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Abstract
We characterize totally symmetric self-complementary plane partitions (TSSCPP) as bounded compatible se-
quences satisfying a Yamanouchi-like condition. As such, they are in bijection with certain pipe dreams. Using this
characterization and the recent bijection of Gao–Huang between reduced pipe dreams and reduced bumpless pipe
dreams, we give a bijection between alternating sign matrices and TSSCPP in the reduced, 1432-avoiding case. We
also give a different bijection in the 1432- and 2143-avoiding case that preserves natural poset structures on the
associated pipe dreams and bumpless pipe dreams.
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1. Introduction

Plane partitions are three-dimensional analogues of ordinary partitions. Just as partitions in an 𝑎×𝑏 are
counted by a lovely formula

(𝑎+𝑏
𝑎

)
, plane partitions in an 𝑎 × 𝑏 × 𝑐 box are enumerated by MacMahon’s

product formula
𝑎∏
𝑖=1

𝑏∏
𝑗=1

𝑐∏
𝑘=1

𝑖 + 𝑗 + 𝑘 − 1
𝑖 + 𝑗 + 𝑘 − 2

[15]. In a 1986 [18], Stanley considered symmetry operations

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2023.131 Published online by Cambridge University Press

doi:10.1017/fms.2023.131
https://orcid.org/0000-0002-2856-3759
https://orcid.org/0000-0003-0947-3966
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2023.131&domain=pdf
https://doi.org/10.1017/fms.2023.131


2 D. Huang and J. Striker

Figure 1. An example of the bijection of this paper. From left to right the objects are: TSSCPP, pipe
dream, bumpless pipe dream, ASM. The pipe dream and bumpless pipe dream both have permutation
135264, which avoids 1432. Note the black rhombi in column k (from the left) of the TSSCPP fundamental
domain correspond to the cross-tiles in row k (from the top) of the pipe dream. This equals the number
of blank tiles in row k of the bumpless pipe dream, which is the number of positive inversions of row k
of the ASM.

on plane partitions, namely, reflection (transpose), rotation and complementation. This yielded 10
symmetry classes of plane partitions consisting of plane partitions invariant under combinations of
these operations. The plane partitions invariant under all three operations are called totally symmetric
self-complementary (TSSCPP). As in the case of all plane partitions, each symmetry class has a nice
enumeration. The set of TSSCPP inside a 2𝑛 × 2𝑛 × 2𝑛 box was shown in 1994 by Andrews [2] to be

counted by
𝑛−1∏
𝑗=0

(3 𝑗 + 1)!
(𝑛 + 𝑗)!

. This was, at the time, the conjectured [16] number of 𝑛 × 𝑛 alternating sign

matrices (ASM). The 1996 proofs of this conjecture [22, 13] sparked a search for a natural, explicit
bijection between TSSCPP and ASM. Partial bijections have been found on small subsets, including the
permutation case [20], the case of two monotone triangle diagonals [7, 5] and the 312-avoiding case
[1]. This paper interprets TSSCPP as pipe dreams to extend the bijection of [20] to what appears to be
a larger subset than any previous partial bijection; see Section 6 for discussion.

Our first main theorem is below; see Figure 1 for an example and Section 2 for the relevant definitions.
Given 𝜋 ∈ 𝑆𝑛, let TSSCPP𝑟𝑒𝑑 (𝜋) denote the set of TSSCPP whose associated pipe dream is reduced
and has permutation 𝜋, and let ASM𝑟𝑒𝑑 (𝜋) denote the set of ASM whose associated bumpless pipe
dream is reduced and has permutation 𝜋.

Theorem 1.1. Let 𝜋 ∈ 𝑆𝑛. There is an explicit weight-preserving injection 𝜑 from TSSCPP𝑟𝑒𝑑 (𝜋) to
ASM𝑟𝑒𝑑 (𝜋). If 𝜋 avoids 1432, then 𝜑 is a bijection.

While the bijection of Theorem 1.1 preserves a meaningful weight on both sides, it does not, in
general, preserve the natural partial order. A corollary of our second main result, Theorem 5.20, gives
a different poset-preserving bijection between TSSCPP𝑟𝑒𝑑 (𝜋) and ASM(𝜋) in the case that 𝜋 avoids
both 1432 and 2143. (Note in this case, ASM𝑟𝑒𝑑 (𝜋) = ASM(𝜋).) Theorem 5.20 itself relates the posets
Slide(𝜋) on pipe dreams and Droop(𝜋) on bumpless pipe dreams of such permutations, giving a poset-
preserving bijection by decomposing into Grassmannian and inverse-Grassmannian blocks.

The paper is organized as follows. Section 2 contains background on the relevant objects, including
the permutation case TSSCPP bijection of [20] and the bijection of [11] between reduced pipe dreams
and reduced bumpless pipe dreams, which are important ingredients in our proof of Theorem 1.1.
Section 3 proves Theorem 3.3 characterizing TSSCPP as pipe dreams subject to a Yamanouchi-like
condition. Section 4 concerns Theorem 1.1 and its proof. Section 5 proves Theorems 5.9, 5.12 and 5.20
relating the posets Droop(𝜋) and Slide(𝜋) in the respective cases where 𝜋 is inverse-Grassmannian,
Grassmannian or avoiding both 1432 and 2143. These theorems yield Corollaries 5.10, 5.14 and 5.21,
which give poset-preserving bijections between TSSCPP𝑟𝑒𝑑 (𝜋) and ASM(𝜋) for these three types of
permutations. Section 6 gives some concluding remarks.
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An extended abstract of this paper was published in the proceedings of the 2023 FPSAC conference
[12].

2. Background

In this section, we review relevant definitions and bijections from the literature. Subsections 2.1, 2.2,
2.4 and 2.5 review definitions of ASM, TSSCPP, bumpless pipe dreams and pipe dreams, respectively.
Subsections 2.3 and 2.6 contain less-familiar bijections that are important for our main results.

2.1. Alternating sign matrices

In this subsection, we define alternating sign matrices (see, e.g., [16]) and the weight that is preserved
in Theorem 1.1.

Definition 2.1. An alternating sign matrix (ASM) is a square matrix with entries in {0, 1,−1} such
that the rows and columns each sum to 1 and the nonzero entries alternate in sign across each row and
across each column.

Alternating sign matrices are in bijection with configurations of the six-vertex / square ice model
of statistical physics with domain wall boundary conditions; this was an essential element of the
enumeration proof of [13]. The 3 × 3 alternating sign matrices are below.(

1 0 0
0 1 0
0 0 1

) (
1 0 0
0 0 1
0 1 0

) (
0 1 0
0 0 0
0 0 1

) (
0 1 0
1 −1 1
0 1 0

) (
0 1 0
0 0 1
1 0 0

) (
0 0 1
1 0 0
0 1 0

) (
0 0 1
0 1 0
1 0 0

)

In Figure 2, left and center-left are an alternating sign matrix and its corresponding square ice
configuration; the horizontal molecules correspond to +1, the vertical molecules correspond to −1, and
all other molecules correspond to 0. Center-right is its six-vertex configuration, where the six molecule
configurations are replaced by directed edges. Figure 2, right, shows the corresponding bumpless pipe
dream, which will be discussed shortly.

An important statistic on an alternating sign matrix A is the positive inversion number:

𝜈(𝐴) =
∑

1≤𝑖<𝑘<𝑛

∑
1≤ℓ≤ 𝑗≤𝑛

𝐴𝑖 𝑗𝐴𝑘ℓ .

The positive inversion number of A equals the number of vertices in the corresponding six-
vertex configuration. Equivalently, 𝜈(𝐴) equals the number of entries 𝐴𝑖 𝑗 = 0 such that

∑𝑖
𝑖′=1 𝐴𝑖′ 𝑗 =

Figure 2. An alternating sign matrix and its corresponding square ice configuration, six-vertex config-
uration and bumpless pipe dream.
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∑ 𝑗
𝑗′=1 𝐴𝑖 𝑗′ = 0. Let NW(𝐴) denote the set of matrix indices (𝑖, 𝑗) of all such entries. We use the notation

NW(𝐴) since these 0 entries are precisely those whose first nonzero entry to their right is a 1 and the
first nonzero entry below is a 1; that is, they are north and west of 1 entries. See, for instance, [4, Sections
2.1 and 5.2] for these well-known correspondences. The weight that is preserved in our main bijection
is the following refinement of the positive inversion number statistic by row: wt(𝐴) :=

∏
(𝑖, 𝑗) ∈NW(𝐴) 𝑥𝑖 .

For the ASM in Figure 2, wt(𝐴) = 𝑥1𝑥2𝑥3.

2.2. Totally symmetric self-complementary plane partitions

In this subsection, we define plane partitions and their symmetry classes (see, e.g., [18]). The weight
that is preserved in Theorem 1.1 will be discussed in Subsection 2.3.

Definition 2.2. A plane partition t is a rectangular array of nonnegative integers (𝑡𝑖, 𝑗 )𝑖, 𝑗≥1 such that
𝑡𝑖, 𝑗 ≥ 𝑡𝑖′, 𝑗′ if 𝑖 ≤ 𝑖′, 𝑗 ≤ 𝑗 ′. We say t is in an 𝑎 × 𝑏 × 𝑐 bounding box if 𝑡𝑖, 𝑗 = 0 whenever 𝑖 > 𝑎 or 𝑗 > 𝑏
and 𝑡𝑖, 𝑗 ≤ 𝑐 for all 𝑖, 𝑗 . Let 𝑃𝑃(𝑎× 𝑏× 𝑐) denote the set of plane partitions in an 𝑎× 𝑏× 𝑐 bounding box.

Remark 2.3. We can also view 𝑡 ∈ 𝑃𝑃(𝑎× 𝑏× 𝑐) as a finite set of positive integer lattice points (𝑖, 𝑗 , 𝑘)
with 1 ≤ 𝑖 ≤ 𝑎, 1 ≤ 𝑗 ≤ 𝑏 and 1 ≤ 𝑘 ≤ 𝑐 such that if (𝑖, 𝑗 , 𝑘) ∈ 𝑡 and 1 ≤ 𝑖′ ≤ 𝑖, 1 ≤ 𝑗 ′ ≤ 𝑗 ,
1 ≤ 𝑘 ′ ≤ 𝑘 , then (𝑖′, 𝑗 ′, 𝑘 ′) ∈ 𝑡. This well-known bijection is given as (𝑖, 𝑗 , 𝑘) ∈ 𝑡 if and only if 𝑡𝑖, 𝑗 ≥ 𝑘 .
We will use both of these characterizations in the next definition.

Definition 2.4. A plane partition t is symmetric if 𝑡𝑖, 𝑗 = 𝑡 𝑗 ,𝑖 for all 𝑖, 𝑗 . t is cyclically symmetric if
whenever (𝑖, 𝑗 , 𝑘) ∈ 𝑡, then ( 𝑗 , 𝑘, 𝑖) ∈ 𝑡 as well. t is totally symmetric if it is both symmetric and
cyclically symmetric so that whenever (𝑖, 𝑗 , 𝑘) ∈ 𝑡 then all six permutations of (𝑖, 𝑗 , 𝑘) are also in t.
The complement 𝑡𝐶 of t inside a given bounding box 𝑎 × 𝑏 × 𝑐 is defined as 𝑡𝐶𝑖, 𝑗 = 𝑐 − 𝑡𝑎−𝑖+1,𝑏− 𝑗+1

for all 1 ≤ 𝑖 ≤ 𝑎, 1 ≤ 𝑗 ≤ 𝑏. That is, 𝑡𝐶𝑖, 𝑗 equals the number of empty cubes above 𝑡𝑎−𝑖+1,𝑏− 𝑗+1 in the
bounding box. A plane partition t is self-complementary inside a given bounding box if 𝑡 = 𝑡𝐶 . A
totally symmetric self-complementary plane partition (TSSCPP) is a plane partition which is both
totally symmetric and self-complementary.

Note that for there to exist a self-complementary plane partition in an 𝑎 × 𝑏 × 𝑐 bounding box, the
volume 𝑎𝑏𝑐 of the box must be an even number. In addition, cyclic symmetry requires 𝑎 = 𝑏 = 𝑐,
therefore, we need 𝑎 = 𝑏 = 𝑐 = 2𝑛 for there to exist a TSSCPP inside an 𝑎 × 𝑏 × 𝑐 bounding box.

Definition 2.5. Let TSSCPP(𝑛) denote the set of TSSCPP inside a 2𝑛 × 2𝑛 × 2𝑛 box.

2.3. TSSCPP Boolean triangles and a permutation case bijection

In this subsection, we review the characterization from [20] of TSSCPP as Boolean triangles and the
bijection of the same paper between permutation matrices and TSSCPP Boolean triangles whose entries
weakly decrease along rows. We also describe the weight on TSSCPP preserved in Theorem 1.1.

Definition 2.6 (Definition 2.12 of [20]). A TSSCPP Boolean triangle of order n is a triangular integer
array 𝑏 = {𝑏𝑖, 𝑗 } for 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑛 − 𝑖 ≤ 𝑗 ≤ 𝑛 − 1 with entries in {0, 1} such that the diagonal partial
sums satisfy the following inequality for all 1 ≤ 𝑗 < 𝑖 ≤ 𝑛 − 1:

1 +

𝑖∑
𝑘= 𝑗+1

𝑏𝑘,𝑛− 𝑗−1 ≥

𝑖∑
𝑘= 𝑗

𝑏𝑘,𝑛− 𝑗 . (2.1)

Call this the (𝑖, 𝑗)-inequality, in which 𝑛 − 𝑗 and 𝑛 − 𝑗 − 1 are the diagonals being compared and i
indicates the row index of where the sums stop.
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Figure 3. An example of the permutation case bijection of [20, Theorem 3.5].

We give below the indexing of a generic TSSCPP Boolean triangle.

𝑏1,𝑛−1
𝑏2,𝑛−2 𝑏2,𝑛−1

𝑏3,𝑛−3 𝑏3,𝑛−2 𝑏3,𝑛−1
...

𝑏𝑛−1,1 𝑏𝑛−1,2 · · · 𝑏𝑛−1,𝑛−2 𝑏𝑛−1,𝑛−1.

Below are a nonexample and an example of a TSSCPP Boolean triangle.

1
1 1

1 0 0
1 0 0 1

0 0 0 1 0

1
1 1

1 0 0
1 0 1 1

0 0 0 0 0.

In the left triangle, the (4, 1)-inequality is not satisfied since
∑4

𝑘=1 𝑏𝑘,𝑛−1 = 3 while
∑4

𝑘=2 𝑏𝑘,𝑛−2 = 1.
In the triangle on the right, all (𝑖, 𝑗)-inequalities are satisfied.

Proposition 2.7 (Proposition 2.13 of [20]). TSSCPP Boolean triangles of order n are in bijection with
TSSCPP(𝑛).

The bijection proceeds by taking the fundamental domain of the TSSCPP, transforming it into a nest
of nonintersecting lattice paths, and then recording the two different types of steps in each path as 0
and 1. The diagonal partial sum condition (2.1) is equivalent to the requirement that the paths do not
intersect. See [20] for details.

We now review the characterization of a certain subset of TSSCPP Boolean triangles.

Definition 2.8 (Definition 3.1 of [20]). A permutation TSSCPP Boolean triangle is a TSSCPP
Boolean triangle with weakly decreasing rows.

That is, the entries equal to one in a permutation TSSCPP Boolean triangle are all left justified. The
terminology ‘permutation’ in the above definition is justified by the weight-preserving bijection in the
theorem below. An example of this bijection is given in Figure 3.

Theorem 2.9 (Theorem 3.5 of [20]). There is a natural, statistic-preserving bijection between 𝑛 × 𝑛
permutation matrices with inversion number p and permutation TSSCPP Boolean triangles of order n
with p zeros.

The injection 𝜑 in Theorem 1.1 extends this bijection under the mild transformation of flipping the
resulting matrix vertically (or reversing the one-line notation of the permutation). Thus, in Theorem 1.1
we instead map the TSSCPP in Figure 3, left, to the vertical reflection of the matrix in Figure 3, right.
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The TSSCPP weight preserved in Theorem 1.1 is the number of 1 entries in the kth row from
the bottom in its Boolean triangle. More specifically, for 𝑇 ∈ TSSCPP(𝑛) with Boolean triangle b, let
one(𝑇) denote the set of indices of the entries of b that equal 1. Then wt(𝑇) :=

∏
(𝑖, 𝑗) ∈one(𝑇 ) 𝑥𝑛−𝑖 . For the

TSSCPP in Figure 3, wt(𝑇) = 𝑥1𝑥
2
3𝑥5 and for the TSSCPP in Figure 5, wt(𝑇) = 𝑥2

2𝑥3𝑥4. Note the weight
can also be seen directly on the TSSCPP fundamental domain, as each 1 in row 𝑛 − 𝑘 of b corresponds
to a black rhombus in column k (from the left) of the fundamental domain, as shown in these figures.

2.4. Bumpless pipe dreams

In this subsection, we define bumpless pipe dreams and describe the bijection with alternating sign
matrices.

Definition 2.10. A bumpless pipe dream (BPD) [14] of size n is a tiling of an 𝑛 × 𝑛 grid of squares
by the following six types of tiles: , , , , , , such that n pipes traveling from the south
border to the east border are formed. We denote the set of bumpless pipe dreams of size n as BPD(𝑛).
We say a bumpless pipe dream is reduced if no two pipes cross twice. We associate a permutation to
each reduced bumpless pipe dream by labeling the pipes 1, · · · , 𝑛 from left to right on the south border
and read off the pipe labels from top to bottom on the east border. Let BPD𝑟𝑒𝑑 (𝜋) denote the set of all
reduced bumpless pipe dreams with permutation 𝜋.

A simple droop is a move on a bumpless pipe dream bounded by a 2 × 2 square, as shown below.
The four pairs of 2 × 2 squares show all four possibilities a pipe enters and leaves the 2 × 2 square.

For each reduced bumpless pipe dream D, we define its weight to be the monomial wt(𝐷) :=∏
(𝑖, 𝑗) ∈blank(𝐷) 𝑥𝑖 , where blank(𝐷) denotes the set of the -tiles in D.
There is a natural, weight-preserving bijection between BPD(𝑛) and ASM(𝑛), as described in [21].

To obtain an ASM from a BPD we simply replace each with a 1, each with a −1, and the other four
allowed squares with 0s. The blank tiles of a BPD D correspond to the NW zeros of the associated
ASM A. Thus blank(𝐷) = 𝑁𝑊 (𝐴), so wt(𝐷) = wt(𝐴). For the inverse map, it is not difficult to see the
positions of and uniquely determine a bumpless pipe dream. See Figure 2 for an example.

2.5. Pipe dreams

In this subsection, we define pipe dreams and bounded compatible sequences and describe the bijection
between them.

Definition 2.11. A pipe dream (PD) [3] of size n is a tiling of an 𝑛 × 𝑛 grid of squares with two kinds
of tiles, the cross-tile and elbow-tile , such that the positions on or below the main (anti)diagonal
only consist of elbow-tiles. We think of a pipe dream as n pipes, labelled 1, · · · , 𝑛 traveling from the
north border and exiting from the west border. We denote the set of pipe dreams of size n as PD(𝑛). We
say a pipe dream is reduced if no two pipes cross twice. We associate a permutation to each reduced
pipe dream by reading from top to bottom the labels of each pipe on the west border of the pipe dream.
(One can also assign permutations to nonreduced pipe dreams, but this will not be important for the
present paper.) Let PD𝑟𝑒𝑑 (𝜋) denote the set of reduced pipe dreams with permutation 𝜋.

The set of pipe dreams for a fixed permutations are connected by chute and ladder moves. For precise
definitions, see [3]. When a ladder (or chute) move is bounded by a 2 × 2 square, we call this move a
simple slide, as shown below.
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Figure 4. PD𝑟𝑒𝑑 (1432).

Figure 4 shows the set of pipe dreams PD𝑟𝑒𝑑 (1432). The first four pipe dreams are connected by
simple slides; the fifth is not.

For each pipe dream D, we define its weight to be the monomial wt(𝐷) :=
∏

(𝑖, 𝑗) ∈cross(𝐷) 𝑥𝑖 , where
cross(𝐷) denotes the set of the -tiles in D.

Definition 2.12. A bounded compatible sequence [6] is a pair (a, r), where a = (𝑎1, · · · , 𝑎ℓ ) and
r = (𝑟1, · · · , 𝑟ℓ) are words of positive integers, satisfying the following conditions:

(a) 𝑟1 ≥ 𝑟2 ≥ · · · ≥ 𝑟ℓ ,
(b) 𝑎𝑖 ≥ 𝑟𝑖 for all 1 ≤ 𝑖 ≤ ℓ,
(c) 𝑟𝑖 > 𝑟𝑖+1 if 𝑎𝑖 ≥ 𝑎𝑖+1.

There is a simple bijection between PD(𝑛) and the set of all bounded compatible sequences where
𝑎𝑖 < 𝑛 for each i; see [3]. Given a bounded compatible sequence (a, r), we may construct a pipe dream
by putting a cross-tile at position (𝑟𝑖 , 𝑎𝑖 + 1 − 𝑟𝑖) for each 1 ≤ 𝑖 ≤ ℓ and fill the remaining positions
with elbow-tiles. Conversely, given a pipe dream, we may construct a bounded compatible sequence as
follows: Scan the pipe dream from bottom to top and within each row left to right, and whenever we
encounter a cross-tile at position (𝑟, 𝑐) we append (𝑟 +𝑐−1, 𝑟) to the compatible sequence. For example,
the corresponding bounded compatible sequences for the pipe dreams in Figure 4 are as follows; the
vector a is recorded in the top row and r in the bottom row.( 3 2 3

3 2 2
)
,
( 3 2 3

3 2 1
)
,
( 3 2 3

3 1 1
)
,
( 3 2 3

2 1 1
)
,
( 2 3 2

2 2 1
)
.

2.6. Reduced BPD-PD bijection

Both reduced pipe dreams and reduced bumpless pipe dreams give combinatorial formulas for Schubert
polynomials 𝔖𝜋 , 𝜋 ∈ 𝑆∞ which are important polynomials in the study of Schubert calculus [3, 14].
Explicitly,

𝔖𝜋 =
∑

𝐷∈PD𝑟𝑒𝑑 (𝜋)

∏
(𝑟 ,𝑐) ∈cross(𝐷)

𝑥𝑟 =
∑

𝐷∈BPD𝑟𝑒𝑑 (𝜋)

∏
(𝑟 ,𝑐) ∈blank(𝐷)

𝑥𝑟 .

For this reason, there exists a weight-preserving bijection between PD𝑟𝑒𝑑 (𝜋) and BPD𝑟𝑒𝑑 (𝜋), where
the weight of a PD or BPD is its monomial contribution to the Schubert polynomial indexed by its
permutation.

In [11], such an explicit direct bijection 𝜑 : BPD𝑟𝑒𝑑 (𝜋) → PD𝑟𝑒𝑑 (𝜋) is given using an iterative
algorithm. To find the image of a BPD under 𝜑, the algorithm computes in each iteration the position
of one crossing in the corresponding PD. For a detailed description of this process, see [11, Definition
3.1]. For explicit examples, see [11, Example 3.4]. This bijection is weight preserving; in particular, for
𝐷 ∈ BPD𝑟𝑒𝑑 (𝜋), the number of blank tiles in row k equals the number of cross-tiles in row k of 𝜑(𝐷).

Because the bijection is weight preserving and there is a unique lowest weight monomial that
corresponds to the Lehmer code of the permutation in each Schubert polynomial, the permutation BPD
is mapped to the bottom pipe dream, the unique pipe dream with all crosses left justified.
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3. Characterizing TSSCPP as pseudo-Yamanouchi pipe dreams

This section focuses on our first theorem: a characterization of TSSCPP as a subset of all (reduced and
nonreduced) pipe dreams.

3.1. Mapping TSSCPP into pipe dreams

Recall the bijection of Proposition 2.7 from TSSCPP to the TSSCPP Boolean triangles of Definition
2.6. As TSSCPP Boolean triangles are triangular arrays with entries in {0, 1}, we can transform them
to pipe dreams (reduced and nonreduced) since these are triangular arrays of tiles with two choices for
each spot. There are several possibilities for how to do this; we choose to correspond each 1 to a cross-
tile and each 0 to an elbow-tile . There are also several choices for orientation of the triangle. We
set the following convention.

Given a TSSCPP Boolean triangle b of order n, we create a triangular array 𝑦𝑖, 𝑗 , 1 ≤ 𝑖 ≤ 𝑛 − 1,
1 ≤ 𝑗 ≤ 𝑛−𝑖 of zeros and ones where 𝑦𝑖, 𝑗 = 𝑏𝑛−𝑖,𝑖+ 𝑗−1. That is, we flip b vertically and justify to the left.

𝑏𝑛−1,1 𝑏𝑛−1,2 𝑏𝑛−1,3 · · · 𝑏𝑛−1,𝑛−1
𝑏𝑛−2,2 𝑏𝑛−2,3 · · · 𝑏𝑛−2,𝑛−1
𝑏𝑛−3,3 · · · 𝑏𝑛−3,𝑛−1

. .
.

𝑏1,𝑛−1

𝑦1,1 𝑦1,2 𝑦1,3 · · · 𝑦1,𝑛−1
𝑦2,1 𝑦2,2 · · · 𝑦2,𝑛−2
𝑦3,1 · · · 𝑦3,𝑛−3

. .
.

𝑦𝑛−1,1

The inequality of Definition 2.6 translates to the following:

1 +

𝑖∑
𝑘=1

𝑦 𝑗−𝑘,𝑘 ≥

𝑖+1∑
𝑘=1

𝑦 𝑗−𝑘+1,𝑘 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 − 1.

Now, we turn each 1 into a cross-tile and each 0 into an elbow-tile . We call the pipe dreams
that lie in this image the TSSCPP pipe dreams. Note that permutation TSSCPP Boolean triangles have
weakly decreasing rows; this corresponds to left-justified crosses in the associated pipe dream.

3.2. A Yamanouchi-like condition on bounded compatible sequences

In this subsection, we prove Theorem 3.3 characterizing TSSCPP pipe dreams. We also prove Lemma
3.2, which will be used in Section 4.

Definition 3.1. Given a bounded compatible sequence

(a, r) = ((𝑎1, · · · , 𝑎ℓ ), (𝑟1, · · · , 𝑟ℓ)),

define count(𝑘, 𝑗) (a) (or count(𝑘, 𝑗) when a is understood) to be the number of j that appear in
𝑎1, · · · , 𝑎𝑘 . We say that (a, r) is pseudo-Yamanouchi if for all 1 ≤ 𝑘 ≤ ℓ, 1 ≤ 𝑗 ≤ 𝑛−2, 1+count(𝑘, 𝑗) ≥
count(𝑘, 𝑗 + 1). We also say that a pipe dream is pseudo-Yamanouchi if its corresponding bounded
compatible sequence is so.

Lemma 3.2. For any 𝜋, the bottom pipe dream is pseudo-Yamanouchi.

Proof. The bottom pipe dream is the unique pipe dream of 𝜋 with all left-justified cross-tiles. Thus, the
bounded compatible sequence (a, r) is either empty or a is made up of increasing runs such that it can
be written for some 𝑚 ≥ 1 as

a = ( 𝑗1, 𝑗1 + 1, . . . , 𝑗∗1 − 1, 𝑗∗1 , 𝑗2, 𝑗2 + 1, . . . , 𝑗∗2 − 1, 𝑗∗2 , . . . , 𝑗𝑚, 𝑗𝑚 + 1, . . . , 𝑗∗𝑚 − 1, 𝑗∗𝑚),
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Figure 5. An example of transforming a TSSCPP to a pipe dream. Note the weight of this TSSCPP is
𝑥2

2𝑥3𝑥4.

where 𝑗1 > 𝑗2 > · · · > 𝑗𝑚 and 𝑗∗𝑖 ≥ 𝑗𝑖 for all 1 ≤ 𝑖 ≤ 𝑚. Because 𝑗1 > 𝑗2 > · · · > 𝑗𝑚, each increasing
run needs to start with a smaller number than the previous.

Suppose (a, r) is not pseudo-Yamanouchi. Choose the smallest k such that there exists a j for which
1 + count(𝑘, 𝑗) < count(𝑘, 𝑗 + 1). Since count(𝑘, 𝑗) is a nonnegative increasing function of k, it must
be that 1 + count(𝑘 − 1, 𝑗) = count(𝑘 − 1, 𝑗 + 1) and 𝑎𝑘 = 𝑗 + 1 since we chose k to be the smallest
value with the property. If we are in row 𝑗 + 1 (𝑟𝑘 = 𝑗 + 1), then this is the first time that 𝑗 + 1 has
appeared in a, so count(𝑘, 𝑗 + 1) = 1 and thus cannot be greater than 1 + count(𝑘, 𝑗). If 𝑟𝑘 > 𝑗 + 1,
then 𝑎𝑘−1 = 𝑗 since the cross-tiles are left justified, and thus count(𝑘 − 1, 𝑗) + 1 = count(𝑘, 𝑗). But
1+count(𝑘−1, 𝑗) ≥ count(𝑘−1, 𝑗+1) = count(𝑘, 𝑗+1)−1. So finally, count(𝑘, 𝑗) ≥ count(𝑘, 𝑗+1)−1,
which is a contradiction. �
Theorem 3.3. TSSCPP(𝑛) is in weight-preserving bijection with the set of pseudo-Yamanouchi pipe
dreams in PD(𝑛).

Proof. We identify a TSSCPP with the 0-1 triangular array (𝑦𝑖, 𝑗 )1≤𝑖≤𝑛−1,1≤ 𝑗≤𝑛−𝑖 satisfying the inequal-
ities 1 +

∑𝑖
𝑘=1 𝑦 𝑗−𝑘,𝑘 ≥

∑𝑖+1
𝑘=1 𝑦 𝑗−𝑘+1,𝑘 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 − 1, as described in Section 3.1. These

inequalities mean the following: For any position (𝑖, 𝑗) in the corresponding pipe dream, the number
of crosses in the same diagonal as (𝑖, 𝑗) at or below row i can be at most one more than the number of
crosses in the previous diagonal at or below row i. Therefore, it suffices to check this property when
(𝑖, 𝑗) is a cross to decide whether the pipe dream is TSSCPP.

Now, suppose (𝑎, 𝑟) is an entry of a pseudo-Yamanouchi compatible sequence. Then by the definition
of the reading order, all crosses that appear at or below row r in the (𝑎−1)st diagonal of the corresponding
pipe dream appear before (𝑎, 𝑟) in the compatible sequence. Therefore, the inequality for the (𝑟, 𝑎−𝑟+1)
position is implied by the pseudo-Yamanouchi property. The converse is true by a similar argument.

By definition, wt(𝑇) = wt(𝐷), where T is a TSSCPP and D its corresponding pseudo-Yamanouchi
pipe dream. So this bijection is weight preserving. �

See Figure 5 for an example.

4. A bijection between TSSCPP and ASM in the reduced, 1432-avoiding case

In this section, we prove our first main result, Theorem 1.1. The proof uses the following theorem and
lemmas, the first of which is due to Yibo Gao.

https://doi.org/10.1017/fms.2023.131 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.131


10 D. Huang and J. Striker

We need the following terminology. A permutation 𝜋 avoids a permutation 𝜋′ if there is no subse-
quence of 𝜋 having the same relative order as 𝜋′.

Theorem 4.1 [10, Theorem 4.1]. If 𝜋 ∈ 𝑆𝑛 avoids 1432, then any two reduced pipe dreams of 𝜋 are
connected by simple slides.

Lemma 4.2. Suppose 𝐷 ∈ PD(𝑛) is pseudo-Yamanouchi and 𝐷 ′ ∈ PD(𝑛) is related to D by a simple
slide. Then 𝐷 ′ is pseudo-Yamanouchi.

Proof. Suppose 𝐷 ∈ PD(𝑛) is pseudo-Yamanouchi. Let (a, r) = ((𝑎1, · · · , 𝑎ℓ ), (𝑟1, · · · , 𝑟ℓ)) be its
associated bounded compatible sequence. Suppose for some 1 < 𝑖 < 𝑛, D has a tile at position
(𝑟𝑖 , 𝑎𝑖 + 1 − 𝑟𝑖) and no tiles at positions (𝑟𝑖 , 𝑎𝑖 + 2 − 𝑟𝑖), (𝑟𝑖 − 1, 𝑎𝑖 − 𝑟𝑖), or (𝑟𝑖 − 1, 𝑎𝑖 + 1 − 𝑟𝑖).
Then a simple slide may be applied to D, resulting in another pipe dream 𝐷 ′ with tile at position
(𝑟𝑖 − 1, 𝑎𝑖 + 1 − 𝑟𝑖) and no tiles at positions (𝑟𝑖 , 𝑎𝑖 + 1 − 𝑟𝑖), (𝑟𝑖 , 𝑎𝑖 + 2 − 𝑟𝑖), or (𝑟𝑖 − 1, 𝑎𝑖 − 𝑟𝑖). That
is, the simple slide moves the tile up one unit and to the right one unit and there were no other
tiles in these intermediate squares. This preserves the diagonal but decrements the row index, creating
a new bounded compatible sequence (a′, r′) = ((𝑎′1, · · · , 𝑎

′
ℓ), (𝑟

′
1, · · · , 𝑟

′
ℓ)) such that

𝑎′𝑘 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑎𝑘 𝑘 < 𝑖

𝑎𝑘+1 𝑖 ≤ 𝑘 < 𝑚

𝑎𝑖 𝑘 = 𝑚

𝑎𝑘 𝑚 < 𝑘 ≤ ℓ,

(4.1)

where𝑚 > 𝑖 is uniquely chosen so that (a′, r′) satisfies the conditions of a bounded compatible sequence.
Let 𝑗 := 𝑎𝑖 . So a and a′ differ only in that 𝑗 has slid to the right from index i to m.

Recall count(𝑘, 𝑗) (a) denotes the number of j that appear in 𝑎1, · · · , 𝑎𝑘 . By assumption, (a, r) is
pseudo-Yamanouchi, so for all 1 ≤ 𝑘 ≤ ℓ, 1 ≤ 𝑗 ≤ 𝑛 − 2, 1 + count(𝑘, 𝑗) (a) ≥ count(𝑘, 𝑗 + 1) (a). We
need only check that (a′, r′) is also pseudo-Yamanouchi. The only values of j we need to consider are
𝑗 − 1, 𝑗 , and 𝑗 + 1.

By (4.1), count(𝑘, 𝑗) (a′) = count(𝑘, 𝑗) (a) for all values of j when 𝑘 < 𝑖 or 𝑘 ≥ 𝑚. Thus, we need
only check the pseudo-Yamanouchi inequality for k in the range 𝑖 ≤ 𝑘 < 𝑚.

Suppose 𝑖 ≤ 𝑘 < 𝑚. Since (a, r) and (a′, r′) are related by a simple slide, we know there is no cross
in D at position (𝑟𝑖−1, 𝑎𝑖 − 𝑟𝑖). That is, 𝑎𝑚−1 ≠ 𝑗 − 1. Furthermore, 𝑎𝑘 ≠ 𝑗 − 1 for all 𝑖 ≤ 𝑘 < 𝑚. Thus,
count(𝑘, 𝑗 − 1) (a′) = count(𝑘, 𝑗 − 1) (a) for all 𝑖 ≤ 𝑘 < 𝑚 while count(𝑘, 𝑗) (a′) = count(𝑘, 𝑗) (a) − 1
in this same range. So

count(𝑘, 𝑗 − 1) (a′) = count(𝑘, 𝑗 − 1) (a) ≥ count(𝑘, 𝑗) (a) − 1 = count(𝑘, 𝑗) (a′).

So the pseudo-Yamanouchi condition is more than satisfied when comparing diagonals 𝑗 − 1 and 𝑗 .
Since (a, r) and (a′, r′) are related by a simple slide, we also know there is no cross in D at

position (𝑟𝑖 , 𝑎𝑖 + 2 − 𝑟𝑖). That is, 𝑎𝑖+1 ≠ 𝑗 + 1. Furthermore, 𝑎𝑘 ≠ 𝑗 + 1 for all 𝑖 ≤ 𝑘 < 𝑚. Thus,
count(𝑘, 𝑗 + 1) (a′) = count(𝑘, 𝑗 + 1) (a) for all 𝑖 ≤ 𝑘 < 𝑚 while count(𝑘, 𝑗) (a′) = count(𝑘, 𝑗) (a) − 1
in this same range. So

1 + count(𝑘, 𝑗) (a′) = 1 + count(𝑘, 𝑗) (a) ≥ count(𝑘, 𝑗 + 1) (a) = count(𝑘, 𝑗 + 1) (a′).

Thus, the pseudo-Yamanouchi condition is satisfied on diagonals 𝑗 and 𝑗 + 1.
Therefore, (a′, r′) is pseudo-Yamanouchi, implying 𝐷 ′ is pseudo-Yamanouchi. �

Lemma 4.3. If 𝜋 ∈ 𝑆𝑛 avoids 1432, then all reduced pipe dreams of 𝜋 are pseudo-Yamanouchi.

Proof. Choose 𝜋 ∈ 𝑆𝑛 that avoids 1432. Using the previous two lemmas, we know that simple slides
preserve the pseudo-Yamanouchi property and that all reduced pipe dreams in PD𝑟𝑒𝑑 (𝜋) are connected
by simple slides. So we need only show one reduced pipe dream is pseudo-Yamanouchi, and then all
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of them are. By Lemma 3.2, the bottom (permutation) pipe dream is pseudo-Yamanouchi. Thus, the
lemma is proved. �

Proof of Theorem 1.1. Let 𝜋 ∈ 𝑆𝑛. The explicit bijection 𝜑 : PD𝑟𝑒𝑑 (𝜋) → BPD𝑟𝑒𝑑 (𝜋) of [11] discussed
in Section 2.6 is weight preserving; in particular, for 𝐷 ∈ PD𝑟𝑒𝑑 (𝜋), the number of cross-tiles in row k
equals the number of blank tiles in row k of 𝜑(𝐷), so wt(𝐷) = wt(𝜑(𝐷)). By Theorem 3.3, TSSCPP
are characterized as the set of pseudo-Yamanouchi pipe dreams in PD(𝑛), and the weight is preserved in
this bijection. Thus, whenever such pipe dreams are reduced, 𝜑 produces a BPD with the same weight,
which is in bijection with an ASM of the same weight. Thus, we have a weight-preserving injection
𝜑 : TSSCPP𝑟𝑒𝑑 (𝜋) ↩→ ASM𝑟𝑒𝑑 (𝜋) given by transforming the TSSCPP to its corresponding reduced
pipe dream as in Theorem 3.3, mapping it to a reduced BPD using 𝜑 and then transforming to an ASM
using the bijection described in Section 2.4.

Suppose 𝜋 avoids 1432. Then by Lemma 4.3, all pipe dreams in PD𝑟𝑒𝑑 (𝜋) are pseudo-Yamanouchi,
so TSSCPP𝑟𝑒𝑑 (𝜋) is in bijection with PD𝑟𝑒𝑑 (𝜋). So the above injection is a bijection between
TSSCPP𝑟𝑒𝑑 (𝜋) and ASM𝑟𝑒𝑑 (𝜋). �

5. A poset-preserving bijection in the 2143- and 1432-avoiding case

In this section, we study posets constructed using simple slides on pipe dreams and simple droops on
bumpless pipe dreams. We use this understanding to construct a bijection between TSSCPP𝑟𝑒𝑑 (𝜋) and
ASM(𝜋) that preserves their poset structure in the case that 𝜋 avoids both 1432 and 2143. Note that
this bijection is not, in general, the same as the bijection 𝜑 used in Theorem 1.1; see Remark 5.11. Note
also that when 𝜋 avoids 2143, ASM𝑟𝑒𝑑 (𝜋) = ASM(𝜋) since all BPD that avoid 2143 are reduced; see
Lemma 5.3 below.

We use simple droops to define a poset on BPD. The Rothe BPD of 𝜋 is the BPD corresponding to
the permutation matrix of 𝜋. We will also refer to the Rothe BPD as the Rothe diagram of 𝜋. Note that
the connected regions of blank tiles of a Rothe diagram are all partition shaped.

Definition 5.1. Given 𝜋 ∈ 𝑆𝑛, let Droop(𝜋) denote the poset constructed from applying simple droops
in all possible ways to the Rothe BPD of 𝜋. The Rothe BPD is the bottom element of the poset and each
simple droop moves up in the poset.

Note that this construction also induces a poset on the corresponding ASM by the simple bijection
between BPD and ASM.

Definition 5.2. The set of essential boxes of a permutation 𝜋 is the set ess(𝜋) := {(𝑖, 𝑗) : 𝜋( 𝑗) >
𝑖, 𝜋−1 (𝑖) > 𝑗, 𝜋( 𝑗 + 1) ≤ 𝑖, 𝜋−1 (𝑖 + 1) ≤ 𝑗}. In other words, ess(𝜋) consists of the southeast (SE)-most
corners in the connected regions of blank tiles of the Rothe diagram of 𝜋. Define the dominant region
of Rothe diagram to be the connected region of blank tiles containing (1, 1). Note that the dominant
region might be empty.

The following statement is found in [21].

Lemma 5.3 [21, Lemma 7.2, Lemma 7.4 (2)]. If 𝜋 ∈ 𝑆𝑛 avoids 2143, then any 𝐷 ∈ BPD(𝜋) is reduced,
and any two bumpless pipe dreams of 𝜋 are connected by simple droops.

This yields the following corollary.

Corollary 5.4. If 𝜋 ∈ 𝑆𝑛 avoids 2143, the elements of Droop(𝜋) are all of BPD(𝜋).

We define a similar poset for pipe dreams, using the simple slides of Section 2.5.

Definition 5.5. Given 𝜋 ∈ 𝑆𝑛, let Slide(𝜋) denote the poset constructed from applying simple slides to
the bottom pipe dream in all possible ways. The bottom pipe dream is the bottom element of this poset,
and each simple slide moves up in the poset.

We have the following, as a corollary of the result of Gao we stated as Theorem 4.1.
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Figure 6. The Rothe BPD of a Grassmannian permutation is determined by blank tiles satisfying
conditions (a)–(d) of Lemma 5.8. Transposing the diagrams, we get the analogous statements for inverse
Grassmannians.

Corollary 5.6. If 𝜋 ∈ 𝑆𝑛 avoids 1432, the elements of Slide(𝜋) are all of PD𝑟𝑒𝑑 (𝜋).

An important class of permutations are the Grassmannian permutations, which are defined as the
permutations with at most one descent. Grassmannian permutations necessarily avoid both 2143 and
1432 since these patterns each have two descents. Inverse-Grassmannian permutations are permuta-
tions whose inverse is Grassmannian. These also avoid both 2143 and 1432 since these patterns are their
own inverses.

We now relate Droop(𝜋) and Slide(𝜋) in the cases that 𝜋 is inverse-Grassmannian or Grassmannian.
We will need the following lemmas, the first of which is also due to Weigandt.

Lemma 5.7 [21, Lemma 7.4 (1)]. If 𝜋 avoids 2143, all bumpless pipe dreams in BPD(𝜋) are uniquely
determined by the locations of the blank tiles.

We remark that the same paper shows 1432-avoiding bumpless pipe dreams are in bijection with
flagged tableaux constructed by filling the blank tiles with numbers [21, Theorem 1.6].

Lemma 5.8. The blank tiles in the Rothe BPD of a Grassmannian permutation have the following
characterizing properties:

(a) Each connected region of blank tiles is a rectangular block.
(b) The essential boxes lie in the same row.
(c) The northwest (NW)-most blank tile of the leftmost rectangular block is on the diagonal.
(d) If 𝐵1 and 𝐵2 are two consecutive blocks and the horizontal distance between them is d, then the

height of 𝐵1 is d more than the width of 𝐵2.

Furthermore, if a set of blank tiles satisfy the properties above, this set uniquely determines the Rothe
BPD of a Grassmannian permutation. If we replace (c) and (d) with the following

(b′) The essential boxes lie in the same column.
(d′) If 𝐵1 and 𝐵2 are two consecutive blocks and the vertical distance between them is d, then the width

of 𝐵1 is d more than the width of 𝐵2,

we get similar characterizing properties for the inverse-Grassmannian permutations.

Proof. We may consider the permutation as an element in 𝑆∞ and the BPDs to be unbounded in the
east and south directions. The Rothe BPD of an inverse-Grassmannian permutation is the transpose of
that of a Grassmanian permutation, so it suffices to argue for Grassmannian permutations. It is easy to
see the set of blank tiles of the Rothe BPD for a Grassmannian permutation satisfies properties (a)–(d).
Given a set of blank tiles satisfying (a)–(d), we may construct a Rothe BPD by iteratively placing a

tile at the NW-most undetermined position, and extending to the east by a horizontal ray and to the
south by a vertical ray. The properties (a)–(d) guarantee that this is always possible; see Figure 6. �
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Figure 7. A weight-preserving and poset-preserving bijection between BPD(14253) and PD(14253).
Note that 14253 is inverse Grassmannian and avoids both 1432 and 2143.

We are now ready to show a poset isomorphism between BPD and reduced PD in the inverse-
Grassmannian case.

Theorem 5.9. If 𝜋 ∈ 𝑆𝑛 is inverse-Grassmannian, there is an explicit weight-preserving bijection
between BPD(𝜋) and PD𝑟𝑒𝑑 (𝜋) such that Droop(𝜋) � Slide(𝜋).

Proof. Suppose 𝜋 ∈ 𝑆𝑛 is inverse Grassmannian. By Lemma 5.7, since 𝜋 avoids 2143, the blank tiles
of the BPD completely determine it. The map on the Rothe BPD of 𝜋 that left justifies all the blank
tiles and turns them into crosses results in the bottom (permutation) pipe dream of 𝜋 [3]. By Lemma
5.8, the blank tiles in the Rothe BPD of 𝜋 are disconnected rectangular blocks that are aligned on
the right. When they are left justified to create the bottom pipe dream, they become mirror-image
rectangular blocks aligned on the left. Furthermore, the NW-most blank tile in the Rothe BPD is on the
diagonal. The number of simple droops that may be applied to this blank tile then equals the number
of simple slides that may be applied to the rightmost cross in this row of the bottom pipe dream.
Moreover, the simple droop moves of Droop(𝜋) correspond exactly to the simple slides of Slide(𝜋).
Thus, Droop(𝜋) � Slide(𝜋). By construction, the number of blank tiles in row k of a BPD in Droop(𝜋)
corresponds to the number of cross-tiles in row k of the corresponding PD, so this weight is preserved.
See Figure 7 for an example. �

The following is a direct application of Theorem 5.9 to ASM and TSSCPP.

Corollary 5.10. If 𝜋 ∈ 𝑆𝑛 is inverse Grassmannian, there is an explicit weight-preserving bijection
between ASM(𝜋) and TSSCPP𝑟𝑒𝑑 (𝜋) such that Droop(𝜋) � Slide(𝜋).

Remark 5.11. For crystal-theoretic reasons, the bijection of Corollary 5.10 coincides with the bijection
𝜑 of Theorem 1.1, though this will not be true for the subsequent corollaries of this section.

We have a similar result for Grassmannian permutations, but the poset isomorphism is with the dual
poset Slide(𝜋)∗ (all order relations reversed). Note that in the case that 𝜋 avoids 1432, by Theorem 4.1,
Slide(𝜋) has a unique maximal element, the pipe dream in which all the crosses are top justified; this is
called the top pipe dream. Thus, Slide(𝜋)∗ has the top pipe dream as its unique minimal element.
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We now show a dual poset isomorphism between BPD and reduced PD in the Grassmannian case.
Note that the transpose of a Grassmannian permutation is inverse Grassmannian, so Grassmannian
permutations satisfy the transpose of the description in Theorem 5.9.

Theorem 5.12. If 𝜋 ∈ 𝑆𝑛 is Grassmannian, there is an explicit bijection between BPD(𝜋) and PD𝑟𝑒𝑑 (𝜋)
such that Droop(𝜋) � Slide(𝜋)∗.

Proof. Suppose 𝜋 ∈ 𝑆𝑛 is Grassmannian. By Lemma 5.7, since 𝜋 avoids 2143, the blank tiles of the BPD
completely determine it. The map on the Rothe BPD of 𝜋 that top justifies all the blank tiles and turns
them into crosses results in the top pipe dream of 𝜋. This can be seen by transposing the construction
that left justifies blank tiles of inverse-Grassmannian Rothe BPDs as described in the proof of Theorem
5.9. By Lemma 5.8, the blank tiles in the Rothe BPD of 𝜋 are disconnected rectangular blocks that are
aligned on the bottom. When they are top justified to create the top pipe dream, they become mirror-
image rectangular blocks aligned on the top. Furthermore, the NW-most blank tile in the Rothe BPD
is on the diagonal. The number of simple droops that may be applied to this blank tile then equals the
number of inverse simple slides that may be applied to the lowest cross in this column of the top pipe
dream. Moreover, the simple droop moves of Droop(𝜋) correspond exactly to the inverse simple slides
of Slide(𝜋). Thus, Droop(𝜋) � Slide(𝜋)∗. �

Remark 5.13. Note that by construction of this poset isomorphism, the number of blank tiles in row k
of a BPD in Droop(𝜋) corresponds to the number of cross-tiles row 𝑛 − 𝑘 + 1 of the corresponding PD,
so this weight is reversed instead of preserved.

The corollary below follows immediately from Theorem 5.12.

Corollary 5.14. If 𝜋 ∈ 𝑆𝑛 is Grassmannian, there is an explicit bijection between ASM(𝜋) and
TSSCPP𝑟𝑒𝑑 (𝜋) such that Droop(𝜋) � Slide(𝜋)∗.

Remark 5.15. One may wonder why we use the dual poset in this theorem/corollary when many small
examples, including that of Figure 7, seem to indicate that these posets may be self-dual. An example
of a Grassmannian permutation 𝜋 for which Slide(𝜋) ≠ Slide(𝜋)∗ is 𝜋 = 146235.

Now, we generalize these correspondences to define a poset on PD(𝜋) in the case that 𝜋 avoids both
1, 432 and 2, 143 that is isomorphic to Droop(𝜋). This will yield a poset-preserving bijection between
the corresponding TSSCPP and ASM. First, we characterize features of these BPD in the lemmas below.

The following statement is well known. We include a short proof.

Lemma 5.16. If 𝜋 is 2143-avoiding, then essential boxes of the Rothe diagram of 𝜋 run northeast to
southwest. Namely, it is impossible that (𝑖1, 𝑗1), (𝑖2, 𝑗2) ∈ ess(𝜋) such that 𝑖1 < 𝑖2 and 𝑗1 < 𝑗2.

Proof. Let 𝜋 be a permutation, and suppose (𝑖1, 𝑗1) and (𝑖2, 𝑗2) are two essential boxes of 𝜋. Suppose
𝑖1 < 𝑖2 and 𝑗1 < 𝑗2. Since (𝑖1, 𝑗1) ∈ ess(𝜋), we have 𝜋−1 ( 𝑗1 + 1) ≤ 𝑖1 and 𝜋(𝑖1 + 1) ≤ 𝑗1. Since
(𝑖2, 𝑗2) ∈ ess(𝜋), there exist 𝑖1 + 1 < 𝑎 ≤ 𝑖2 such that 𝜋(𝑎) > 𝑗2 and 𝑗1 + 1 < 𝑏 ≤ 𝑗2 such that
𝜋−1 (𝑏) > 𝑖2. We then have 𝜋−1 ( 𝑗1 + 1) < 𝑖1 + 1 < 𝑎 < 𝜋−1(𝑏), where 𝜋(𝑖1 + 1) < 𝑗1 + 1 < 𝑏 < 𝜋(𝑎),
so 𝜋 must be 2,143-containing. �

Lemma 5.17. If 𝜋 is 1432-avoiding, the Rothe diagram of 𝜋 satisfies the following properties:

(a) The partition shapes formed by the blank region must all be rectangles, except for the dominant
region.

(b) Let 𝐵1 and 𝐵2 be two nondominant connected regions of blank tiles with essential boxes (𝑖1, 𝑗1)
and (𝑖2, 𝑗2). If 𝐵1 and 𝐵2 both contain tiles in some row r, then 𝑖1 = 𝑖2. If 𝐵1 and 𝐵2 both contain
tiles in some column j, then 𝑗1 = 𝑗2.

Proof. For (a), suppose to the contrary that there is a nonrectangular partition that is not dominant. Let
(𝑎, 𝑏) be its NW corner and (𝑖1, 𝑗1), (𝑖2, 𝑗2) with 𝑖1 < 𝑖2 and 𝑗1 > 𝑗2 SE corners of this partition with no
other SE corners in between. Note that 𝑎 > 1. Let (𝑥, 𝑦) be the unique outer NW corner SW of (𝑖1, 𝑗1)
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and northeast (NE) of (𝑖2, 𝑗2). It must be the case that 𝜋(𝑥) = 𝑦. Then 𝜋(𝑎 − 1) < 𝑏, 𝜋(𝑖1) > 𝑗1 and
𝜋−1 ( 𝑗2) > 𝑖2. Therefore, 𝑎 − 1 < 𝑖1 < 𝑥 < 𝜋−1( 𝑗2) and 𝜋(𝑎 − 1), 𝜋(𝑖1), 𝜋(𝑥), 𝑗2 gives the pattern 1432,
contradicting our assumption on 𝜋.

For (b), we show the row statement and the column statement is similar. It suffices to consider the
case when 𝐵1 and 𝐵2 are adjacent and 𝑗1 < 𝑗2. Now, suppose 𝑖1 ≠ 𝑖2. Since 𝐵1 and 𝐵2 both contain
tiles in some row r, we must have 𝑖1 > 𝑖2. Let (𝑎, 𝑏) be the NW corner of 𝐵1, then 𝜋(𝑎 − 1) < 𝑏 ≤ 𝑗1.
Since (𝑖2, 𝑗2) ∈ ess(𝜋), 𝜋(𝑖2) > 𝑗2. Note also that 𝑗1 < 𝜋(𝑖1) ≤ 𝑗2. Finally, 𝜋−1 (𝑏) > 𝑖1. We then have
𝑎 − 1 < 𝑖2 < 𝑖1 < 𝜋−1 (𝑏) and 𝜋(𝑎 − 1) < 𝑏 < 𝜋(𝑖1) < 𝜋(𝑖2) which gives the pattern 1,432. �

Lemma 5.18. Suppose 𝜋 is 1432- and 2143-avoiding. If (𝑖, 𝑗1), (𝑖, 𝑗2) ∈ ess(𝜋), 𝑗1 < 𝑗2 and (𝑖, 𝑗1) is
not in the dominant region, then (𝑖′, 𝑗1) ∉ ess(𝜋) for any 𝑖′ > 𝑖. Similarly, if (𝑖1, 𝑗), (𝑖2, 𝑗) ∈ ess(𝜋),
𝑖1 < 𝑖2 and (𝑖1, 𝑗) is not in the dominant region, then (𝑖1, 𝑗

′) ∉ ess(𝜋) for any 𝑗 ′ > 𝑗 .

Proof. Suppose (𝑖1, 𝑗1), (𝑖1, 𝑗2), (𝑖2, 𝑗1) ∈ ess(𝜋) with 𝑖1 < 𝑖2 and 𝑗1 < 𝑗2, and (𝑖1, 𝑗1) is not in the
dominant region. Suppose B, 𝐵1, 𝐵2 are the blank regions containing (𝑖1, 𝑗1), (𝑖1, 𝑗2) and (𝑖2, 𝑗1),
respectively. Suppose (𝑎1, 𝑏) is the NW corner of B and 𝑎2 is the row index of the topmost row in 𝐵2.
Then 𝜋(𝑎 − 1) < 𝑏 ≤ 𝑗1, 𝜋(𝑖1) > 𝑗2, and 𝜋−1( 𝑗1) > 𝑖2. Since the essential boxes of 2143-avoiding
permutations run NE to SW by Lemma 5.16, there can be no blank tiles strictly SE of (𝑖1, 𝑗1), and
therefore 𝑗1 < 𝜋(𝑎2) ≤ 𝑗2. We then have 𝑎−1 < 𝑖1 < 𝑎2 < 𝜋−1 ( 𝑗1) and 𝜋(𝑎−1) < 𝑗1 < 𝜋(𝑎2) < 𝜋(𝑖2)
giving the pattern 1432. �

Definition-Lemma 5.19. If 𝜋 ∈ 𝑆𝑛 is 2143- and 1432-avoiding, the Rothe BPD can be partitioned
into a dominant partition of empty squares in the NW corner, a partition shape of fixed pipes in the
SE corner, and disjoint blocks containing nonintersecting pipes corresponding to Grassmannian and
inverse-Grassmannian permutations. Call this the block-decomposition of 𝜋.

Proof. By Lemmas 5.17 and 5.18, the set of essential boxes outside of the dominant region can be
partitioned into 𝐸1, · · · , 𝐸𝑚 according to whether they lie on the same row or column. In particular, if
𝑒1, 𝑒2 ∈ 𝐸𝑖 for some i, then either 𝑒1 and 𝑒2 are in the same row, or they are in the same column. If
𝐸𝑖 contain essential boxes in the same row r, let c be the smallest column index such that (𝑟, 𝑐) is not
in the dominant region. Let 𝑟 ′ < 𝑟 be the smallest row index such that (𝑟 ′, 𝑐) is not in the dominant
region. Let l be the sum of the widths of the rectangular blocks of blank tiles with essential boxes in 𝐸𝑖 .
Then the rectangular region with (𝑟, 𝑐) as the SW corner of height 𝑟 − 𝑟 ′ + 1 and width 𝑙 + 𝑟 − 𝑟 ′ + 1
consist of 𝑟 − 𝑟 ′ + 1 nonintersecting pipes and agree with the top 𝑟 − 𝑟 ′ + 1 rows of the Rothe BPD of
a Grassmannian permutation by Lemma 5.8. Transposing this construction we get a rectangular region
of inverse-Grassmannian permutation. The rest of the Rothe diagram contains fixed pipes, as there are
no more blank tiles. �

Theorem 5.20. Suppose 𝜋 ∈ 𝑆𝑛 avoids both 2143 and 1432. Let 𝜎1, 𝜎2, . . . , 𝜎𝑘 be the inverse-
Grassmannian permutations in the block decomposition of 𝜋 and 𝜏1, 𝜏2, . . . , 𝜏ℓ the Grassmannian per-
mutations in the block decomposition of 𝜋. There is an explicit bijection between BPD(𝜋) and PD𝑟𝑒𝑑 (𝜋)
such that

Droop(𝜋) � Slide(𝜎1) × Slide(𝜎2) × · · · × Slide(𝜎𝑘 ) × Slide(𝜏1)
∗ × Slide(𝜏2)

∗ × · · · × Slide(𝜏ℓ)∗.

Proof. By Lemma 5.19, the Rothe diagram of such a permutation is block Grassmannian and inverse
Grassmannian. So we begin by mapping the Rothe diagram to a PD block-by-block. For the Grassman-
nian blocks, we map to the top pipe dream, and for the inverse-Grassmannian blocks, we map to the
bottom pipe dream. Then from Theorems 5.9 and 5.12, the posets for each block are isomorphic or dual
isomorphic. So we have the stated poset isomorphism. �

The corollary below follows immediately.
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Figure 8. Example of an Rothe BPD for a 2143- and 1432-avoiding permutation and its image under
the poset-preserving bijection 𝜓.

Corollary 5.21. If 𝜋 ∈ 𝑆𝑛 avoids both 2143 and 1432, there is an explicit bijection 𝜓 between ASM(𝜋)
and TSSCPP𝑟𝑒𝑑 (𝜋) such that

Droop(𝜋) � Slide(𝜎1) × Slide(𝜎2) × · · · × Slide(𝜎𝑘 ) × Slide(𝜏1)
∗ × Slide(𝜏2)

∗ × · · · × Slide(𝜏ℓ)∗,

where 𝜎1, 𝜎2, . . . , 𝜎𝑘 are the inverse-Grassmannian permutations and 𝜏1, 𝜏2, . . . , 𝜏ℓ the Grassmannian
permutations in the block decomposition of 𝜋.

Example 5.22. In Figure 8, we show an example of the Rothe BPD for a 2143- and 1432-avoiding
permutation 𝜋 and its image under the poset-preserving bijection 𝜓. The dominant partition in the upper
left corner of each diagram is (6, 6, 6, 5, 4). The block decomposition of 𝜋 (from Definition-Lemma
5.19) consists of the Grassmannian permutation 𝜎 = 146235 (shown in the upper right of each diagram)
and the inverse-Grassmannian permutation 𝜏 = 142563 (shown in the lower left of each diagram).

Remark 5.23. In [9], Fan and Guo give a formula with set-valued Rothe tableaux for Grothendieck
polynomials indexed by 1432-avoiding permutations, which when restricted to the reduced case gives a
formula for Schubert polynomials. It is not hard to see that their (set-valued) Rothe tableaux are in direct
bijection with pipe dreams. In a similar spirit, Weigandt [21] gives a direct bijection between vexillary
bumpless pipe dreams and flagged (set-valued) tableaux. It is possible to combine these tools in the
2143- and 1432-avoiding case to obtain a bijection between pipe dreams and bumpless pipe dreams via
tableaux. Such a bijection agrees with the Gao–Huang bijection [11] and therefore is different from our
poset-preserving bijection.

6. Concluding remarks

We conclude the paper by discussing the progress made thus far on the ASM-TSSCPP bijection problem
and an outlook on and challenges to further progress. Table 1 below shows the numbers up to 𝑛 = 7
(computed using SageMath [17]) of ASM and TSSCPP that correspond using the theorems of this
paper (Columns 3, 6, 7) as well as the results of [20, 1, 19, 7, 5] (Columns 2, 4, 5).

◦ Column 2 is given by 𝑛!, as this counts the permutation case bijection of [20].
◦ Column 3 gives those matched under the poset-preserving 1432- and 2143-avoiding bijection of the

present paper (Corollary 5.21).
◦ Column 4 gives the number of ASM and TSSCPP matched in the bijection of [1, Theorem 4], which

concerns the case that the monotone triangle associated to the ASM is gapless; this is the same set
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Table 1. The number of ASM and TSSCPP in correspondence via the various results of this paper
and as compared to other subset bijections. The column headings in bold represent results from
this paper..

Size Perm (1432,2143) 213-avoiding Two 1432 Matched Total
la bijection -avoiding (gapless) diagonal -avoiding in number

bijection bijection bijection bijection injection of ASM

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 6 7 6 7 7 7 7
4 24 33 26 35 36 40 42
5 120 185 162 219 246 362 429
6 720 1175 1450 1594 2135 5125 7436
7 5040 8261 18626 12935 23067 112941 218348

Figure 9. Challenges for the remaining unmatched TSSCPP pipe dreams and bumpless pipe dreams.

as the intersection discussed in [19, Section 7]. Remark 6.1 below explains the connection to pattern
avoidance.

◦ Column 5 gives the number matched in the bijections of [7, 5], which both concern the case of at
most two nontrivial diagonals in the monotone triangle.

◦ Column 6 gives the number matched in the weight-preserving 1432-avoiding bijection of the present
paper (Theorem 1.1).

◦ Column 7 gives the number matched in the weight-preserving injection of Theorem 1.1 on all TSSCPP
whose pipe dreams are reduced.

◦ Column 8 gives the total number of ASM, for comparison.

One may ask whether any of these bijections include any of the other partial bijections. As noted
earlier, the weight-preserving injection of Theorem 1.1 (Column 7) extends the permutation case
bijection of [20] (Column 2). Also, the subsets addressed in this paper are proper subsets of each other
(Columns 3, 6, 7). But it is useful to note that the subset of ASM included in other bijections discussed
here may not be a proper subset of the ASM included in Theorem 1.1. In particular, the one ASM with
𝑛 = 4 whose BPD is nonreduced (pictured in Figure 9, upper right) has monotone triangle with only
two nontrivial diagonals. Thus, it is included in the bijection of Column 5 [7, 5], but not in Theorem 1.1
(Column 7).

Remark 6.1. Pattern avoidance is discussed in [1], in the sense that the bijection of Column 4 [1,
Theorem 4] includes all permutations that avoid the pattern 312, using the conventions of that paper.
In the conventions of the current paper, this corresponds to the set {ASM(𝜋) | 𝜋 avoids 213}, the ASM
whose associated permutation 𝜋 avoids the pattern 213. (A gapless monotone triangle is obtained from
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such an ASM A as follows: The ith row consists of the column indices whose partial sum from the
bottom row to row (𝑛 − 𝑖 + 1) of A equals 1.) If a permutation avoids 213, it necessarily avoids 2143,
but it might not avoid 1432. Table 1 shows that for small n, the cardinality of {ASM(𝜋) | 𝜋 avoids 213}
is smaller than the cardinality of {ASM(𝜋) | 𝜋 avoids 1432 and 2143}, but for larger values of n in the
table, this comparison is reversed.

One may ask whether it is possible to extend the bijection of Theorem 1.1 beyond 1432-avoiding
permutations and/or remove the reducedness restrictions. There are some challenges. In the case of
𝑛 = 4, 40 pseudo-Yamanouchi pipe dreams are reduced, so all the corresponding TSSCPP are mapped
to reduced BPD and therefore to ASM. There are only two remaining TSSCPPs, shown in the left column
of Figure 9. There is one remaining reduced pipe dream, shown in the bottom middle of Figure 9, which
maps by 𝜑 to the BPD on the bottom right. Comparing this reduced pipe dream with the two remaining
TSSCPP pipe dreams, we see it differs from the one with three crosses by moving the top cross to
the right, creating a nonreduced pipe dream. In general, the set of reduced pipe dreams for a fixed
permutation are connected by (𝑛 × 2)–ladder moves and (2 × 𝑛)–chute moves [3], and these moves do
not always preserve the pseudo-Yamanouchi property when 𝑛 > 2.

In the forthcoming work of Shimozono, Yu and the first author, a weight-preserving bijection between
the set of all 2(

𝑛
2) pipe dreams in PD(𝑛) and the set of all marked bumpless pipe dreams (a marked

BPD is a BPD whose -tiles admit a binary marking) of size n, which generalizes the bijection in [11].
Under this bijection, the BPD on the top right of Figure 9 is mapped to the PD on the top middle. Notice
that the one remaining TSSCPP PD on the top left has one more , so a bijection that preserves this
weight is no longer possible.
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