respect to subgroups, a more natural object to consider is the
directed set of distortion functions with increasing generating sets, and especially the
eventual behavior as the generating set increases.

Similar questions can be asked about groups of Turing machines and the Brin–Thompson
2V , where we also exhibit elements whose word norm grows polylogarithmically, but have
no further control on the distortion.

A natural idea for getting control over the distortion function would be to use, in place
of SMART, a general-purpose Turing machine, which is made to have sublinear movement
using the reversible Hooper trick from [32] (and finally embedded in some natural way into
the automorphism group of a subshift). It is known that this construction always produces
Turing machines with zero Lyapunov exponents, that is, with sublinear movement [28, 31].

Question 7.5. Does the Kari–Ollinger construction in [32] always produce distortion
elements?
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