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being affected by aspect, and by distance in so far as detail is concerned, it is also
dependent upon the season, the weather, and the time of day. A coastline in
winter, covered with snow, on a dull overcast day or with long shadows cast by
a low sun, will be very different in everything save silhouette when seen on a
bright summer's day. Such drawbacks have not, however, deterred publication
of such views in the Pilots, even when there is little choice of quality.

As to the position from which each radar photograph is taken, this will almost
settle itself. For pictures intended as an aid to landfall, the range should perhaps
be that at which just sufficient land will paint on a normal set under normal
conditions for identification to be positive. If super-refraction conditions exist
when the landfall is being made, so much the better for identification; while
sub-refraction of any material consequence is unlikely. The bearing of the posi-
tion may be stated as well as the range—thus conforming to the practice
established on so many of the existing views.

Accuracy Contour Maps of a Ship's
Position

Jrom N. Sameshima
(Nautical Society of Japan)

The writer has drawn the accuracy contour maps of a ship's position fixed by
cross bearing, horizontal sextant angle method and Loran aid. The accuracy of
the fixes has been evaluated in terms of the probability density.

In Fig. i, Pis the ship's position fixed from cross bearings of the objects A
and B, and d is the angle between two bearings, d i and d2 are the distances of the
objects. The displacement probable error in each of the lines of bearing at P is

r = d sin AZ ( i)

where AZ is the probable error in observed bearing.
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Fig. 1.

The probability density at P is given by
p = (I/27TCT1O-2) sin 6 = (0-0724/1-^2) sin 9 (2)

where clt a2 are the displacement standard errors in each line of bearing at P.
From equations (1) and (2)

where k = o-oj24.jsin2AZ.

(3)
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(4)
Assuming k = i, equation (4) will give the contour map shown in Fig. 2.

A 8

Fig. 2. The accuracy contour map JOT the cross bearing method (values ofj>)-

In Fig. 3, <f>! and <j>2 are the horizontal sextant angles between the objects A, B

and A, C. The displacement probable errors at P due to the error in sextant
angles are shown as follows2:

r2=Zl<£2AP(CP)/AC/ Kb>
where A<f>i and A<j>2 are the probable errors in sextant angles <j>1 and <f>2.

The cutting angle of two position circles at P is

From equations (2), (g) and (6), the probability density at P is

i(AB)AC sin ( ^ +<j>2 - co)/AP2(BP)CP

where k = o-oj24./A<f>lA<f>2.

If AB = i, AC/AB=A, a=BC=-v/(i +A2 + 2A cos w) then

A I ay cos a> -{x2 +j2 + (i.-X2)x/a -A cos a cos jS} sin w |
P= {x2 + (/+ sina)2}{(x+ cos a) 2 +j2}{ (x -A cos /S)2 + / 2 } ^7^

Assuming £ = 1 and A = i, equation (7) gives the contour maps shown in
Figs. 4 and 5.
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Fig. 4. When the angle between base lines is ISO0

Fig, 5. When the angle between base lines is 120°.

The displacement probable error in a Loran position line at P is given by3

r = b cos i<f> (8)

where b is the error on the base line due to the probable error in the measure-
ment of time difference and <£ is the difference in azimuth of the two stations
from the ship (Fig. 3).

The angle between two Loran position lines at P is

0 = i (* i+*2) (9)
From equations (2), (8) and (9), the probability density at P is given by

p = (o-o724/£>2) sin ^ sin £<£2sin i(<f>1 +<j>2)
=£{cos i(<fn-<f>2)- cos i (^ x +^ 2 )}s in i O ^ + ^ 2 ) ( I 0 )

where k =
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Assuming k = i and AB=AC, equation (10) gives the contour maps in Figs.
6, 7 ) 8.

The author is grateful to Mr. H. Uranishi, of the University of Mercantile
Marine, for help with the mathematical solutions.

Fig. 6. When the angle between base lines
is 180°.

Fig. y. When the angle between base lines
is 120°.

Fig. 8. When the angle between base lines is 90°.

Mr. J. B. Parker comments:

Mr. Sameshima has developed a series of fixing accuracy contours by using
the concept of probability density. The probability density at a given point is
defined as the ratio ' probability of position lines intersecting in a small area
around the given point: size of the small area' when the small area tends to zero.

Jessell and Trow4 based their accuracy contours on the 95- per cent radial
error method. This is the radius of the circle, centred at the fix, which will
contain the true position on 9 j per cent of occasions.
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In Sameshima's notation, p, the probability density, is given by

sin

Jessell and Trow use D, the 9^ per cent radial error, given by

D =
sin 0

Since Sameshima draws his contours in terms of p, and Jessell and Trow theirs
in terms of D, corresponding diagrams will not be the same. In particular, a
large p (Sameshima) means a good fix, whereas a large D (Jessell and Trow)
indicates a large error. Sameshima's Fig. 2 and Jessell and Trow's Fig. 8 both
refer to the same problem; yet the accuracy diagrams, being based on different
formulae, appear quite different.

Obviously the crux of the problem is 'How do we measure accuracy?' The
difficulty arises because, in the general navigational problem, the area of un-
certainty is not circular, but elliptical. To define an ellipse, three quantities are
necessary: (a) the length of the major axis, (£>) the length of the minor axis, (c)
the orientation of the major axis.

Any simple accuracy diagram can only record the value of one quantity at
any one point, so that either two of the three above quantities must be jetti-
soned, or else accuracy diagrams must be drawn in terms of some compromise
quantity. Sameshima has chosen the probability density, and Jessell and Trow
the 9£ per cent radial error.

Comparing Fig. 2 (Sameshima) with Fig. 8 (Jessell and Trow), both diagrams
show a steady increase in accuracy along the perpendicular bisector of the line
joining the two objects, or stations, up to a point, after which there is a steady
deterioration. This is intuitively correct; on the base line, angle of cut is 1800

(D infinite; p = o), and accuracy improves as the angle of cut gets more reason-
able. At great distances the angle of cut decreases to zero, so again I) tends to
infinity, and p to zero. Near one of the stations, however, the two methods give
different results. In Sameshima's method p becomes very large (provided the
angle of cut is not 1800) because in the vicinity of station A at becomes
vanishingly small. But this state of affairs does not occur in Jessell and Trow's
diagram.

What really happens near station A is that the area of uncertainty becomes a
long, thin ellipse. Since A is so close, a position line from it, even if slightly in
error, will not lead to any important linear errors about it; but the position line
from B will have an appreciable, though not too large, band of error. It seems
unrealistic, navigationally, to identify such a state of affairs with perfect fixing
accuracy, even if the probability density tends to infinity. A second disadvantage
is that the concept of probability density, while intelligible, and indeed in many
ways preferable for the mathematician, has no simple and direct appeal to the
practical navigator. Admittedly, the 95 per cent radial error suffers from the
disadvantage of not giving any information about the shape of the error ellipse,
but in view of the impossibility of conveying all the desirable information by
means of a single quantity, it is not a bad compromise.

In spite of this, Sameshima's diagrams have great theoretical interest, and
compel attention to a familiar and evergreen problem: 'What is meant by
accuracy?'

https://doi.org/10.1017/S0373463300028083 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463300028083


N O . 4 F O R U M 397

R E F E R E N C E S

1 Sameshima, N., and Kawamoto, F. (1949). Probability density and ellipse of the
most probable position fixed from astronomical position lines. J. marine lnstn. (Tokyo),

3. ' •
2 Admiralty Manual of Navigation (19J8). Vol. 2, p. 61.
3 Pierce, J. A., McKenzie, A. A., and Woodward, R. H. (1948). M.l.T. Radiation

Laboratory Scries No. 4-
* Jessell, A. H., and Trow, G. H. (1948). The presentation of the fixing accuracy

of navigation systems. This Journal 1, 313.

Radar and Collision at Sea

from Commander P. C. H. Clissold
CAPTAIN G. C. FORREST'S letter (this Journal, Vol. VII, p. 203) raises some
interesting points well worth discussion:

' (1) That radar-using ships, taking broad evasive action, shall alter course to
starboard only, and not at all once they are within five miles of the other vessel,
though they may reduce speed or stop.'

If we consider ship A in fog which sees another, B, some eight or nine miles
on her starboard side, what should her action be? After plotting observations of
B, A (we will assume) finds that B is crossing her own course and that if each
ship maintains her course and speed they will be dangerously close together at
the crossing. A is not yet bound by any rule to take any action (for the Rule of
the Road, devised long before radar was thought of, clearly assumes ships to be
in sight of one another when laying down the correct action for crossing steam
vessels), but if she continues as she is going she will eventually arrive in such a
position as to be compelled by the rules to take avoiding action. Prudence
dictates that she should take some action to avoid the dangerous close-quarter
situation: what action should that be? She can reduce speed, alter course or do
both, and before deciding what she should do we must consider ship B.

If B has no radar she will continue at her present course and speed; if she has
radar, she will become aware of the situation at about the same time as A. Not
yet bound to any course of action, B will, if the situation develops unchanged,
be in the position of the standing-on ship, directed to keep her course and speed
until collision cannot be avoided by action of the giving-way vessel, A, alone.
She may not relish this prospect and desire to avoid close quarters. Should she
slow down or alter course to pass under A's stern? She cannot tell if A is using
radar, but will guess that if she is A may alter course to pass under her stern. So
an alteration of course to port by B may not achieve the desired effect and will
in any case increase the relative speed of approach and reduce the time available
for avoiding action before the danger point is reached. Reduction of speed will
not do this; but will keep her clear of A should A not have radar, and will not
embarrass A should A alter course sufficiently to pass under B's stern; while if
A slows down the situation remains as before but with more time to negotiate
the crossing. It seems definitely to be the safer plan.

If B then reduces speed, A can safely alter course to pass under her stern and,,
since she may expect B to reduce speed (if B has radar), A should allow for this
and alter course until B is fine upon her port bow. When this alteration is bold,
B, if using radar, will soon be aware of it.
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