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Abstract
We apply Angehrn-Siu-Helmke’s method to estimate basepoint freeness thresholds of higher dimensional polarized
abelian varieties. We showed that a conjecture of Caucci holds for very general polarized abelian varieties in the
moduli spaces𝒜𝑔,𝑙 with only finitely many possible exceptions of primitive polarization types l in each dimension g.
We improved the bound of basepoint freeness thresholds of any polarized abelian 4-folds and simple abelian 5-folds.

1. Introduction

We work over the field of complex numbers throughout this paper.
Syzygies of abelian varieties have attracted lots of attention in recent years. Recall the following

question asked by Ito for 𝑝 ≥ 0 and by Lozovanu for 𝑝 = −1 as well (see [Ito1] and [Loz]).

Conjecture 1.1. Let (𝐴, 𝐿) be a polarized abelian variety of dimension g and 𝑝 ≥ −1 an integer. If
(𝐿𝑔) > (𝑔(𝑝 + 2)))𝑔 and (𝐿𝑑 · 𝐵) > (𝑑 (𝑝 + 2))𝑑 for any abelian subvariety B of A of dimension
0 < 𝑑 < 𝑔, then L satisfies Property (𝑁𝑝).

We summarize recent progress towards this conjecture.

1.1. Q-twisted sheaves

Given a coherent sheaf ℱ on A and a rational number 𝑡 ∈ Q, following [JP], we formally define the
Q-twisted sheaves ℱ〈𝑡𝐿〉. We say that ℱ〈𝑡𝐿〉 is IT0 if the i-th cohomological support loci 𝑉 𝑖 (𝜇∗𝑏ℱ ⊗
𝐿⊗𝑏2𝑡 ) is empty for each 𝑖 > 0, where b is an integer such that 𝑏2𝑡 ∈ Z. Note that this definition does
not depend on the choice of b. Assume that D is an effective Q-divisor on A such that D is Q-equivalent
to 𝑡𝐿. We will also write ℱ〈𝐷〉 = ℱ〈𝑡𝐿〉.

Similarly, we say that ℱ〈𝑡𝐿〉 is M-regular (resp. GV) if

codimPic0 (𝐴) 𝑉
𝑖 (𝜇∗𝑏ℱ ⊗ 𝐿⊗(𝑏2𝑡) ) > 𝑖

(resp. codimPic0 (𝐴) 𝑉
𝑖 (𝜇∗𝑏ℱ ⊗ 𝐿⊗(𝑏2𝑡) ) ≥ 𝑖) for all 𝑖 > 0. We can similarly define the cohomology ranks

of ℱ〈𝑡𝐿〉:

ℎ𝑖 (𝐴,ℱ〈𝑡𝐿〉) :=
1

𝑏2 dim 𝐴
ℎ𝑖 (𝐴, 𝜇∗𝑏ℱ ⊗ 𝐿⊗𝑏2𝑡 ⊗ 𝑄),

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2023.34 Published online by Cambridge University Press

doi:10.1017/fms.2023.34
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2023.34&domain=pdf
https://doi.org/10.1017/fms.2023.34


2 Z. Jiang

where𝑄 ∈ Pic0 (𝐴) is general. The main result of [JP] says that the function 𝑡 → ℎ𝑖 (𝐴,ℱ〈𝑡𝐿〉) is locally
polynomial on a left or right neighborhood of a rational number and can be extended to a continuous
function from R to R. We call this function the i-th cohomological rank function of ℱ and denote it by
ℎ𝑖
ℱ,𝐿 (𝑡).

Let ℐ𝑜 be the ideal sheaf of the neutral element o of A. The basepoint freeness threshold 𝛽(𝐿) is
defined to be

𝛽(𝐿) := inf{𝑡 ∈ Q | ℐ𝑜 〈𝑡𝐿〉 is IT0}.

By the main theorem of [Hac], 𝛽(𝐿) is also equal to

inf{𝑡 ∈ Q | ℐ𝑜 〈𝑡𝐿〉 is GV}.

It was observed in [JP] that 𝛽(𝐿) ≤ 1 and equality holds iff |𝐿 | has a basepoint. This shows that 𝛽(𝐿)
may vary in families. More generally, if for some rational number 𝑡 = 𝑎

𝑏 , 𝑉 𝑖 (𝜇∗𝑏ℐ𝑜 ⊗ 𝐿⊗(𝑎𝑏) ) is a
nonempty proper subset of Pic0 (𝐴), 𝛽(𝐿) = 𝑡. However, there is, by far, no general way to determine
𝛽(𝐿). It is also not clear whether or not 𝛽(𝐿) is always a rational number.

By [JP, Section 8] and [C, Theorem 1.1], knowing the exact number of the basepoint freeness
threshold 𝛽(𝐿) helps to understand the syzygies of L.

Theorem 1.2. For 𝑝 ≥ −1, if 𝛽(𝐿) < 1
𝑝+2 , L satisfies Property (𝑁𝑝).

Remark 1.3. Ito refined this criteria in [Ito4, Theorem 1.5] by showing that if ℐ𝑜〈 1
𝑝+2𝐿〉 is M-regular

for some integer 𝑝 > 0, L satisfies Property (𝑁𝑝).

Caucci then asked the following question, which would imply Conjecture 1.1.

Conjecture 1.4. Let (𝐴, 𝐿) be a polarized abelian variety of dimension g and 𝑝 ≥ −1 an integer. If
(𝐿𝑔) > (𝑔(𝑝 + 2)))𝑔 and (𝐿𝑑 · 𝐵) > (𝑑 (𝑝 + 2))𝑑 for any abelian subvariety B of A of dimension
0 < 𝑑 < 𝑔, then 𝛽(𝐿) < 1

𝑝+2 .

1.2. Known results

By Theorem 1.2, in order to solve Conjecture 1.1 and Conjecture 1.4, it suffices to prove that

𝛽(𝐿) ≤ 𝑛(𝐿) := (1)

inf{ 𝑑
𝑑
√
(𝐿𝑑 · 𝐵)

| 𝐵 is an abelian subvariety of dimension 1 ≤ 𝑑 ≤ 𝑔}.

There are various ways to estimate 𝛽(𝐿). In [Ito2], Ito showed that the Angehrn-Siu method (see [AS,
Hel, K]), which was initially applied to attack Fujita’s basepoint-freeness conjecture, can also be used
to estimate 𝛽(𝐿). To be more precise, let

𝑟 ′(𝐿) := inf{𝑡 ∈ Q | there exists a Q-divisor 𝐷 ∼Q 𝑡𝐿
such that 𝑜 is an isolated component of Nklt(𝐴, 𝐷)},

where the non-klt locus Nklt(𝐴, 𝐷) is the subscheme of A defined by the multiplier ideal 𝒥(𝐴, 𝐷)
(see, for instance, [Laz2, Section 9 and 10]). Ito proved in [Ito2] that we always have 𝛽(𝐿) ≤ 𝑟 ′(𝐿),
𝑟 ′(𝐿) ≤ 𝑛(𝐿) when (𝐴, 𝐿) is a polarized simple abelian 3-fold, and Conjecture 1.1 and Conjecture 1.4
hold for any polarized abelian 3-fold.

In higher dimensions, we have proved in [Jz] via generic vanishing that 𝛽(𝐿) ≤ 2𝑛(𝐿). This implies
that given a polarized abelian variety (𝐴, 𝐿), if (𝐿𝑑 · 𝐵) > (2(𝑝 + 2)𝑑)𝑑 for any abelian subvariety B of
dimension 1 ≤ 𝑑 ≤ 𝑔, L satisfies Property (𝑁𝑝).
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Based on Bridgeland’s stability condition on surfaces, Lahoz-Rojas [LR] and Rojas [R] almost
determined the cohomological rank functions ℎ𝑖

ℐ𝑜 ,𝐿
for any polarized abelian surface (𝐴, 𝐿) of Picard

number 1. When L is of polarization type (1, 𝑑), Rojas proved that 𝛽(𝐿) = 1√
𝑑

when d is a perfect square

or 𝛽(𝐿) = 2𝑦
𝑥−1 where (𝑥, 𝑦) is the minimal or the second minimal positive solution of the Pell’s equation

𝑋2 − 4𝑑𝑌2 = 1 when d is not a perfect square. In either case, we have 𝛽(𝐿) <
√
𝑑+1
𝑑 <

√
2√
𝑑
= 𝑛(𝐿) when

𝑑 ≥ 6.
Via a degeneration method, Ito studied in [Ito3] the syzygies of general polarized abelian varieties

of type (1, . . . , 1, 𝑑). He proved that when 𝑑 ≥ (𝑝+2)𝑔+1−1
𝑝+1 , L satisfies Property (𝑁𝑝).

Inspired by the results of Ito and Rojas, one may believe that 𝛽(𝐿) should be quite close to
1

𝑔
√
ℎ0 (𝐴, 𝐿)

=
𝑔
√
𝑔!

𝑔
√
(𝐿𝑔)

for general polarized abelian variety (𝐴, 𝐿) of dimension g.

1.3. Main results

In this paper, we follow Ito’s approach to apply the Angehrn-Siu method to estimate 𝛽(𝐿) for polarized
abelian varieties. We improve the known upper bounds for 𝛽(𝐿) for higher dimensional polarized abelian
varieties.

We denote, respectively, by g and l the dimension and the polarization type of a polarized abelian
variety (𝐴, 𝐿). There is a quasi-projective variety 𝒜𝑔,𝑙 parametrizing such polarized abelian varieties.
We may assume that l is primitive.

Theorem 1.5. Let (𝐴, 𝐿) be a very general polarized abelian variety in 𝒜𝑔,𝑙 . When 𝑔 = 4 or 5 or 6, we
have 𝛽(𝐿) ≤ 𝑛(𝐿). When 𝑔 ≥ 7, we also have 𝛽(𝐿) ≤ 𝑛(𝐿), except for possibly finitely many primitive
polarization types l in each dimension g.

Theorem 1.6. Let (𝐴, 𝐿) be a polarized abelian 4-fold. Assume that (𝐿4) > ((2 + 4√
3
) (𝑝 + 2))4 and

(𝐿𝑑 · 𝐵) > ((𝑝 + 2)𝑑)𝑑 for any abelian subvariety B of dimension 1 ≤ 𝑑 ≤ 3. Then, 𝛽(𝐿) < 1
𝑝+2 .

Remark 1.7. Note that 2 + 4√
3
≈ 4.31. Thus, Theorem 1.6 is quite close to Conjecture 1.4 for abelian

4-folds.

Theorem 1.8. Let (𝐴, 𝐿) be a polarized abelian 5-fold. Assume that A is simple and (𝐿5) > (8(𝑝+2))5.
Then, 𝛽(𝐿) < 1

𝑝+2 .

In higher dimensions, we also have slight improvements of 𝛽(𝐿). For 𝑔 ≥ 6, we define 𝛼𝑔,𝑔−2 =
𝑔−2
√

15(𝑔−3)!
𝑔−1 , 𝛼𝑔,2 =

√
5(𝑔−2)+1
𝑔−1 . For 3 ≤ 𝑑 ≤ 𝑔 − 3,

𝛼𝑔,𝑑 = 𝑑

√√√ 5
2𝑑!(𝑔 − 𝑑)(𝑔−1

𝑔−𝑑
) ,

and let

𝛼𝑔 := min{𝛼𝑔,𝑑 | 2 ≤ 𝑑 ≤ 𝑔 − 2}.

Theorem 1.9. Let (𝐴, 𝐿) be a polarized abelian variety of dimension 𝑔 ≥ 6. Assume that A is simple
and (𝐿𝑔) > ((2𝑔 − 𝛼𝑔) (𝑝 + 2))𝑔, 𝛽(𝐿) < 1

𝑝+2 .

Note that 𝛼6 = 𝛼6,3 = 3
√

9
2 , 𝛼7 = 𝛼7,3 = 3√4, 𝛼8 = 𝛼8,3 = 3

√
25
7 .
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2. Preliminaries

2.1. Log canonical centers

Let X be a smooth projective variety and Δ be an effective Q-divisor on X. We take 𝜇 : 𝑌 → 𝑋 a log
resolution of (𝑋,Δ), and we write

𝐾𝑌 = 𝜇∗(𝐾𝑋 + Δ) +
∑
𝐸

𝑎(𝐸, 𝑋,Δ)𝐸,

where E runs through prime divisors of Y and 𝜇∗(
∑
𝐸 𝑎(𝐸, 𝑋,Δ)𝐸) = −Δ .

We say that (𝑋,Δ) is log canonical at x if 𝑎(𝐸, 𝑋,Δ) ≥ −1 for all prime divisors E on Y such that
𝑥 ∈ 𝜇(𝐸). For a prime divisor E on Y, if (𝑋,Δ) is log canonical at the generic point of 𝜇(𝐸) and the
discrepancy 𝑎(𝐸, 𝑋,Δ) = −1, we call 𝜇(𝐸) a log canonical center of (𝑋,Δ).

When (𝑋,Δ) is log canonical at x, there are finitely many log canonical centers containing x, and the
intersection of two such log canonical centers is the union of certain log canonical centers containing
x (see, for instance, [K, Proposition 1.5] or [F, Theorem 9.1]). Thus, there exists a unique minimal log
canonical center Z of (𝑋,Δ) through x. Moreover, Z is normal and has rational singularities around x.
More precisely, locally around x, there exists a Q-effective divisor Δ𝑍 such that (𝑍,Δ𝑍 ) is klt (see,
for instance, [FG, Theorem 7.1]). However, the singularities of Z away from x cannot be controlled in
general. The following result due to Xiaodong Jiang from [Jx, Proposition 5.1] will be applied later.

Proposition 2.1. Let X be a smooth projective variety and Δ an effective Q-divisor on X with Z a log
canonical center of (𝑋,Δ) 1. Let 𝜈 : 𝑍 → 𝑍 be the normalization. Then, there exists an effective
Q-divisor Δ𝑍 on 𝑍 such that 𝜈∗(𝐾𝑋 + Δ) ∼Q 𝐾𝑍 + Δ𝑍 .

We then have the immediate corollary.

Corollary 2.2. Under the above assumption, we have

vol(𝑍, (𝐾𝑋 + Δ) |𝑍 ) = vol(𝑍, 𝐾𝑍 + Δ𝑍 ) ≥ vol(𝑍 ′, 𝐾𝑍 ′ ),

where 𝑍 ′ is any Q-Gorenstein partial resolution of 𝑍 .

Proof. Let 𝜌 : 𝑍 ′ → 𝑍 be a Q-Gorenstein partial resolution and let 𝜇 : 𝑍 𝜎−→ 𝑍 ′ 𝜌
−→ 𝑍 be a

log resolution of (𝑍,Δ𝑍 ). Let Δ𝑍 = 𝜇−1
∗ (Δ𝑍 ). We then have 𝐾𝑍 + Δ𝑍 + 𝐸1 = 𝜇∗(𝐾𝑍 + Δ𝑍 ) + 𝐸2

and 𝐾𝑍 + 𝐸3 = 𝜎∗𝐾𝑍 ′ + 𝐸4, where 𝐸𝑖 are Q-effective 𝜇-exceptional divisors for 1 ≤ 𝑖 ≤ 4. Thus,
vol(𝑍, 𝐾𝑍 + Δ𝑍 ) = vol(𝑍, 𝜇∗(𝐾𝑍 + Δ𝑍 ) + 𝐸2 + 𝐸3) = vol(𝑍, 𝐾𝑍 + Δ𝑍 + 𝐸1 + 𝐸3) ≥ vol(𝑍 ′, 𝐾𝑍 ′ ). �

The reason that we are interested to know the lower bound of the restricted volume is that we like to
apply Helmke’s induction to cut down log canonical centers.

We briefly recall Helmke’s work [Hel]. Let D be an ample effective Q-divisor on a smooth projective
variety X of dimension n. We assume that 𝑥 ∈ 𝐷 and mult𝑥𝐷 = 𝑚 > 0. Let 𝑐 := lct(𝐷, 𝑥) be the
log canonical threshold of D at x; namely, c is the maximal rational number such that (𝑋, 𝑐𝐷) is log
canonical at x. Let Z be the minimal log canonical center of (𝑋, 𝑐𝐷) through x and denote 𝑑 = dim 𝑍 .
Helmke and Ein independently introduced the local discrepancy2 𝑏𝑥 (𝑋, 𝑐𝐷) of (𝑋, 𝑐𝐷) at x, which is
the rational number

max{mult𝑥𝐸 | 𝐸 is an effective Q-divisor
such that (𝑋, 𝑐𝐷 + 𝐸) is log canonical at 𝑥}.

1Note that the notion of a pure log canonical center in [Jx] coincides with the notion of a log canonical center here.
2This is called the deficit of (𝑋, 𝑐𝐷) at x in [E] and [YZ].
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It is known that 0 ≤ 𝑏𝑥 (𝑋, 𝑐𝐷) ≤ 𝑛 − 𝑐𝑚, 𝑏𝑥 (𝑋, 𝑐𝐷) ≤ 𝑑 and 𝑏𝑥 (𝑋, 𝑐𝐷) = 0 iff 𝑍 = {𝑥} (see [Hel]
and [E]).

Helmke’s induction can be summarized as follows (see [Hel, Proposition 3.2 and Theorem 4.3]).

Proposition 2.3. Under the above assumption, assume that 𝑐 < 1.

(1) If (𝐷dim 𝑍 · 𝑍) > ( 𝑏𝑥 (𝑋,𝑐𝐷)
1−𝑐 )dim 𝑍mult𝑥𝑍 , there exists a rational number 0 < 𝑐′ < 1− 𝑐, an effective

Q-divisor 𝐷 ′ ∼Q 𝑐′𝐷, such that (𝑋, 𝑐𝐷 + 𝐷 ′) is log canonical at x and the minimal log canonical
center 𝑍 ′ of (𝑋, 𝑐𝐷 + 𝐷 ′) through x is a proper subset of Z.

(2) If 𝑚 ≥ 𝑛, let 𝑐1 = 𝑐 + 𝑐′ and 𝐷1 = 𝑐𝐷 + 𝐷 ′. Then, 𝑏𝑥 (𝑋,𝐷1)
1−𝑐1

< 𝑏𝑥 (𝑋,𝑐𝐷)
1−𝑐 ≤ 𝑛.

(3) mult𝑥𝑍 ≤
(𝑛−�𝑏𝑥 (𝑋,𝑐𝐷) �

𝑛−𝑑
)
.

Remark 2.4. Let (𝐴, 𝐿) be a polarized abelian variety. Assume that an effective Q-divisor 𝐷 ∼Q 𝑡𝐿
such that (𝑋, 𝐷) is log canonical around the neutral element o, and Z is the minimal log canonical
center through o. Choose an integer 𝑚 ≥ 1 such that ℐ𝑍 ⊗ 𝐿⊗𝑚 is globally generated. Then, by
a standard argument (see, for instance, [K, Proposition 2.3]), we know that for a small perturbation
𝐷 ′ = (1 − 𝜖)𝐷 + 𝜂𝐻 of D, where 0 < 𝜖, 𝜂 � 1 and 𝐻 ∈ |ℐ𝑍 ⊗ 𝐿⊗𝑚 | general, Z is an irreducible
component of Nklt(𝐴, 𝐷 ′). In particular, if 𝑍 = {𝑜}, we have 𝛽(𝐿) ≤ 𝑟 ′(𝐿) ≤ 𝑡. When Z is an abelian
subvariety of A and 𝛽(𝐿 |𝑍 ) ≤ 𝑡, we also have 𝛽(𝐿) ≤ 𝑡 by Ito’s work [Ito2, Proposition 6.6].

2.2. A generic vanishing approach

We recall some results from [Jz].

Lemma 2.5. Let (𝐴, 𝐿) be a polarized abelian variety. Assume that 𝐷 ∼Q 𝑡𝐿 is an effective Q-divisor
such that there exists an effective divisor 𝐻 � 𝐷. Then, ℐ𝐾 〈𝑡𝐿〉 is GV, where K is the neutral component
of the kernel of the morphism

𝜑𝐻 : 𝐴→ Pic0(𝐴)
𝑥 → 𝑡∗𝑥𝒪𝐴(𝐻) ⊗ 𝒪𝐴(−𝐻).

In particular, when H is ample, ℐ𝑜〈𝑡𝐿〉 is GV and thus, 𝛽(𝐿) ≤ 𝑡.

Proof. This follows directly from the proof of (1) of [Jz, Proposition 4.1]. �

The following theorem is essentially the main result of [Jz].

Theorem 2.6. Let (𝐴, 𝐿) be a polarized abelian variety. Assume that

◦ there exists an irreducible normal subvariety Z of A such that ℐ𝑍 〈𝑡0𝐿〉 is IT0 for some positive
rational number 𝑡0 and a smooth model of Z is of general type;

◦ and there exists an effectiveQ-Weil divisor 𝐷𝑍 on Z and a bigQ-Cartier divisor𝑉𝑍 such that𝐾𝑍 +𝐷𝑍

is Q-Cartier and 𝑡0𝐿 |𝑍 ∼Q 2(𝐾𝑍 + 𝐷𝑍 ) +𝑉𝑍 .

We have 𝛽(𝐿) ≤ 𝑡0.

Since [Jz, Theorem 1.4] is not stated in this way, let’s briefly recall the proof for the readers’
convenience.

Proof. It suffices to show that ℐ0〈𝑡0𝐿〉 is GV. After a translation, we may assume that 𝑜 ∈ 𝑍 is a smooth
point of Z. We have the short exact sequence

0 → ℐ𝑍 → ℐ𝑜 → ℐ𝑜,𝑍 → 0.

By the first condition, it suffices to show that ℐ𝑜,𝑍 〈𝑡0𝐿〉 is GV.
We may also assume that Z is smooth (one may check [Jz, Subsection 5.1] for the full argument).

Then, since Z is of general type, 𝜔𝑍 ⊗ℐ𝑜,𝑍 is GV (see [Jz, Lemma 2.6]). Then, one can take an integer
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M sufficiently divisible such that 𝑀𝑡0 ∈ Z and consider the multiplication-by-M map 𝜋𝑀 : 𝐴 → 𝐴
and denote by 𝑍𝑀 the inverse image 𝜋−1

𝑀 (𝑍). By the second condition, 𝒪𝑍𝑀 (𝑀2𝑡0𝐿 − 𝐾𝑍𝑀 ) has a
nontrivial section s. Indeed, the second condition implies that 𝑀2𝑡0𝐿 |𝑍𝑀 − 𝐾𝑍𝑀 is Q-equivalent to the
sum of 𝐾𝑍𝑀 and a big divisor, and one can conclude by Nadel’s vanishing and generic vanishing that
𝑀2𝑡0𝐿 |𝑍𝑀 − 𝐾𝑍𝑀 has a global section.3

Via this section, we have a short exact sequence

0 → 𝐾𝑍𝑀
·𝑠−→ 𝒪𝑍𝑀 (𝑀2𝑡0𝐿) → 𝒬 → 0.

We then check that all terms in this short exact sequence are GV. We may assume that the zero locus of
s does not intersect with 𝑜𝑀 := 𝜋−1

𝑀 (𝑜). Then, we have another short exact sequence

0 → ℐ𝑜𝑀 ⊗ 𝐾𝑍𝑀
·𝑠−→ ℐ𝑜𝑀 ⊗ 𝒪𝑍𝑀 (𝑀2𝑡0𝐿) → 𝒬 → 0.

Note that ℐ𝑜𝑀 ⊗ 𝐾𝑍𝑀 = 𝜋∗𝑀 (ℐ𝑜 ⊗ 𝐾𝑍 ) is GV. Hence, ℐ𝑜𝑀 ⊗ 𝒪𝑍𝑀 (𝑀2𝑡0𝐿) is also GV. This implies
that ℐ𝑜,𝑍 〈𝑡0𝐿〉 is GV. �

We shall apply Theorem 2.6 in the following way.

Proposition 2.7. Let (𝐴, 𝐿) be a polarized simple abelian variety. Assume that an effective Q-divisor
𝐷 ∼Q 𝑡0𝐿 and lct(𝐷, 𝑜) < 1

2 . Then, 𝛽(𝐿) ≤ 2lct(𝐷, 𝑜)𝑡0 < 𝑡0.

Proof. We take 𝑐 = lct(𝐷) the global log canonical threshold of D (i.e., c is the maximal rational
number such that (𝐴, 𝑐𝐷) is a log canonical pair). Then, 𝑐 ≤ lct(𝐷, 𝑜) < 1

2 . After a small perturbation
of 𝑐𝐷 and taking a translation, we may assume that the log canonical pair (𝐴, 𝑐𝐷) has only one log
canonical center Z, which is thus an irreducible normal subvariety of A and 𝑜 ∈ 𝑍 . Therefore, the
multiplier ideal sheaf 𝒥(𝐴, 𝑐𝐷) = ℐ𝑍 , and by Nadel’s vanishing, we have ℐ𝑍 〈2𝑐𝑡0𝐿〉 is IT0. Since A
is simple, a smooth model of Z is of general type.

However, by the main theorem of [FG], we know that there exists an effective Q-Weil divisor 𝐷𝑍 on
Z such that 𝐾𝑍 + 𝐷𝑍 is Q-Cartier and 𝑐𝐷 |𝑍 ∼Q 𝐾𝑍 + 𝐷𝑍 . Thus, for any rational number 0 < 𝜖 � 1,
(2𝑐𝑡0 + 𝜖)𝐿 |𝑍 ∼Q 2(𝐾𝑍 + 𝐷𝑍 ) + 𝜖𝐿 |𝑍 . Therefore, by Theorem 2.6, 𝛽(𝐿) ≤ 2𝑐𝑡0 + 𝜖 for any rational
number 0 < 𝜖 � 1. We then have 𝛽(𝐿) ≤ 2lct(𝐷, 𝑜)𝑡0 < 𝑡0. �

2.3. Canonical volumes of subvarieties of abelian varieties

Barja, Pardini and Stoppino studied higher dimensional Severi type inequalities for varieties of maximal
Albanese dimension in [BPS]. One of their main results is the following (see [BPS, Corollary 6.12]).

Theorem 2.8. Let 𝑎 : 𝑋 → 𝐴 be a morphism from a smooth projective variety of general type
of dimension 𝑑 ≥ 2 to an abelian variety A. Assume that 𝑎 : 𝑋 → 𝑎(𝑋) is of degree 1. Then,
vol(𝐾𝑋 ) ≥ 5

2𝑑!𝜒(𝜔𝑋 ).

However, Pareschi and Popa generalized the Castelnuovo-De Franchis inequality in [PP]. The fol-
lowing result is a simple corollary of [PP, Theorem 3.3].

Theorem 2.9. Let 𝑎 : 𝑋 → 𝐴 be a morphism from a smooth projective variety of general type of
dimension 𝑑 ≥ 2 to an abelian variety A of dimension g. Assume that A is simple and a is generically
finite from X onto its image. Then, 𝜒(𝜔𝑋 ) ≥ 𝑔 − 𝑑.

Proof. Since a is generically finite onto its image, we have

𝜒(𝜔𝑋 ) = 𝜒(𝑎∗𝜔𝑋 ),

3Without the coefficient 2 in the second condition, we only know that 𝑀2𝑡0𝐿 |𝑍𝑀 − 𝐾𝑍𝑀 is Q-equivalent to an effective
divisor, and this does not imply that the line bundle 𝑀2𝑡0𝐿 |𝑍𝑀 − 𝐾𝑍𝑀 has a global section.
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and for each 𝑖 ≥ 0,

𝑉 𝑖 (𝜔𝑋 , 𝑎) := {𝑃 ∈ Pic0 (𝐴) | 𝐻𝑖 (𝑋, 𝜔𝑋 ⊗ 𝑎∗𝑃) ≠ 0} = 𝑉 𝑖 (𝑎∗𝜔𝑋 )

by Grauert-Riemenschneider vanishing (see for instance [Laz1, Theorem 4.3.9]. In particular, each
irreducible component of 𝑉 𝑖 (𝑎∗𝜔𝑋 ) is a translation of an abelian subvariety of Pic0(𝐴) by the main
result of [GL].

However, by the main result of [Hac], 𝑎∗𝜔𝑋 is GV. Thus, 𝑉 𝑖 (𝑎∗𝜔𝑋 ) is a union of translations of
proper abelian subvariety of Pic0 (𝐴) for each 𝑖 ≥ 1. Since A is simple by assumption, so is Pic0(𝐴).
Thus, 𝑉 𝑖 (𝑎∗𝜔𝑋 ) consists of finitely many points for each 𝑖 ≥ 1. In particular, the neutral element 𝒪𝐴
is an isolated component of 𝑉 𝑖 (𝑎∗𝜔𝑋 ) for each 𝑖 ≥ 1. According to [PP, Definition 3.1], the generic
vanishing index of 𝑎∗𝜔𝑋 is 𝑔 − 𝑑. By [PP, Theorem 3.3], we have 𝜒(𝜔𝑋 ) = 𝜒(𝑎∗𝜔𝑋 ) ≥ 𝑔 − 𝑑. �

Remark 2.10. In [LP], Lazarsfeld and Popa conjectured that under that assumption of Theorem 2.9,
𝜒(𝜔𝑋 ) > 𝑔 − 𝑑 when g is large compared to 𝜒(𝜔𝑋 ). Coandă verified that 𝜒(𝜔𝑋 ) ≥ 3 when 𝑔 ≥ 5 and
𝑔 − 𝑑 = 2 ([LP, Proposition 4.10])

Combining Theorem 2.8 and 2.9, we have an estimation of the canonical volume of irreducible
subvarieties of simple abelian varieties.

Corollary 2.11. Let Z be an irreducible subvariety of dimension d of a simple abelian variety A of
dimension g. Let 𝜌 : 𝑋 → 𝑍 be a desingularization. Then, vol(𝐾𝑋 ) ≥ 5

2𝑑!(𝑔 − 𝑑).

When X is a surface, we can slightly improve Theorem 2.8.

Proposition 2.12. Let 𝑎 : 𝑆 → 𝐴 be a morphism from a smooth projective surface of general type
to an abelian variety A of dimension 𝑔 ≥ 3. Assume that 𝑎 : 𝑆 → 𝑎(𝑆) is of degree 1. Then,
vol(𝐾𝑆) ≥ 5𝜒(𝜔𝑆) + 1.

Proof. We follow the proof of [BPS, Theorem 5.5 and Corollary 5.6], where it was proved that
vol(𝐾𝑆) ≥ 5𝜒(𝜔𝑆). It suffices to show that the equality can never hold.

We may assume that S is minimal and 𝑎∗ : Pic0(𝐴) → Pic0 (𝑆) is injective.
Fix an ample divisor H on A. Following [BPS], we consider the continuous rank functions: 𝐹 (𝑡) :=

ℎ0
𝑎 (𝐴, 𝑎∗𝜔𝑆 ⊗ 𝐻𝑡 ) and 𝐺 (𝑡) := ℎ0

𝑎 (𝐴, 𝑎∗(𝜔⊗2
𝑆 ) ⊗ 𝐻2𝑡 ). By definition, continuous rank functions are

the 0-th cohomological rank functions. Thus, in our terminology, 𝐹 (𝑡) = ℎ0
𝑎∗𝜔𝑆 ,𝐻

(𝑡) and 𝐺 (𝑡) =

ℎ0
𝑎∗ (𝜔⊗2

𝑆
) ,𝐻

(2𝑡).

Following the proof in [BPS, Theorem 5.5], we know that 𝐷−1𝐺 (𝑡) ≥ 6𝐷−1𝐹 (𝑡) for 𝑡 ≤ 0, where
𝐷−1𝐺 (𝑡) and 𝐷−1𝐹 (𝑡) are, respectively, the left derivative of the functions F and G at t. We also observe
that 𝐺 (𝑡) = 𝐹 (𝑡) = 0 when 𝑡 � 0. Hence, if 𝐺 (0) = 6𝐹 (0) (i.e., vol(𝐾𝑆) = 5𝜒(𝜔𝑆)), 𝐺 (𝑡) = 6𝐹 (𝑡) for
all 𝑡 ≤ 0.

Since 𝑎∗(𝜔⊗2
𝑆 ) is an IT0 sheaf on A, for −1 � 𝑡 < 0, 𝑎∗(𝜔⊗2

𝑆 )〈2𝑡𝐻〉 remains to be IT0 (see [JP,
Theorem 5.2]). Thus,

𝐺 (𝑡) = 𝜒(𝑆, 2𝐾𝑆 + 2𝑡𝐻) = 2(𝐻2)𝑆𝑡2 + 3(𝐾𝑆 · 𝐻)𝑆𝑡 + 𝐾2
𝑆 + 𝜒(𝜔𝑆)

is a degree 2 polynomial function for −1 � 𝑡 < 0.
However,

𝐹 (𝑡) = 𝜒(𝑆, 𝐾𝑆 + 𝑡𝐻) + ℎ1
𝑎∗𝜔𝑆 ,𝐻

(𝑡) − ℎ2
𝑎∗𝜔𝑆 ,𝐻

(𝑡)

=
1
2
(𝐻2)𝑆𝑡2 +

1
2
(𝐾𝑆 · 𝐻)𝑆𝑡 + 𝜒(𝜔𝑆) + ℎ1

𝑎∗𝜔𝑆 ,𝐻
(𝑡)

− ℎ2
𝑎∗𝜔𝑆 ,𝐻

(𝑡).
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We recall the formula in [JP, Proposition 2.3]:

ℎ𝑖𝑎∗𝜔𝑆 ,𝐻
(𝑡) = (−𝑡)𝑔

𝜒(𝐻) 𝜒(𝜑
∗
𝐻𝑅

𝑖Φ𝒫 (𝑎∗𝜔𝑆) ⊗ 𝐻− 1
𝑡 ),

for −1 � 𝑡 < 0.
Since 𝑎∗ : Pic0(𝐴) → Pic0 (𝑆) is injective, we know that 𝑅2Φ𝒫 (𝑎∗𝜔𝑆) is the skyscraper sheaf at 𝑜 �̂�.

Hence, ℎ2
𝑎∗𝜔𝑆 ,𝐻

(𝑡) = 𝜒(𝐻) (−𝑡)𝑔 for −1 � 𝑡 < 0.
Similarly, since S is of general type, 𝑎∗𝜔𝑆 is a M-regular sheaf on A (see Subsection 2.3). Then,

codimPic0 (𝐴) 𝑉
1 (𝑎∗𝜔𝑆) ≥ 2. We also know that the support of 𝑅1Φ𝒫 (𝑎∗𝜔𝑆) is contained in 𝑉1(𝑎∗𝜔𝑆).

Consider the Chern characters of 𝑅1Φ𝒫 (𝑎∗𝜔𝑆). We have ch𝑖 (𝜑∗𝐻𝑅
1Φ𝒫 (𝑎∗𝜔𝑆)) = 0 ∈ 𝐻2𝑖 (𝐴,Q) for

𝑖 = 0, 1. If the codimension of the support of 𝑅1Φ𝒫 (𝑎∗𝜔𝑆) is equal to 2, we may assume that𝒵1, . . . ,𝒵𝑠

are the codimension-2 components of its support and 𝑎𝑖 > 0 is the rank of 𝑅1Φ𝒫 (𝑎∗𝜔𝑆) at the generic
point of 𝒵𝑖 . Then, ch2(𝜑∗𝐻𝑅

1Φ𝒫 (𝑎∗𝜔𝑆)) =
∑
𝑖 𝑎𝑖 [𝜑−1

𝐻𝒵𝑖]. Hence,

ℎ1
𝑎∗𝜔𝑆 ,𝐻

(𝑡) = 𝛼2𝑡
2 +

∑
3≤𝑖≤𝑔

𝛼𝑖𝑡
𝑖

for −1 � 𝑡 < 0, where 𝛼2 ≥ 0.
We compare the coefficient of 𝑡2 for 𝐹 (𝑡) and𝐺 (𝑡), which are, respectively, 1

2 (𝐻
2)𝑆 +𝛼2 and 2(𝐻2)𝑆

and conclude that 𝐺 (𝑡) ≠ 6𝐹 (𝑡). �

The following corollary seems to be new, and it would be interesting to characterize the surfaces
where the equality holds.

Corollary 2.13. Let Z be a smooth projective surface of general type. Assume that 𝑞(𝑍) ≥ 4 and Z is of
maximal Albanese dimension, and either Z is birational to a product of two smooth projective curves of
genus 2 or vol(𝑍, 𝐾𝑍 ) ≥ 16.

Proof. We first assume that Z is a minimal surface of general type. Then, 𝜒(𝜔𝑍 ) ≥ 1 and vol(𝑍, 𝐾𝑍 ) =
𝐾2
𝑍 > 0.
When 𝜒(𝜔𝑍 ) = 1, by the main result of [HP] (see also [JLT]) and the assumption that 𝑞(𝑍) ≥ 4, we

know that 𝑞(𝑍) = 4 and Z is birational to a product of two smooth projective curves of genus 2.
We now consider the case 𝜒(𝜔𝑍 ) = 2 and 𝑞(𝑍) ≥ 4. When 𝑞(𝑍) ≥ 5, then 𝜒(𝜔𝑍 ) < 𝑞(𝑍) − 2.

By the Castelnuovo-de Francis theorem (see, for instance, [PP, Theorem A]), there exists a fibration
𝑓 : 𝑍 → 𝐶 from Z to a smooth projective curve of genus ≥ 2. We denote by F a general fiber of f. Then,
𝑔(𝐶) + 𝑔(𝐹) ≥ 𝑞(𝑍) ≥ 5 (see, for instance, [D2, the Lemme in the appendix]). We then have

vol(𝑍, 𝐾𝑍 ) = 𝐾2
𝑍 ≥ 8(𝑔(𝐶) − 1) (𝑔(𝐹) − 1) ≥ 16

(see, for instance, [D2, the Corollaire in the appendix]). When 𝑞(𝑍) = 4, then 𝑝𝑔 (𝑍) = 5. By the main
result of [BNP], we have 16 ≤ vol(𝑍, 𝐾𝑍 ) ≤ 18.

When 𝜒(𝜔𝑍 ) ≥ 3, let 𝑍 ′ be the smooth minimal model of the Albanese image 𝑎𝑍 (𝑍). After birational
modifications of Z, we have the factorization of the Albanese morphism of Z

𝑎𝑍 : 𝑍 𝜏−→ 𝑍 ′ 𝜌
−→ 𝑎𝑍 (𝑍) ↩→ 𝐴𝑍 ,

where 𝜌 is birational.
If 𝑎𝑍 is birational onto its image, we apply Proposition 2.12 to conclude that

vol(𝑍, 𝐾𝑍 ) ≥ 16.

We then assume that deg 𝜏 > 1. If 𝑍 ′ is of general type, we have vol(𝑍, 𝐾𝑍 ) ≥ (deg 𝜏)𝐾2
𝑍 ′ ≥ 2(𝐾2

𝑍 ′ ) by
the ramification formula. By the previous discussions, we have already seen that either 𝑍 ′ is birational
to a product of two smooth projective curves of genus 2 or 𝐾2

𝑍 ′ ≥ 16. In either case, vol(𝑍, 𝐾𝑍 ) ≥ 16.
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Finally, we consider the case that 𝑍 ′ is not of general type. Since 𝑎𝑍 (𝑍) generates 𝐴𝑍 , we see easily
that 𝜌 is an isomorphism and 𝑍 ′ is fibred by an elliptic curve E in 𝐴𝑍 , and the quotient 𝐶 ′ := 𝑍 ′/𝐸 is a
smooth projective curve of genus ≥ 𝑞(𝑍) − 1 ≥ 3. We then have a surjective morphism 𝑍 → 𝐶 ′ from
Z to 𝐶 ′. We conclude again by [D2, the Corollaire in the appendix] that vol(𝑍, 𝐾𝑍 ) ≥ 16. �

2.4. Intersections with abelian subvarieties

When we apply Ito’s approach to study basepoint freeness thresholds of polarized abelian varieties
(𝐴, 𝐿), it may happen that the log canonical center Z of a pair (𝐴, 𝐷) is an abelian subvariety of A or is
a subvariety fibred by an abelian subvariety of A.

Ito realized that one can deal with these cases with Poincaré’s reducibility theorem for polarized
abelian varieties. When Z is an abelian subvariety, we have the following result [Ito2, Proposition 6.6].

Proposition 2.14. Let (𝐴, 𝐿) be a polarized abelian variety. Assume that there exists an effective
Q-divisor D such that an abelian subvariety B is an irreducible component of Nklt(𝐴, 𝐷) and 𝑡𝐿 − 𝐷
is an ample Q-divisor. Assume, furthermore, that 𝛽(𝐿 |𝐵) < 𝑡. Then, 𝛽(𝐿) < 𝑡.

When Z is fibred by an abelian subvariety B, it is important to estimate the intersection number
(𝐿dim 𝐵 · 𝐵). The author learned the following result from a private communication with Atsushi Ito.

Lemma 2.15. Let D be an ample Q-divisor on A and let B be a abelian subvariety of A of dimension d.
Let 𝜑 : 𝐴 → 𝐴/𝐵 be the quotient morphism. Then, there exists an ample Q-divisor 𝐻𝐵 on 𝐴/𝐵 such
that 𝐷 − 𝜑∗𝐻𝐵 is a nef Q-divisor and 𝐷𝑔 =

(𝑔
𝑑

)
(𝐷𝑑 · 𝐵) (𝐻𝑔−𝑑𝐵 )𝐴/𝐵.

Proof. Let M be a positive sufficiently divisible integer such that 𝑀𝐷 is an integral divisor and
𝐿 = 𝒪𝐴(𝑀𝐷) is an ample line bundle on A. By Poincaré’s reducibility (see, for instance, [BL, Corollary
5.3.6]), there exists an abelian subvariety K of A such that the natural morphism 𝐾 → 𝐴/𝐵 is an
isogeny and the addition morphism 𝜋 : 𝐾 × 𝐵 → 𝐴 induces an isogeny of polarized abelian varieties
(𝐾, 𝐿𝐾 ) × (𝐵, 𝐿𝐵) → (𝐴, 𝐿), where 𝐿𝐾 and 𝐿𝐵 are, respectively, the restriction of L on K and B. Then,
one can consider the natural isogeny 𝜇𝐾 : 𝐾 → 𝐴/𝐵. Note that 𝐿 |𝐾 cannot descend to 𝐴/𝐵 in general,
but there exists an effective Q-divisor 𝐷𝐵 on 𝐴/𝐵 such that 𝐿 |𝐾 is algebraically equivalent to 𝜇∗𝐾𝐷𝐵 as
Q-divisors. Let 𝐻𝐵 = 1

𝑀 𝐷𝐵, and it is easy to check that 𝐻𝐵 satisfies the desired properties. �

Corollary 2.16. Let (𝐴, 𝐿) be a polarized abelian variety of dimension g with 𝑛(𝐿) < 1
𝑝+2 . Assume that

Conjecture 1.4 holds in dimension ≤ 𝑔 − 1. Let 𝐷 = 1
𝑝+2𝐿. Then, either

(𝐷𝑑 · 𝐵) ≥ (𝐷𝑔)(𝑔
𝑑

)
(𝑔 − 𝑑)𝑔−𝑑

(2)

for all abelian subvariety B of dimension 1 ≤ 𝑑 ≤ 𝑔 − 1 or 𝛽(𝐿) < 1
𝑝+2 .

Remark 2.17. Let 0 < 𝑑 < 𝑔 be positive integers. Then,

𝑔𝑔

𝑑𝑑
(𝑔
𝑑

) > (𝑔 − 𝑑)𝑔−𝑑 .

More precisely, by Stirling’s formula, for any positive integer n, we have
√

2𝜋𝑛𝑛+
1
2 𝑒−𝑛+

1
12𝑛+1 < 𝑛! <

√
2𝜋𝑛𝑛+

1
2 𝑒−𝑛+

1
12𝑛 .

Thus,

𝑔𝑔

𝑑𝑑
(𝑔
𝑑

) > (𝑔 − 𝑑)𝑔−𝑑
√

2𝜋𝑑 (𝑔 − 𝑑)
𝑔

.
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Proof. If the inequalities (2) fail for some abelian subvarieties, we pick B such that dim 𝐵 = 𝑑 is maximal
and (𝐷𝑑 · 𝐵) < (𝐷𝑔)

(𝑔𝑑) (𝑔−𝑑)𝑔−𝑑
. By Lemma 2.15, there exists an ample Q-divisor 𝐻𝐵 such that 𝐷 − 𝜑∗𝐻𝐵

is a nef Q-divisor and

(𝐻𝑔−𝑑𝐵 )𝐴/𝐵 =
(𝐷𝑔)(𝑔

𝑑

)
(𝐷𝑑 · 𝐵)

> (𝑔 − 𝑑)𝑔−𝑑 .

Moreover, by the argument of Lemma 2.15, for each abelian subvariety C of 𝐴/𝐵 of dimension 𝑟 > 0,
(𝐻𝑟𝐵 · 𝐶)𝐴/𝐵 = (𝐷𝑑+𝑟 ·𝜑−1 (𝐶))

(𝑑+𝑟𝑑 ) (𝐷𝑑 ·𝐵)
. By the maximality of B, we conclude that

(𝐻𝑟𝐵 · 𝐶)𝐴/𝐵 =
(𝐷𝑑+𝑟 · 𝜑−1(𝐶))(𝑑+𝑟

𝑑

)
(𝐷𝑑 · 𝐵)

>

(𝑔
𝑑

)
(𝑔 − 𝑑)𝑔−𝑑(𝑑+𝑟

𝑑

) ( 𝑔
𝑑+𝑟

)
(𝑔 − 𝑑 − 𝑟)𝑔−𝑑−𝑟

=
(𝑔 − 𝑑)𝑔−𝑑

(𝑔 − 𝑑 − 𝑟)𝑔−𝑑−𝑟
(𝑔−𝑑
𝑟

)
> 𝑟𝑟 .

Since Conjecture 1.4 holds in dimension 𝑔 − 𝑑, ℐ𝑜𝐴/𝐵 〈(1 − 𝜖)𝐻𝐵〉 is GV for some 0 < 𝜖 � 1. Thus,
ℐ𝐵 〈(1−𝜖)𝜑∗𝐻𝐵〉 is also GV. Since 𝐷−𝜑∗𝐻𝐵 is a nefQ-divisor, ℐ𝐵 〈(1−𝜖)𝐷〉 is GV. We then consider
the short exact sequence

0 → ℐ𝐵 → ℐ𝑜 → ℐ𝑜,𝐵 → 0.

Since by the assumption that Conjecture 1.4 holds in dimension d, ℐ𝑜,𝐵 〈(1 − 𝜖)𝐷〉 is also GV and
hence, ℐ𝑜〈(1 − 𝜖)𝐷〉 is GV. Thus, 𝛽(𝐿) < 1

𝑝+2 . �

Lemma 2.18. Let D be an effective ample Q-divisor on an abelian variety A. Assume that (𝐴, 𝐷) is log
canonical at o, and the minimal log canonical center Z through o is a subvariety of dimension d fibred by
an abelian subvariety B of dimension 𝑑 ′ such that the desingularization of 𝑍/𝐵 is of general type. Then,

(𝐷𝑑 · 𝑍) ≥
(
𝑑

𝑑 ′

)
(𝐷𝑑′ · 𝐵) vol(𝐾 (𝑍/𝐵)′ ),

where (𝑍/𝐵)′ is a smooth model of the quotient 𝑍/𝐵.

Proof. We consider the quotient morphism 𝐴 → 𝐴/𝐵. We may assume that 𝑀𝐷 is an integral divisor
corresponding to a line bundle L for some integer 𝑀 > 0. By Poincaré’s reducibility theorem (see, for
instance, [BL, Corollary 5.3.6]), there exists an abelian subvariety K of A such that the natural morphism
𝐾 → 𝐴/𝐵 is an isogeny, and the addition morphism 𝜋 : 𝐾 × 𝐵 → 𝐴 induces an isogeny of polarized
abelian varieties (𝐾, 𝐿𝐾 ) × (𝐵, 𝐿𝐵) → (𝐴, 𝐿), where 𝐿𝐾 and 𝐿𝐵 are, respectively, the restriction of L
on K and B.

Note that 𝑍 := 𝑍×𝐴 (𝐾×𝐵) is isomorphic to the product 𝑍/𝐵×𝐵, where 𝑍/𝐵 = (𝑍/𝐵)×𝐴/𝐵𝐾 . Thus,

(𝐷𝑑 · 𝑍) = 1
𝑀𝑑

(𝐿𝑑 · 𝑍) = 1
𝑀𝑑 deg 𝜋

((𝐿𝐾 � 𝐿𝐵)𝑑 · 𝑍)

=
1

𝑀𝑑 deg 𝜋
(
(𝐿𝐾 � 𝐿𝐵)𝑑 · (𝑍/𝐵 × 𝐵)

)
=

( 𝑑
𝑑′
)

𝑀𝑑−𝑑′ deg 𝜋
(𝐷𝑑′ · 𝐵) (𝐿𝑑−𝑑′𝐾 · 𝑍/𝐵).
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Let 𝜈 : 𝑍 → 𝑍 be its normalization. By Proposition 2.1, 𝜈∗𝐷 ∼Q 𝐾𝑍 + 𝑉𝑍 for some effective
Q-divisor 𝑉𝑍 . Consider the pullback of this Q-linear equivalence on the normalization 𝑍 of 𝑍
and then restricting it to a general fiber of 𝑍 → 𝐵. We see that 𝜍∗( 1

𝑀 𝐿𝐾 ) ∼Q 𝐾�𝑍/𝐵 + 𝑉�𝑍/𝐵,
where 𝜍 : 𝑍/𝐵 → 𝑍/𝐵 is the normalization and 𝑉�𝑍/𝐵 is an effective Q-divisor on 𝑍/𝐵. Thus,
(𝐿𝑑−𝑑′𝐾 · 𝑍/𝐵) = 𝑀𝑑−𝑑′ vol(𝑍/𝐵, 𝐾�𝑍/𝐵 +𝑉�𝑍/𝐵) ≥ (deg 𝜋)𝑀𝑑−𝑑′ vol(𝐾 (𝑍/𝐵)′ ). �

3. Very general polarized abelian varieties

In [Jz], we applied Helmke’s induction to confirm that Conjecture 1.4 holds for Hodge theoretically very
general polarized abelian varieties with special polarizations. We now show that the calculation indeed
implies that Conjecture 1.4 holds for almost all generic polarized abelian varieties in fixed dimensions.

Recall that we say a polarized abelian variety (𝐴, 𝐿) is Hodge theoretically very general if
dimQ 𝐻𝑘,𝑘 (𝐴,Q) = 1 for all 1 ≤ 𝑘 ≤ 𝑔 − 1. We observe that by Hard Lefschetz and Poincaré duality,
(𝐴, 𝐿) is Hodge theoretically very general iff dimQ 𝐻 � 𝑔2 �, � 𝑔2 � (𝐴,Q) = 1. We also observe that when
(𝐴, 𝐿) is Hodge theoretically very general, A is a simple abelian variety and hence, 𝑛(𝐿) =

𝑔
𝑔
√
(𝐿𝑔)

.

Note that in order to compare 𝛽(𝐿) and 𝑛(𝐿), we can assume that L is primitive.

Theorem 3.1. Let (𝐴, 𝐿) be a Hodge theoretically very general polarized abelian variety of type
𝑙 = (1, 𝛿2, . . . , 𝛿𝑔). Assume that

𝛿 := 𝛿2 · · · 𝛿𝑔 ≥ max
{ (𝑘 (𝑘 + 1) · · · (𝑔 − 1))

𝑔 (𝑔−1)
𝑘

(𝑔!)
(𝑔−1) (𝑔−𝑘)

𝑘

| 2 ≤ 𝑘 ≤ 𝑔 − 2
}
.

Then, 𝛽(𝐿) ≤ 𝑛(𝐿).

Proof. We apply Ito’s strategy that it suffices to show 𝑟 ′(𝐿) ≤ 𝑛(𝐿). Let 𝑡 ∈ (𝑛(𝐿), 𝑛(𝐿) + 𝜖) be a
rational number, where 0 < 𝜖 � 1 and denote by 𝐷 ∼Q 𝑡𝐿 an effective rational number such that
mult0𝐷 > 𝑔 (there exists such D since ((𝑡𝐿)𝑔) > 𝑔𝑔). We then just need to apply Proposition 2.3 to get
a divisor 𝐷 ′ ∼Q 𝑐𝐷 with 0 < 𝑐 < 1, and the neutral element o of A is a minimal log canonical center of
(𝐴, 𝐷 ′). By Proposition 2.3, it suffices to verify that (𝐷𝑘 · 𝑍) >

(𝑔−1
𝑔−𝑘

)
𝑔𝑘 for any irreducible subvariety

Z of dimension k for 1 ≤ 𝑘 ≤ 𝑔 − 1.
Recall that 𝛽(𝐿) ≤ 1 and equality holds if and only if |𝐿 | has a basepoint. Thus, we may assume

that (𝐿𝑔) > 𝑔𝑔 (i.e., 𝑛(𝐿) < 1). Then, since the class [𝐿] is the generator of NS(𝐴) = Pic(𝐴)/Pic0(𝐴),
we can assume that Z is of codimension ≥ 2. Since A is simple, by the main result of [D1], for any
irreducible curve Z of A, (𝐿 · 𝑍) > 𝑔

√
(𝐿𝑔) > 𝑔. Thus, it suffices to verify that (𝐷𝑘 · 𝑍) >

(𝑔−1
𝑔−𝑘

)
𝑔𝑘 for

any irreducible subvariety Z of dimension k, where 2 ≤ 𝑘 ≤ 𝑔 − 2.
For any irreducible subvariety Z of dimension k, we denote by [𝑍] ∈ 𝐻𝑔−𝑘,𝑔−𝑘 (𝐴,Z) ⊂ 𝐻2𝑔−2𝑘 (𝐴,C)

its cohomology class. Then, [𝑍] is a positive integral multiple of 𝐿𝑔−𝑘

(𝑔−𝑘)!𝛿2 · · ·𝛿𝑔−𝑘 by the assumption that
A is Hodge theoretically very general. Thus,

(𝐷𝑘 · 𝑍) > 𝑔𝑘

(𝐿𝑔)
𝑘
𝑔

(𝐿𝑘 · 𝑍) ≥ 𝑔𝑘 (𝐿𝑔)
𝑔−𝑘
𝑔

(𝑔 − 𝑘)!𝛿2 · · · 𝛿𝑔−𝑘
.

We just need to verify that

(𝐿𝑔)
𝑔−𝑘
𝑔

(𝑔 − 𝑘)!𝛿2 · · · 𝛿𝑔−𝑘
≥

(
𝑔 − 1
𝑔 − 𝑘

)
. (3)

https://doi.org/10.1017/fms.2023.34 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.34


12 Z. Jiang

Note that 𝛿2 · · · 𝛿𝑔−𝑘 ≤ 𝛿
𝑔−𝑘−1
𝑔−1 . Thus,

(𝐿𝑔)
𝑔−𝑘
𝑔

(𝑔 − 𝑘)!𝛿2 · · · 𝛿𝑔−𝑘
≥𝛿

𝑔−𝑘
𝑔 − 𝑔−𝑘−1

𝑔−1
(𝑔!)

𝑔−𝑘
𝑔

(𝑔 − 𝑘)!

= 𝛿
𝑘

𝑔 (𝑔−1)
(𝑔!)

𝑔−𝑘
𝑔

(𝑔 − 𝑘)! .

The assumption on 𝛿 makes sure that (𝐿𝑔)
𝑔−𝑘
𝑔

(𝑔−𝑘)!𝛿2 · · ·𝛿𝑔−𝑘 ≥
(𝑔−1
𝑔−𝑘

)
for 2 ≤ 𝑘 ≤ 𝑔 − 2. �

By the above theorem, we see that in order to verify Conjecture 1.1 and Conjecture 1.4 for very
general polarized abelian varieties, it suffices to check finitely many families in each dimension. By the
same computation with some extra efforts, we finish the proof of Theorem 1.5.

Proof. When 𝑔 = 4, the assumption in Theorem 3.1 is simply that 𝛿 = ℎ0 (𝐴, 𝐿) ≥ 66

243 = 27
8 . However,

for 𝛿 ≤ 3, 𝑛(𝐿) = 4
4√24𝛿

> 1 we know that |𝐿 | has basepoints and 𝛽(𝐿) = 1.
When 𝑔 = 5, we repeat the argument in the proof of Theorem 3.1. We first check (3) for 𝑔 = 5 and

𝑘 = 2 or 3, which are (𝐿5) 3
5 ≥ 24𝛿2𝛿3 and (𝐿5) 2

5 ≥ 12𝛿2. It is easy to verify that both inequalities hold
when 𝛿5 ≥ 5 or 𝛿2 ≥ 3. When 𝛿2 = 1, 𝛿 ≥ 5 implies that both inequalities hold and if 𝛿 < 5, 𝛽(𝐿) = 1.
When 𝛿2 = 2 and 𝛿5 ≤ 4, the above inequalities fail only when the polarization type is (1, 2, 2, 2, 2).
But in this case, 𝑛(𝐿) = 5

5
√

120𝛿(𝐿)
> 1. Thus, we still have 𝛽(𝐿) ≤ 1 < 𝑛(𝐿).

When 𝑔 = 6, we first remark that we may assume that l is not of the form (1, . . . , 1, 𝛿6). If l is of the

form (1, . . . , 1, 𝛿6), since (𝐴, 𝐿) is very general, by [Ito3, Theorem 1.5], 𝛽(𝐿) ≤ 1
� 6√𝛿6�

<
6

6√720𝛿6
.

Thus, we will assume that 𝛿5 ≥ 2. We then check (3) for 𝑘 = 2, 3 and 4, which are (𝐿6) ≥ (20𝛿2)3,
(𝐿6) ≥ (60𝛿2𝛿3)2 and (𝐿6) 2

3 ≥ 120𝛿2𝛿3𝛿4. Since 𝛿5 ≥ 2, we see that these inequalities hold when
𝛿6 ≥ 5. When 𝛿6 = 4, one can verify that these inequalities hold, except the polarization types
(1, 4, 4, 4, 4, 4) or (1, 1, 1, 1, 2, 4) or (1, 2, 2, 2, 2, 2, 4). When 𝛿6 = 3, these inequalities hold, except the
polarization types (1, 3, 3, 3, 3, 3). Note that for the polarization types (1, 1, 1, 1, 2, 4), or (1, 2, 2, 2, 2, 4)
or with 𝛿6 ≤ 2, 𝑛(𝐿) > 1 and thus, 𝛽(𝐿) < 𝑛(𝐿). We finally need to consider the polarization types
(1, 4, 4, 4, 4, 4) and (1, 3, 3, 3, 3, 3). These two cases can be dealt by a result of Ito. When (𝐴, 𝐿) is a
polarized abelian sixfold of polarization type (1, 4, 4, 4, 4, 4) (resp. (1, 3, 3, 3, 3, 3)), let (𝑆, 𝐿 ′) be a very
general polarized abelian surface of polarization type (1, 4) (resp. (1, 3)). By [Ito5, Proposition 5.1], we
always have 𝛽(𝐿) ≤ 𝛽(𝐿 ′). It is known that 𝛽(𝐿 ′) = 1

2 (resp. 2
3 ) (see [Ito3, Proposition 4.3 and Lemma

A.4]). We then still have 𝛽(𝐿) < 𝑛(𝐿) for the polarization types (1, 4, 4, 4, 4, 4) and (1, 3, 3, 3, 3, 3). �

Remark 3.2. The last paragraph of the above proof is due to the anonymous referee.

4. Abelian fourfolds

4.1. The proof of Theorem 1.6

Proof. It suffices to show that 𝛽(𝐿) < 1
𝑝+2 or equivalently ℐ𝑜〈 1

𝑝+2𝐿〉 is IT0, where o is the neutral
element of A.

Since (𝐿4) > ((2+ 4√
3
) (𝑝+2))4, there exists an effectiveQ-divisor 𝐷 ∼Q 1

𝑝+2𝐿 such that mult𝑜 (𝐷) =
𝑚 > 2 + 4√

3
. Let 𝑐 = lct(𝐷, 𝑜) ≤ 4

𝑚 be the log canonical threshold of D at o and let Z be the minimal
log canonical center of (𝐴, 𝑐𝐷) through o. By Proposition 2.7, we may assume that 𝑐 ≥ 1

2 .

Step 1. We first deal with the case that Z is a divisor. By Lemma 2.5, ℐ𝐾 〈 𝑐
𝑝+2𝐿〉 is GV, where K is the

kernel of 𝜑𝑍 . If K is a point, we are done. Otherwise, by the assumption that (𝐿𝑑 · 𝐵) > (𝑑 (𝑝 + 2))𝑑
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for any abelian subvariety B of dimension 1 ≤ 𝑑 ≤ 3 and Ito’s results [Ito1, Ito2], ℐ𝑜,𝐾 〈 1
𝑝+2𝐿〉 is IT0.

Thus, from the short exact sequence

0 → ℐ𝐾 → ℐ𝑜 → ℐ𝑜,𝐾 → 0,

we conclude that ℐ𝑜〈 1
𝑝+2𝐿〉 is IT0.

Step 2. If Z is a curve, by Proposition 2.3, Z is smooth at o and as soon as (𝐷 · 𝑍) > 4 ≥ 𝑏𝑜 (𝐴,𝑐𝐷)
1−𝑐 ,

there exists 𝐷1 ∼Q 𝑐1𝐷 with 𝑐 < 𝑐1 < 1 such that (𝐴, 𝐷1) is log canonical at o and {𝑜} is a minimal
log canonical center. Then, we have by Remark 2.4 that 𝛽(𝐿) ≤ 𝑟 ′(𝐿) ≤ 𝑐1

𝑝+2 <
1
𝑝+2 .

By Corollary 2.2, we know that

(𝑐𝐷 · 𝑍) ≥ 2𝑔(𝑍) − 2,

where 𝜈 : 𝑍 → 𝑍 is the normalization. Thus, we are done once 𝑔(𝑍) ≥ 3.
When 𝑔(𝑍) = 1, 𝑍 = 𝑍 is an elliptic curve. We conclude again by Proposition 2.14, Remark 2.4 and

the assumption that (𝐿 · 𝑍) > 𝑝 + 2 and thus, 𝛽(𝐿 |𝑍 ) < 1
𝑝+2 .

If 𝑔(𝑍) = 2, Z generates an abelian surface B of A. By Corollary 2.16, we may assume that
(𝐷2 · 𝐵) ≥ 44

(4
2)22 = 32

3 . Then, by Hodge index theorem,

(𝐷 · 𝑍)𝐵 ≥
√
(𝑍2)𝐵 (𝐷2 · 𝐵) ≥ 8/

√
3 > 4.

Step 3. When Z is a surface, we need to apply Helmke’s induction. We may assume that Z is not an
abelian surface. Otherwise, we conclude directly by Proposition 2.14 and Ito’s work in [Ito1]. We know
that mult𝑜𝑍 ≤ 3 by Proposition 2.3. Let 𝜇 : 𝑍 → 𝑍 → 𝑍 be the minimal resolution of the normalization
𝑍 of Z. Since Z is not an abelian variety, 𝑍 is a surface of maximal Albanese dimension of Kodaira
dimension ≥ 1. Since there exist no rational curves on 𝑍 , 𝑍 is minimal.
Claim. ((𝑐𝐷)2 · 𝑍) ≥ 16 when mult𝑜𝑍 = 3; ((𝑐𝐷)2 · 𝑍) ≥ 16 or (𝐷2 · 𝑍) ≥ 16 3√6 when mult𝑜𝑍 = 2;
(𝐷2 · 𝑍) > 16 when Z is smooth at o.

When 𝑍 is not of general type, Z is fibred by an elliptic curve E, and since Z has rational singularities
around o, Z is indeed smooth at o. We need to show that (𝐷2 · 𝑍) > 16. Let 𝐶 = 𝑍/𝐸 be the quotient
and 𝐶 be the normalization of C. By Corollary 2.16, we may assume (𝐷 · 𝐸) ≥ 64

27 and by Lemma 2.18,
we have

(𝐷2 · 𝑍) ≥ 2(2𝑔(𝐶) − 2) (𝐷 · 𝐸).

Thus, we are done when 𝑔(𝐶) ≥ 3. When 𝑔(𝐶) = 2, Z generates an abelian 3-fold B of A and𝐶 ↩→ 𝐵/𝐸
is an ample divisor. Thus, (𝐶2)𝐵/𝐸 = 𝑎 ≥ 2 and hence, 𝑍2 is algebraically equivalent to 𝑎𝐸 as 1-cycles
of B. By Corollary 2.16, we may assume that (𝐷3 · 𝐵) ≥ 43. Then, by Hodge index,

(𝐷2 · 𝑍) = ((𝐷 |𝐵)2 · 𝑍)𝐵 ≥
√
(𝐷3)𝐵 (𝐷 |𝐵 · 𝑍2)𝐵

≥
√

43 · 𝑎 · 64
27

≥ 16
√

32
27

> 16.

We now assume that 𝑍 is of general type.
If 𝑞(𝑍) ≥ 4, by Corollary 2.13, vol(𝐾𝑍 ) ≥ 16 or 𝑍 � 𝐶1 ×𝐶2, where𝐶𝑖 is a smooth projective curve

of genus 2. In the latter case 𝜇 is the normalization of Z, and since Z is normal at o, it is smooth at o.
We apply Proposition 2.1 and conclude that

(𝐷2 · 𝑍) = (𝜇∗(𝐷)2)𝑍 ≥ (𝐾𝑍 · 𝜇∗𝐷)𝑍
= 2(𝐶1 · 𝜇∗𝐷)𝑍 + 2(𝐶2 · 𝜇∗𝐷)𝑍 .
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Note that the image of 𝐶𝑖 generates an abelian surface 𝐵𝑖 of A. By Corollary 2.16, we may assume that
(𝐷2 ·𝐵𝑖) ≥ 32

3 . Thus, by Hodge index, (𝐶𝑖 ·𝜇∗𝐷)𝑍 ≥ 8/
√

3. Therefore, we have (𝐷2 ·𝑍) ≥ 32/
√

3 > 16.
In the former case, ((𝑐𝐷)2 · 𝑍) = vol(𝑍, 𝑐𝐷) ≥ vol(𝐾𝑍 ) ≥ 16 by Corollary 2.2.

If 𝑞(𝑍) = 3, Z generates an abelian 3-fold 𝐵 ⊂ 𝐴. Then, Z is an ample divisor of B. Moreover, in
this case, the embedded dimension of Z at o is at most 3. Thus, mult𝑜 (𝑍) ≤ 2 by the well-known facts
about isolated rational surface singularities (see [A, Corollary 6]). As before, by Corollary 2.16, we may
assume that (𝐷3 · 𝐵) ≥ 43. Since Z is an ample divisor of B, (𝑍3)𝐵 ≥ 6. Thus,

(𝐷2 · 𝑍) ≥ 3
√
(𝐷3 · 𝐵)2(𝑍3)𝐵 ≥ 16 3√6.

Step 4.
If Z is smooth at o, we have shown that (𝐷2 · 𝑍) > 16. Thus, by Proposition 2.3, there exists an

effective Q-divisor 𝐷1 ∼Q 𝑐1𝐷 with 𝑐1 < 1 such that (𝐴, 𝐷1) is log canonical at o whose minimal log
canonical center 𝑍1 through o is a proper subset of Z and 𝑏𝑜 (𝐴,𝐷1)

1−𝑐1
≤ 𝑏𝑜 (𝐴,𝑐𝐷)

1−𝑐 ≤ 4. We then finish the
proof by going back to Step 2.

If mult𝑜𝑍 = 3, we have already seen that ((𝑐𝐷)2 · 𝑍) ≥ 16. In order to apply Helmke’s induction,
we need to verify that

(𝐷2 · 𝑍) > 3
( 𝑏𝑜 (𝐴, 𝑐𝐷)

1 − 𝑐
)2
.

Note that 𝑏𝑜 (𝐴, 𝑐𝐷) ≤ 4 − 𝑐𝑚 < 4 − (2 + 4√
3
)𝑐. It is elementary to verify that

16
𝑐2 ≥ 3

(4 − (2 + 4√
3
)𝑐

1 − 𝑐
)2

always holds. We then finish the proof as before.
If mult𝑜𝑍 = 2 and ((𝑐𝐷)2 · 𝑍) ≥ 16, we conclude as the multiplicity 3 case. If mult𝑜𝑍 = 2 and

(𝐷2 · 𝑍) ≥ 16 3√6, we need to verify that

(𝐷2 · 𝑍) > 2
( 𝑏𝑜 (𝐴, 𝑐𝐷)

1 − 𝑐
)2
.

Since 𝑐 ≥ 1
2 , we have 𝑏𝑜 (𝐴,𝑐𝐷)

1−𝑐 < 4 −
( 4√

3
−2)𝑐

1−𝑐 ≤ 6 − 4√
3
. We then check that 16 3√6 > 2(6 − 4√

3
)2. �

4.2. The proof of Theorem 1.8

We apply the same strategy as in the proof of Theorem 1.6.
Fix an effective Q-divisor such that 𝐷 ∼Q 1

𝑝+2𝐿, such that mult𝑜𝐷 > 8. Let 𝑐1 = lct(𝐷, 𝑜) < 5
8 be

the log canonical threshold of D at o and let 𝑍1 be the minimal log canonical center of (𝐴, 𝑐1𝐷) at o.
By Proposition 2.7, we may assume that 𝑐1 ≥ 1

2 . Thus,

𝑏𝑜 (𝐴, 𝑐1𝐷)
1 − 𝑐1

≤ 5 − 𝑐1mult𝑜𝐷
1 − 𝑐1

< 5 − 3
𝑐1

1 − 𝑐1
≤ 2.

If 𝑍1 is a divisor, we conclude by Lemma 2.5.
If 𝑍1 is a threefold, we apply Helmke’s induction. Let 𝜌 : �̃�1 → 𝑍1 be a desingularization. Then,

vol(𝐾𝑍1
) ≥ 5

2 × 3! × 3 = 45 by Theorem 2.8, Theorem 2.9 and Remark 2.10. We also note that
mult𝑜𝑍1 ≤ 6. Note that

(𝐷3 · 𝑍1) ≥ vol(𝐾𝑍1
)/𝑐3

1 >
45
( 5

8 )3
≥ 48 >

( 𝑏𝑜 (𝐴, 𝑐1𝐷)
1 − 𝑐1

)3mult𝑜 (𝑍1).

https://doi.org/10.1017/fms.2023.34 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.34


Forum of Mathematics, Sigma 15

Thus, there exists an effective Q-divisor 𝐷2 ∼Q 𝑐2𝐷 such that 𝑐1 < 𝑐2 < 1, such that (𝐴, 𝐷2) is
log canonical at o, whose minimal lc center through o is a proper subvariety 𝑍2 contained in 𝑍1, and
𝑏𝑜 (𝐴,𝐷2)

1−𝑐2
< 𝑏𝑜 (𝐴,𝑐1𝐷)

1−𝑐1
< 2.

When 𝑍2 is a surface, we have mult𝑜𝑍2 ≤ 4. Let 𝑍2 be its smooth model. Since A is simple, 𝑍2 is of
general type and hence, vol(𝐾𝑍2

) ≥ 16 by Corollary 2.13. We then have

(𝐷2 · 𝑍2) > vol(𝐾𝑍2
) ≥ 16 >

( 𝑏𝑜 (𝐴, 𝐷2)
1 − 𝑐2

)2mult𝑜𝑍2.

Thus, by Helmke’s induction, we may assume that 𝑍2 is a curve. In this case, we verify easily that
(𝐷 · 𝑍2) > 𝑏𝑜 (𝐴,𝐷2)

1−𝑐2
. Therefore, there exists an effective Q-divisor 𝐷3 ∼Q 𝑐3𝐿 with 𝑐2 < 𝑐3 < 1 such

that (𝐴, 𝐷3) is log canonical at o and o is a minimal log canonical center of (𝐴, 𝐷3). We then finish the
proof of Theorem 1.8.

4.3. The proof of Theorem 1.9

The proof of Theorem 1.9 is identical to that of Theorem 1.8. We first observe that 𝛼𝑔 ≤ 𝛼𝑔,2 =√
5(𝑔−2)+1
𝑔−1 <

√
5. We then fix an effective Q-divisor 𝐷 ∼ 1

𝑝+2𝐿 such that mult𝑜𝐷 > 2𝑔 − 𝛼𝑔 and
thus let 𝑐 < 𝑔

2𝑔−
√

5
be the log canonical threshold of (𝐴, 𝐷) at o. We may assume that 𝑐 ≥ 1

2 by
Proposition 2.7. Then

𝑏𝑜 (𝐴, 𝑐𝐷)
1 − 𝑐 ≤ 𝑔 − 𝑐(mult𝑜𝐷)

1 − 𝑐 ≤ 𝑔 − (mult𝑜𝐷 − 𝑔) < 𝛼𝑔 .

Let Z be the minimal log canonical threshold of (𝐴, 𝑐𝐷) through o. Let 𝑑 = dim 𝑍 . Then, mult𝑜𝐷 ≤(𝑔−1
𝑔−𝑑

)
.

If 𝑑 = 𝑔 − 1, we conclude by Lemma 2.5. Thus, we may assume that 1 ≤ 𝑑 ≤ 𝑔 − 2.
For a smooth model 𝑍 of Z, by Theorem 2.8, Theorem 2.9, Remark 2.10 and Proposition 2.12, we have

vol(𝐾𝑍 ) ≥
15
2 (𝑔−2)! when 𝑑 = 𝑔−2, vol(𝐾𝑍 ) ≥

5
2𝑑!(𝑔−𝑑) when 3 ≤ 𝑑 ≤ 𝑔−3, vol(𝐾𝑍 ) ≥ 5(𝑔−2)+1

when 𝑑 = 2 and vol(𝐾𝑍 ) ≥ 2(𝑔−1) when 𝑑 = 1. By Corollary 2.2, (𝐷𝑑 · 𝑍) ≥ 1
𝑐𝑑

vol(𝐾𝑍 ) > vol(𝐾𝑍 ).
We then have

(𝐷𝑑 · 𝑍) > (𝛼𝑔)𝑑mult𝑜𝐷.

We then repeatedly apply Helmke’s induction and the above calculation to cut down the log canonical
centers and finish the proof.
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