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Using fluid–structure interaction computational modelling, the hydrodynamic performance
of bio-inspired elastic propulsors with tapered thickness that oscillate in an incompressible
Newtonian fluid at Reynolds number Re = 2000 is investigated. The thickness tapering
leads to an acoustic black hole effect at the trailing edge of the propulsor that slows
down and attenuates flexural waves, thereby minimizing the flexural wave reflection and
enhancing travelling wave propulsion. The simulations reveal that, by tuning the propulsor
thickness profile modulating the acoustic black hole effect, the tapered propulsors
can be designed to vastly outperform the uniformly thick propulsors in terms of the
hydrodynamic efficiency and thrust, especially for the post-resonance frequencies. The
enhanced hydrodynamic performance is directly linked to the ability of the tapered
propulsors to generate travelling waves with a large amplitude displacement at the trailing
edge. The results have implications for the development of highly efficient bio-mimetic
robotic swimmers and, more generally, the better understanding of the undulatory aquatic
locomotion.
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1. Introduction

From anguilliform with the undulatory locomotion based on travelling waves to
ostraciiform mainly using standing waves, fish swimming can be categorized by the type
of wave propagation (Gray 1933). By analysing films of fish locomotion, Gray (1933)
identified and described wave mechanisms creating forward thrust. Following this fish
swimming categorization, Lighthill (1960) showed that the nature of the propagating wave
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directly affects the swimming efficiency. Standing wave-based propulsion can generate
substantial thrust, whereas travelling wave propulsion is generally more efficient at
intermediate Reynolds numbers (Cui et al. 2018).

Fish demonstrate a wide variety of beating patterns by leveraging their muscles and body
elasticity. Furthermore, fish can dynamically vary the beating parameters including the
wavenumber, amplitude, velocity and the ratio of travelling and standing waves (Bowtell
& Williams 1991). When it comes to man-made swimming devices, the generation and
control of complex beating patterns are challenging tasks. Although travelling waves
improve the efficiency of hydrodynamic propulsion, it is not trivial to generate travelling
waves in a passive finite-size propulsor. When a wave propagates from one end of a plate,
its reflection at the other end creates a backward wave. When the incident and reflected
waves superpose, a standing wave emerges.

Several approaches were suggested to yield travelling waves in finite-size structures,
including active and passive solutions (Roh, Lee & Han 2001; Kósa, Shoham &
Zaaroor 2005; Kim, Park & Jeong 2009). Hariri, Bernard & Razek (2013) used pairs of
piezoelectric patches along a beam to actively maintain a travelling wave in the finite-size
beam. While one piezoelectric patch generates the wave, the paired patch dissipates the
propagating wave by converting the mechanical energy into electrical energy. By impeding
the reflection of incident waves at the tip of the beam, the system actively suppresses the
generation of standing waves. In an alternative passive approach, dissipation can be used
to damp the propagation of the incident wave which suppresses the wave reflection and
facilitates the formation of travelling waves. Ramananarivo, Godoy-Diana & Thiria (2013)
demonstrated that fluid dissipation allows an artificial swimmer to generate travelling
waves. In this case, the surrounding viscous fluid suppresses the incident wave as it
propagates along the swimmer and thus mitigates the reflection at the free end. However,
while the dissipation prevents standing wave formation, it also leads to a low beating
amplitude, which in turn results in limited efficiency and propulsion.

Another passive approach to create travelling flexural waves in finite-size elastic
structures is based on the use of structures with gradually decreasing thickness, such
as tapered beams (Mironov 1988). When beam thickness decreases, wave speed reduces
and goes to zero in the limit of the zero-thickness beam tip, leading to a region where
waves are trapped. This phenomenon is referred to as an acoustic black hole (ABH) due to
the analogy with celestial black holes. ABH prevents the wave reflection resulting in the
formation of travelling waves and the suppression of standing waves. ABH devices have
been studied for applications in vibration absorption (Feurtado, Conlon & Semperlotti
2014; Conlon, Fahnline & Semperlotti 2015), sound attenuation (Bowyer & Krylov 2015)
and energy harvesting (Zhao, Conlon & Semperlotti 2015). Note that the ABH effect
can be enhanced by applying a thin absorbing layer onto the plate surface for dissipation
(Krylov & Tilman 2004).

Fins and rays typically feature a tapered geometry with the thickness and stiffness
gradually decreasing from the fin base to the trailing edge (Alben, Madden & Lauder
2007; Lauder et al. 2007; Aiello, Westneat & Hale 2017; Aiello et al. 2018). One
can speculate that this geometry can be potentially beneficial to enhancing the fin
hydrodynamic performance. Experiments show that different stiffness distributions yield
diverging swimming behaviours (Aiello et al. 2018). Even slight changes in mechanical
properties of tapered fins can significantly impact the thrust and lift forces (Tangorra et al.
2010). Compared with fins with constant stiffness, the fins with the non-uniform stiffness
show clear advantage for undulatory swimming (Kancharala & Philen 2016). Still, no
optimal stiffness distribution was identified for maximizing the swimming performance,
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highlighting the complex relationship between kinematics, mechanical properties and
swimming performance (Feilich & Lauder 2015).

Recent numerical studies confirm the strong effect of the stiffness distribution on
the swimming performance (Yeh, Li & Alexeev 2017; Floryan & Rowley 2020; Luo
et al. 2020). Simulations show that propulsors with tapered thickness widen the range
of actuation frequencies yielding high efficiency swimming compared with propulsors
with uniform thickness (Yeh et al. 2017). The superior performance of tapered propulsors,
especially off resonance, is related to their ability to maintain a high tip displacement
for a vast range of actuation frequencies. Using a linear inviscid model of an elastic
swimmer, it was found that the thrust and power can be respectively maximized and
minimized by tuning the stiffness distribution (Floryan & Rowley 2020). Yet, the stiffness
distributions optimizing thrust and power are distinctly different. It was suggested that at a
finite Reynolds number flow the stiffness distribution leading to the minimum power may
converge to that of the maximum thrust, thus yielding an optimal stiffness distribution for
the undulatory swimming. Three-dimensional simulations of fins with a cupping stiffness
profile show that such fins generate significant thrust while fins with a heterocercal
distribution yield higher manoeuvrability (Luo et al. 2020). However, the hydrodynamic
mechanisms leading to high propulsion or high efficiency remain unclear.

In this work, we use three-dimensional fully coupled numerical simulations to probe the
hydrodynamic performance of elastic propulsors with different tapered profiles oscillating
in a viscous fluid. We consider propulsor geometries that amplify the ABH effect
facilitating the formation of travelling waves propagating along the propulsor. We examine
to what extent this effect can be harnessed to enhance the hydrodynamic performance of
biomimetic elastic propulsors for undulatory underwater swimming.

The paper is organized as follows. Section 2 describes the definition of the problem,
while our computational model and its validation are reported in § 3. Section 4 presents
the results of our study and their discussion. We fist examine the ABH effect in
finite-size propulsors in § 4.1. The frequency response of propulsors with different
tapering geometries is reported in § 4.2. The propulsor bending patterns are examined
in § 4.3. In § 4.4, we quantify the effect of ABH on the travelling waves in terms of the
travelling-to-standing wave ratio. We then describe propulsor hydrodynamic performance
in § 4.5. In § 4.6, we present scaling metrics connecting the propulsor bending pattern
with its hydrodynamic performance and show, in particular, that propulsors with ABH
exhibit the highest thrust and efficiency. In § 4.7, we present flow patterns typical of
tapered propulsors and discuss the hydrodynamic mechanisms enhancing travelling wave
locomotion. Our conclusions are summarized in § 5.

2. Problem set-up

We consider a plate propulsor with width W and length L that is composed of two sections:
an active section of length La with constant thickness ha and constant stiffness Da, and a
passive attachment of length Lp with variable thickness hp(x) and variable stiffness Dp(x),
as illustrated in figure 1(a). The propulsor is clamped at the root and constrained from
moving forward. Following Yeh & Alexeev (2016a), who showed that internally actuated
propulsors with similar configuration are more efficient with passive and active sections
of equal length, we set La = 0.5L. The active section of the plate is internally actuated by
a time-varying bending moment M(t) = M0Da(La/W) sin ωt distributed along the length
of the active section that mimics piezoelectric actuation (Yeh & Alexeev 2016a; Demirer
et al. 2021b). Here, M0 is the dimensionless bending moment amplitude and ω = 2π/τ is
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Figure 1. (a) Schematics of the internally actuated plate with a tapered attachment. (b) Plate thickness
distribution along the length for b = 5, La/L = 0.5 and several shapes normalized by the uniform section’s
properties. The inset shows the resulting stiffness distribution. (c) Computational domain consists of a coarse
outer mesh and a refined inner mesh around the plate at the centre.

the angular actuation frequency, with τ being the actuation period. To impose a uniform
bending moment along the active section, we apply a couple of opposing forces of an equal
magnitude distributed along the two edges of the active section (figure 1a).

The propulsor thickness is a continuous piecewise-differentiable function (h ∈ C∞
pw)

h(x) =
{

ha, for x ∈ [0; La]
hp(x), for x ∈]La; L] , (2.1)

where hp(x) is a general C∞ function defining the ‘shape’ of the passive attachment
tapering. We consider five distinct types of the attachment tapering shapes illustrated in
figure 1(b) that are referred to as uniform, linear, parabolic convex, parabolic concave and
exponential. The corresponding functions are given by

hp(ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ha, uniform,
ha

b
[b + (1 − b)ξ ], linear,

αξ2 + βξ + γ, parabolic,
hab−ξ , exponential.

(2.2)
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Here, b = h(La)/h(L) is the tapering ratio and ξ = (x − La)/Lp. In the case of the
parabolic tapering, additional parameters are

α = ha

(
1 − 1

b

)
+ θ, β = 2ha

(
1
b

− 1
)

− θ, γ = ha, (2.3a–c)

where θ is the attachment tip slope. We define the convex and concave parabolic shapes
by changing the tip slope. We arrange the attachments from the less steep to more steep in
the following order: uniform, parabolic concave, linear, parabolic convex and exponential.
The stiffness distribution in the propulsors is given by D(x) = Eh(x)3/12(1 − ν2), where
E is the Young’s modulus and ν is the Poisson ratio (inset in figure 1b).

The dynamic response of an oscillating plate is a direct function of the proximity of
the actuation frequency to the fundamental resonance. The resonance is defined by the
input and response signals being in phase quadrature. The resonance frequency depends
on the plate mechanics as well as on the boundary conditions and fluid loading. To
characterize the actuation frequency, we define a dimensionless frequency ratio r = ω/ωr,
where ωr is the fundamental resonance frequency. When oscillating in a fluid, the volume
of the displaced fluid acts as an additional mass which shifts the resonance frequency.
The resonance frequency can be estimated as ωr = (λ2

1/L2)
√

D/(σs + σf ) (Van Eysden
& Sader 2006), where the eigenvalue λ1 is a function of the aspect ratio, and σs and
σf are the plate mass and added mass per unit area, respectively. In our simulations, we
determine ωr by examining the frequency response function of the plate in fluid. The
first peak in tip displacement corresponds to the fundamental resonance. In this work, we
explore the propulsor performance for a wide range of frequency ratios 0.7 < r < 3. To
vary r, we keep ω constant and change D through the plate modulus E, thereby altering
the resonance frequency ωr. Indeed, the frequency ratio can be approximated to the first
order as r � √

Dr/D, where Dr is the bending stiffness that yields the resonance (Weaver,
Timoshenko & Young 1990). Since Dr is a function of the thickness profile, we recompute
Dr for each propulsor geometry. This approach allows us to keep the Reynolds number
constant throughout the simulations.

3. Computational model

Our computational model is based on a three-dimensional two-way coupled fluid–structure
interaction solver that integrates a lattice Boltzmann model (LBM) for a viscous
Newtonian fluid and a finite differences (FD) solver for an elastic solid material. The
LBM solves a discrete Boltzmann equation using a computational domain fitted with a
cubic lattice of equally spaced nodes. We use a mesh with higher node density near the
oscillating plate propulsor to fully resolve the flow, as shown in figure 1(c). The flow
is characterized by a velocity distribution function fi(r, t) that represents the density of
fluid at position r propagating at velocity ci in the direction i at time t. We use a D3Q19
lattice that maintains 19 velocity directions of the distribution function in the three spatial
dimensions. The time evolution is obtained by integrating the discrete Boltzmann equation
(Ladd & Verberg 2001). Macroscopic quantities, such as the density ρ, momentum ρu and
stress Π are retrieved by taking moments of the distribution function

ρ =
∑

i

fi, ρu =
∑

i

fici, Π =
∑

k

fkckck. (3.1a–c)

The propulsor is modelled as a thin elastic plate that obeys the Kirchhoff–Love theory
(Timoshenko & Woinowsky-Krieger 1959). For a plate with inhomogeneous mechanical
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properties, the density, thickness and bending stiffness are functions of the position. The
differential equation modelling the behaviour of the inhomogeneous elastic plate is given
by (Timoshenko & Woinowsky-Krieger 1959)

ρsh
∂2w
∂t2

= q(x, y, t) +
(

Nx
∂2w
∂x2 + Ny

∂2w
∂y2 + Nxy

∂2w
∂x∂y

)

+ L (w, D) (x, y, t) − L
(

∂w
∂t

, γ

)
(x, y, t), (3.2)

where w is the transverse displacement, ρs is the plate density, h is the thickness, D
is the bending stiffness, ν is the Poisson ratio, q is a transverse load, Nx, Ny, Nxy are
in-plane loads, γ is a Kelvin–Voigt damping and L is the elastic operator applied to the
displacement and bending stiffness (or damping). It is defined as

L : (u1, u2) �−→ − u2∇4u1 −
(

∂2u2

∂x2 + ν
∂2u2

∂y2

)
∂2u1

∂x2 −
(

∂2u2

∂y2 + ν
∂2u2

∂x2

)
∂2u1

∂y2

− 2
∂3u1

∂x3
∂u2

∂x
− 2

∂3u1

∂y3
∂u2

∂y
− 2

∂3u1

∂x∂y2
∂u2

∂x
− 2

∂3u1

∂x2∂y
∂u2

∂y

− 2(1 − ν)
∂2u2

∂x∂y
∂2u1

∂x∂y
. (3.3)

Note that, for a plate with homogeneous properties, only the first term of the operator
remains, reducing the expression to the classic biharmonic operator.

The fluid and solid models are coupled at the fluid–solid boundaries using a two-way
coupling method (Alexeev, Verberg & Balazs 2005; Alexeev & Balazs 2007; Branscomb
& Alexeev 2010). A no-slip and no-penetration condition is applied on the moving
solid surface by using a linearly interpolated bounce-back rule (Bouzidi, Firdaouss &
Lallemand 2001; Chun & Ladd 2007). The momentum exchange approach accounting for
the momentum transferred to the plate from the fluid is used to evaluate the hydrodynamic
forces on the plate. The resultant hydrodynamic force is distributed to the neighbouring
FD nodes using a procedure conserving the force and momentum (Alexeev et al. 2005;
Demirer et al. 2021b). Further detail and validation of our computational framework can
be found elsewhere (Masoud & Alexeev 2010, 2012; Masoud, Bingham & Alexeev 2012;
Mao & Alexeev 2014; Yeh & Alexeev 2014; Yeh et al. 2017; Yeh, Demirer & Alexeev
2019; Demirer et al. 2021b).

To validate our FD solver for modelling the tapered plate mechanics, we evaluate the
static deformation of a tapered cantilevered beam with an aspect ratio AR = L/W = 2.5
due to an external force q0L2/D0 = 0.1 applied at the free end. The beam thickness
decreases linearly from the clamped root to the tip with the tapering ratio b = 5. In
figure 2(a), we show the solution for the Poisson ratio ν = 0 using our FD solver
that is compared with the Runge–Kutta solution of the governing equation. In the
Runge–Kutta solver we use 2000 nodes, whereas the FD solver is tested for two meshes
with, respectively, 80 × 10 and 21 × 11 nodes. We find that the FD solutions show good
agreement with the Runge–Kutta solution, even for relatively large tip deflection of
approximately 0.1L.

In figure 2(b), we validate the FD solver using a three-dimensional solution obtained
with the finite elements (FE) method using COMSOL Multiphysics. We consider a
cantilever beam with ν = 0.31 that has two sections of equal length. The clamped half
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Figure 2. Static deflection under a non-dimensional load q0L2/D0 = 0.1 of (a) a linearly tapered end-loaded
cantilevered beam with b = 5 and ν = 0, and (b) a beam composed of uniform and linearly tapered sections
with b = 5 and ν = 0.31.

of the plate has a uniform thickness, while the other half is linearly tapered with a tapering
ratio b = 5. For the FE solver we use a mesh with 160 × 20 nodes, while for the FD solver
we use meshes with 160 × 20 and 21 × 11 nodes. The FD and FE solutions show close
agreement. Note that, for a non-zero Poisson ratio, the bending moment shows nonlinear
behaviour near the root due to non-negligible two-dimensional effects at the clamped
boundary.

The plate oscillations in a viscous fluid are governed by the Reynolds number Re =
ρUcL/μ, and the mass ratio χ = ρW/ρsha, with Uc = L/τ being the characteristic
velocity. The hydrodynamic performance of the plate is characterized by the dimensionless
period-averaged thrust F , power P and efficiency η = F/P , where the first two
parameters are expressed in terms of the characteristic force 1

2ρWLU2
c and the

characteristic power 1
2ρWLU3

c . The thrust is computed by integrating the local
hydrodynamic force in the x-direction acting on the surface of the plate. The overall
propulsor length is set to L = 50 with La = Lp = 0.5L and AR = 2.5. Unless specified
otherwise we use the tapering ratio b = 5. We set the dimensionless bending moment
M0 = 0.1. We also set the fluid density ρ = 1, fluid viscosity μ = 1.25 × 10−3 and
oscillation period τ = 2000, leading to Re = 2000 and χ = 5. The fine and coarse fluid
grids, respectively, measure 4L × 3L × 3L and 8L × 6L × 8L, with respective spacing
Δf = 1 and Δc = 2. The plate is discretized with 21 FD nodes in the length and 11 FD
nodes in the width, resulting in Δx = 2.381 and Δy = 1.82. To ensure that the flow reaches
a steady state, simulations are performed for 40 periods of plate oscillations. Note that all
dimensional values are given in LBM units.

4. Results and discussion

4.1. Acoustic black hole
Mironov (1988) showed that, for tapered beams of finite length with thickness smoothly
decreasing as h : x �−→ εxn, n ∈ N

∗, the wavenumber goes to infinity. This suggests that
when flexural waves propagate along an elastic plate with a thickness gradually decreasing
to zero, they slow down and increase in amplitude. Since the wave velocity decreases to
zero as the thickness vanishes, flexural waves propagating along the plates never reach
the plate end and, therefore, do not reflect. Note that, in this system, the lack of wave
reflection is solely due to the wave’s inability to reach the tapered end in a finite time and
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Figure 3. (a) Total transit time and (b) smoothness criterion for propulsors with passive attachments at
resonance r = 1.

is not related to the absorption or damping of the wave. This suppression of flexural wave
reflection results in a region where waves are trapped that is referred to as an ABH. Thus,
ABH prevents the wave reflection resulting in the formation of travelling waves and the
suppression of standing waves.

In practice, manufacturing a plate with a zero-thickness tip is not possible due to
physical and structural limitations. When the plate tip thickness is not zero, reflections
occur at the tip, substantially reducing the ABH effect (Mironov 1988; Pelat et al. 2020).
With a tapering ratio b = 5, the transit time T = ∫ L

0 dx/[2(Eω2/12ρ)1/4√h(x)] increases
by approximately 20 %–25 % compared with a plate with uniform thickness (figure 3a).

The ABH theory uses the regularity condition on the thickness, namely the
Wentzel–Kramers–Brillouin–Liouville–Green condition (Liouville 1836; Green 1838;
Brillouin 1926; Kramers 1926; Wentzel 1926), that postulates that the local wavenumber
varies slowly over the wavelength (1/k2)(dk/dx) 
 1, where k is the wavenumber. This
smoothness criterion is shown in figure 3(b) for the tapering shapes considered in this
work. The interface between the uniform plate and the tapered attachment displays a jump
in smoothness since the thickness is not differentiable at this point. Furthermore, steeper
attachment shapes lead to less smooth transitions between the active and passive sections.
The smoothness discontinuity can lead to wave reflections at the interface between the
active section and the attachment, thereby diminishing the ABH effect and the formation
of travelling waves. Thus, the smoothness needs to be minimized to maximize T .

4.2. Frequency response
Figure 4 shows the Bode diagram for resonance oscillations of propulsors with different
attachments with the tapering ratio b = 5. The solid symbols represent the response
at the end of the active section, whereas the empty symbols show the response at the
tip of the attachment. For all attachments, the root-mean-square (r.m.s.) velocity at the
end of the active section shows a resonance maximum at r = 1 (figure 4a). The tip
of the tapered sections displays a similar velocity dependence with the exception of
the exponential attachment that has velocity continuously increasing with the frequency
ratio r. Furthermore, we find that the ‘steeper’ tapering shapes result in higher tip
velocities for the entire range of considered frequency ratios. For instance, at resonance the
exponential tapering nearly doubles the tip velocity compared with the uniform plate. The
enhancement of the tip velocity is even more significant for post-resonance frequencies.
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Figure 4. (a) The r.m.s. velocity and (b) phase difference of the internally actuated plate with several tapered
passive attachments. The solid and empty symbols show the values for the ends of the tapered and uniform
sections, respectively.

While the velocity of the uniform plate rapidly decreases for r > 1, the exponential
tapering leads to a velocity increase. Moreover, the parabolic concave and linear tapered
attachments display a velocity increase for r > 2. This is in contrast to the uniform plate
attachment for which the velocity steadily decreases post-resonance with increasing r.
Thus, our results for tapered attachments indicate that the tip velocity increases with
increasing ‘steepness’ of the attachment and the high tip velocity is maintained for a wide
range of frequency ratios.

At resonance r = 1, the phase difference Δφ = π/2 and approaches asymptotically
either 0 or π away from the resonance, with the slope being a function of the overall
damping (figure 4b). Note that Δφ is defined as the phase difference between the input
signal and the tip velocity. For the tapered attachment tip shown by the empty symbols,
Δφ overlaps for all tapering shapes. Conversely, Δφ at the interface between the uniform
and tapered sections, shown by the solid symbols, deviates from the uniform plate for
r > 1. The steeper the tapering the earlier the deviation occurs.

4.3. Bending pattern
In figure 5(a), we show the bending pattern of the internally actuated plate with a uniform
attachment actuated at resonance. The reflection at the attachment tip creates a standing
wave characterized by in phase oscillations along the entire propulsor length. As shown
in figure 5(b), the propulsor with an exponential attachment yields noticeably different
bending patterns. Although the plate propulsor is actuated at resonance, the dynamic
response combines travelling and standing waves. Due to the ABH effect, the tapered
attachment impedes waves from reflecting at the tip, and thus, its bending pattern is
characterized by a mix of standing and travelling waves.
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Figure 5. Bending patterns of propulsors at resonance r = 1 with (a) uniform attachment and (b)
exponential attachment. Bending patterns of propulsors off resonance r = 2 with (c) uniform attachment and
(d) exponential attachment. The insets show the attachment curvature. The solid blue lines correspond to
0 < t/τ ≤ 0.5, while the dashed red lines correspond to 0.5 < t/τ ≤ 1. Also see supplementary movie 1
available at https://doi.org/10.1017/jfm.2022.470.

In the insets in figures 5(a) and 5(b), we plot the curvature profiles κ(x) = z′′(x)/[1 +
z′2(x)]3/2 in the respective attachments at r = 1. The curvature pattern of the uniform
attachment is typical for a passive plate with a monotonic envelope and a vanishing
curvature at the free end. Conversely, the curvature of the exponentially tapered
attachment displays a local maximum around x/L � 0.8. Moreover, the maximum
curvature amplitude is approximately six times that of the uniform attachment.

Off-resonance bending patterns at r = 2 for propulsors with uniform and exponential
attachments are shown in figures 5(c) and 5(d), respectively. The bending patterns are
characteristic of off-resonance oscillations with non-overlapping bending profiles for the
up and down strokes, indicative of a combination of travelling and standing waves.
The exponential attachment yields an approximately four times greater maximum tip
displacement compared with the uniform attachment. Furthermore, the tip displacement
of the exponential attachment at r = 2 exceeds its tip displacement at resonance at r = 1.

The tapering shape of the attachment significantly impacts the form of the oscillation
envelope as measured by the curvature in the insets in figures 5(c) and 5(d). For the
uniform attachment, the maximum curvature gradually decreases with x with a maximum
κmaxL � 0.18 at x/L = 0.5, while the exponential attachment displays a maximum
κmaxL � 1.5 at x/L � 0.8. Due to the low bending stiffness at the tip, the same internal
moment input leads to a greater curvature and, therefore, deformation of the tapered
attachment compared with the uniform attachment.
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Figure 6. Travelling-to-standing wave ratio S as a function of the frequency ratio r for internally actuated
plate propulsors with different attachments.

4.4. Travelling-to-standing wave ratio
Consider a travelling wave ut(x, t) = At cos kx cos ωt + At sin kx sin ωt and a standing
wave us(x, t) = As cos kx cos ωt. A general wave resulting from the superposition
of a standing and travelling wave is then given by û(x, t) = cos(kx) cos(ωt) ±
S sin(kx) sin(ωt), where S = At/(At + As) is the travelling-to-standing wave ratio and û is
amplitude-normalized velocity. The magnitude of S quantifies the fraction of the travelling
wave in the superposition. The ratio is zero when the oscillations represent a standing
wave and unity for a travelling wave. We use S to quantify the combination of travelling
and standing waves resulting from the addition of a tapered attachment. Evaluation of S is
based on the fitting a Hilbert transform onto an ellipse in the complex plane (Minikes et al.
2005).

Figure 6 shows the dependence of S on the frequency ratio r. We find that steeper
tapering leads to a greater S . Furthermore, as the frequency ratio increases, S increases
with the rate depending on the tapering shape. For the exponential and parabolic convex
shapes, S reaches maxima for r � 1.6 and r � 2.4, respectively. Past these frequencies,
S decreases for both tapering shapes. We speculate that similar maxima exist for less
‘steep’ tapering shapes at frequencies that exceed those considered in our simulations.
Although it is less ‘steep’, the parabolic convex attachment yields an approximately 10 %
higher S than the exponential attachment. Similarly, S due to linear tapering increases
steadily and nearly surpasses the exponential S for sufficiently large r. These observations
indicate that the sharper tapering causes a faster increase in S with r, however, the
maximum value is not directly defined by the tapering steepness. This can be related
to a smoother transition at the interface between the active and passive segments for the
propulsor with the parabolic convex attachment compared with the exponential attachment
(figure 3b). A sharp change at the interface between active and passive segments can lead
to spurious modes and reflections affecting the formation of travelling waves. Overall, the
significant increase in S shows that tapered attachments with non-vanishing tip thickness
are an effective solution to maintaining travelling waves in plate propulsors of finite
length.
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Figure 7. (a) Thrust, (b) power and (c) efficiency as a function of the frequency ratio r for internally actuated
plates with different tapered attachments.

4.5. Hydrodynamic performance
In figure 7(a), we plot the dimensionless thrust F as a function of the frequency ratio r
for propulsors with different passive attachments. For the uniform attachment, the thrust
is maximized at resonance and rapidly decreases off resonance, which correlates with
the plate r.m.s. velocity (figure 4). By comparing the thrust for different attachments at
r = 1, our results demonstrate that the attachments with steeper tapering generate more
thrust, with the maximum F yielded by the exponential attachment. The parabolic concave
and linear tapered attachments perform similarly to the uniform attachment. The thrust
produced by the exponential and parabolic convex attachments noticeably exceeds the F
generated by the other attachments. In the case of the exponential attachment, the local
maximum thrust does not occur near the first resonance frequency; rather, the thrust
steadily increases with the frequency ratio until it peaks at r � 1.8. For the parabolic
convex attachment, the maximum thrust is generated at r � 2.4. Note that the maximum
thrust generated by the propulsor with the exponential attachment is nearly 8 times greater
than the maximum thrust of the propulsor with the uniform thickness. Thus, thickness
tapering can drastically enhance the hydrodynamic thrust.

In figure 7(b), we plot the dimensionless power input P as a function of r. We find
that tapered attachments require higher power than the attachment with uniform thickness.
For instance, the exponential attachment requires more than four times the power input
of the uniform attachment at r = 1. Indeed, the tapered attachment results in a higher
tip displacement and a greater deformation envelope (figures 5). The larger deformation
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envelope leads to an increased fluid displacement and viscous dissipation magnifying the
power consumption.

In figure 7(c), we plot the propulsor efficiency η as a function of r. In the case of the
uniform passive attachment, the efficiency decreases until it reaches a local minimum at
r � 1.7. The efficiency then slightly increases to a local maximum at r � 2 followed by
a steep decrease. In other words, in the case of the uniform attachment, the actuation
frequency has to be precisely tuned to achieve the optimal efficiency. For the tapered
attachments, the efficiency is near the minimum at the resonance, with the magnitude
close to that of the uniform propulsor. However, the tapered attachments outperform
the uniform attachment for driving frequencies past the resonance. For instance, the
parabolic convex attachment yields η � 0.55 for r = 2.4, which is nearly 1.4 times greater
than the maximum efficiency of the uniform attachment. Interestingly, the parabolic
convex attachment, while it does not have the ‘steepest’ tapering, outperforms the
exponential attachment. This is correlated with the higher values of S for the parabolic
convex attachment (figure 6), indicating that travelling waves enhance the propulsor
hydrodynamic efficiency.

4.6. Scaling metrics
In figure 8(a), we plot the relationship between the dimensionless thrust F and the
dimensionless tip displacement d/L for attachments with different shapes and two tapering
ratios. The colour of the markers indicates the magnitude of the frequency ratio r. Our
results show that the thrust scales with the tip displacement as F ∼ d3, independently
of the tapering shape and the tapering ratio b (left inset in figure 8a). We find that
steeper tapering shapes enable greater tip displacement, which ultimately, leads to higher
thrust. In other words, tapered attachments can be used to maximize the tip displacement
for a wide range of actuation frequencies, which in turn enhances the hydrodynamic
thrust. The dependence of the thrust on tip displacement is consistent with the literature
data for uniform propulsors (Lighthill 1970; Dewey et al. 2013; Floryan et al. 2017;
Ayancik et al. 2019; Lagopoulos, Weymouth & Ganapathisubramani 2019). Furthermore,
we find that our simulation results for F are in good agreement with the scaling
derived by Gazzola, Argentina & Mahadevan (2014) and confirmed experimentally by
Gibouin et al. (2018) (right inset in figure 8a). This result indicates that our simulations
follow the same scaling behaviour that is universal for aquatic animals at the limit of
large Re.

Previous studies indicate that the power input is proportional to the relative motion
between the fluid and the oscillating plate leading to viscous dissipation (Yeh & Alexeev
2014; Demirer, Oshinowo & Alexeev 2021a; Demirer et al. 2021b). To estimate this
power metric, we evaluate the maximum displacement area of the propulsor A =
maxt(1/L2)

∫ L
0 w(x, t) dx, where w is the displacement of the plate along the centreline. In

figure 8(b), we plot the mean dimensionless power P as a function of A for propulsors with
different attachments and b. We find that all data collapse on a master curve, indicating a
direct relationship between the power and the displacement area such that P ∼ A3 (inset
in figure 8b). We conclude that minimizing the maximum displacement area decreases the
power input.

The propulsor efficiency η is defined as the ratio between the dimensionless thrust F and
the dimensionless power P that are, respectively, proportional to d and A. In figure 9(a),
we plot η as a function of AL/d. The colour of the markers indicates the magnitude
of F . We find that the efficiency is correlated with AL/d, and that a lower magnitude
of this ratio leads to a higher efficiency. The low values of AL/d, however, do not ensure

944 A19-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

47
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.470


E. Demirer, O.A. Oshinowo, A. Erturk and A. Alexeev

0.1 0.2 0.30

0.05

0.10

0.15

0.20

0.25

10−2 10−1
10−4

10−3

10−2

10−1

100

log10d/L

lo
g

1
0
 F 1

3

0.5 1.0 1.5 2.0 2.5 3.0
0

0.01

0.02

0.03

0.04

r

F/
ω

2

Tip displacement, d/L

M
ea

n
 t

h
ru

st
, 
F

0.025 0.050 0.075 0.100
0

0.1

0.2

0.3

0.4

0.5

10−110−2

10−1

100

log10 A

lo
g

1
0
P

1

3

Max displacement area, A

M
ea

n
 p

o
w

er
, 
P

Uniform:

Linear: b = 2.5, b = 5

Exponential: b = 2.5, b = 5

Par. convex: b = 2.5, b = 5

Par. concave: b = 2.5, b = 5

0 1 2 3
Frequency ratio, r

(b)(a)

Figure 8. (a) Thrust as a function of tip displacement. (b) Power as a function of the dimensionless maximum
displacement area. The data are for internally actuated propulsors with different passive attachments for b = 2.5
and b = 5.

high F . In a relatively narrow band of AL/d between 14 and 15, F for different propulsors
ranges from 0.025 to 0.2. Indeed, a low AL/d can correspond to different values of d.
Whereas larger d results in significant F , low d produces weak propulsion even when the
bending pattern is characterized by a sufficiently low A to yield high η.

Since the hydrodynamic efficiency is associated with travelling waves (Cui et al. 2018),
in figure 9(b) we plot η as a function of the travelling-to-standing wave ratio S with the
marker colour indicating F . At low S , we find a significant spread of the efficiency without
a clear trend that includes propulsors with tapered and uniform attachments. For high
values of S , there is a direct correlation between the high propulsion efficiency and S
such that η ∼ S0.4 (inset in figure 9b). Moreover, high S yields high thrust output. Indeed,
for S > 0.5 the thrust is in the range between 0.05 and 0.2.

When we plot S as a function of the ratio AL/d (figure 9c), we find that the data from
different simulations collapse into a single curve where at the lower spectrum of AL/d the
higher values of S yield greater thrust. Thus, larger values of S result in oscillations with
lower AL/d and, at the same time, higher d yielding greater F (figure 8a). Since large S
are associated with the ABH effect at the tapered attachments (figure 6), we conclude that
propulsors with such attachments exhibit the travelling wave propulsion leading to high η

and F .

4.7. Flow patterns
As the plate deforms, the relative motion between the plate and the fluid results in
vorticity that is the most significant along the trailing edge and side edges. The vorticity is
associated with hydrodynamic propulsion and dissipation (Anderson et al. 1998; Nauen &
Lauder 2002; Alben 2009; Michelin & Llewellyn Smith 2009; Yeh & Alexeev 2014; Paraz,
Schouveiler & Eloy 2016; Yeh & Alexeev 2016b). Figures 10 and 11 show representative
contours of Q-criterion (the second invariant of the velocity gradient tensor) coloured by
the magnitude of the y-component of the vorticity for propulsors with the uniform and
exponential attachments, respectively. The flow structures in these figures are typical of
oscillating plate propulsors (Facci & Porfiri 2013; Demirer et al. 2021b) with the formation
of trailing edge vortices (TEVs) and side edge vortices (SEVs). While the TEVs generate
thrust by forming a jet in the wake, the SEVs are typically detrimental to the propulsor
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Figure 9. Efficiency as a function of (a) the ratio between the maximum displacement area and tip
displacement and (b) the travelling-to-standing wave ratio. (c) Travelling-to-standing wave ratio as a function of
the ratio between the maximum displacement area and tip displacement. The data are for internally propulsors
with different passive attachments for b = 2.5 and b = 5.

hydrodynamic efficiency by dissipating energy without creating propulsion. Comparing
the two attachments at resonance r = 1 (figures 10(a) and 11(a)), the exponential
attachment produces a greater amount of vorticity that can be attributed to an increased
amplitude of the trailing edge displacement.

The difference between the vorticity fields of the two propulsors is even more dramatic
at the post resonance frequency r = 2 (figures 10(b) and 11(b)). At r = 2 the propulsor
with the uniform attachment exhibits significantly lower deformation than at resonance,
yielding a relatively low amount of vorticity generated by the propulsor. On the other hand,
the deformation amplitude of the exponential propulsor at r = 2 exceeds the amplitude at
resonance, and so does the vorticity that significantly exceeds that of the propulsor with the
uniform attachment at r = 2. This explains the greater hydrodynamic performance of the
propulsor with the tapered exponential attachment that takes place not only at resonance,
but also for post-resonance actuation frequencies.

To examine the impact of travelling waves on the propulsor hydrodynamics and
the emerging flow patterns, we compare two propulsor configurations with similar tip
displacement d and displacement area A, but different magnitude of travelling-to-standing
wave ratio S . Specifically, in figures 12(a) and 12(b), we show propulsors with the
parabolic convex attachments at r = 1.2 and r = 2.4, respectively. The parameters of these
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Figure 10. Snapshots of normalized Q-criterion contours (Qτ 2 = 5) coloured by y-component of the vorticity
for the propulsors with the uniform attachment (a) at resonance r = 1 and (b) off resonance r = 2. The
snapshots are for (i) t/τ = 0, (ii) t/τ = 0.25, (iii) t/τ = 0.5 and (iv) t/τ = 0.75. See supplementary movie 2.

two cases are presented in table 1. At the lower frequency ratio, the plate oscillations
are mostly a standing wave (S � 0.2), whereas at the higher frequency ratio, the plate
exhibits travelling waves propagating along the propulsor (S � 0.9). The oscillations
with travelling waves produce higher thrust with lower input power. As a result, the
oscillations at r = 2.4 are twice as efficient than at r = 1.2. Figure 12 shows that both
these configurations generate similar levels of vorticity with dominant TEVs and SEVs,
although oscillations at r = 2.4 produce somewhat lower mean enstrophy E = ω × ωτ 2
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Figure 11. Snapshots of normalized Q-criterion contours (Qτ 2 = 10) coloured by y-component of the
vorticity for the propulsors with the exponential attachment (a) at resonance r = 1 and (b) off resonance
r = 2. The snapshots are for (i) t/τ = 0, (ii) t/τ = 0.25, (iii) t/τ = 0.5 and (iv) t/τ = 0.75. See supplementary
movie 3.

that quantifies the intensity of viscous dissipation by the plate (table 1). We find that the
dynamics of the vortical fields is noticeably different for the oscillations characterized
by standing and travelling waves. For standing wave oscillations at r = 1.2, there are
relatively weak interactions between TEVs and SEVs. On the other hand, for travelling
wave oscillations at r = 2.4, the waves propagating along the propulsor length transport
SEVs towards the trailing edge where SEVs interact with TEVs.
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Figure 12. Snapshots of normalized Q-criterion contours (Qτ 2 = 10) coloured by y-component of the
vorticity for the propulsors with the parabolic convex attachment (a) at r = 1.2 and (b) at r = 2.4. The
snapshots are for (i) t/τ = 0, (ii) t/τ = 0.25, (iii) t/τ = 0.5 and (iv) t/τ = 0.75. See supplemental movie 4.

In figures 13(a) and 13(b), we show the out-of-plane component of the vorticity ωy
generated by the parabolic convex propulsors at r = 1.2 and r = 2.4, respectively. The
vorticity is shown at the mid-plane of the plates. The relative motion between the plate
and the flow results in vortices generated about the midchord and shed towards the tip.
The alternating clockwise and counter-clockwise shedding structure is characteristic of
a reverse von Kármán vortex street (Anderson et al. 1998; Von Ellenrieder, Parker &
Soria 2003; Lentink et al. 2008). The rotation of the vortices induces an increase in
the streamwise component of the momentum, and thus enhances the propulsion. The
downstream vortex structures of the two oscillation regimes are distinctively different.
For the travelling wave oscillations at r = 2.4, a bifurcating wake develops downstream of
the propulsor due to greater vortex intensity. As vortices shed streamwise, they stretch and,
due to significant cross-stream velocity, break into smaller vortices moving orthogonal to
the streamwise direction forming a bifurcating wake.
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Frequency ratio, r 1.2 2.4

Thrust, F 0.0548 0.0877
Power, P 0.198 0.161
Efficiency, η 0.277 0.546
Max tip disp., d/L 0.142 0.155
Max disp. area, A 0.0465 0.0423
Enstrophy, E 0.809 0.724

Table 1. Hydrodynamic parameters of the parabolic convex attachment at r = 1.2 and r = 2.4.

(a) i. (b) i.

ii. ii.

iii. iii.

iv. iv.

−10 0 10

Vorticity, ωτ

Figure 13. Snapshots of normalized vorticity field at (a) r = 1.2 and (b) r = 2.4 for the parabolic convex
attachment. The snapshots are for (i) t/τ = 0, (ii) t/τ = 0.25, (iii) t/τ = 0.5 and (iv) t/τ = 0.75. See
supplemental movie 5.

The bifurcating wake structure is further confirmed in figure 14(a,b), where we plot the
time-averaged velocity field for the propulsor with parabolic convex attachment actuated
at r = 1.2 and r = 2.4. The figure reveals a narrowing jet in the streamwise direction for
r = 1.2, whereas at higher r = 2.4 the propulsor oscillations result in a pair of narrowing
jets at an acute angle with the streamwise direction. Travelling waves cause a faster mean
flow speed along the propulsor, enhancing propulsor performance (figure 14c). This flow
structure is characteristic of undulating elastic propulsors (Borazjani & Sotiropoulos 2008,
2009; Godoy-Diana et al. 2009) and fish swimming (Tytell & Lauder 2004; Hultmark,
Leftwich & Smits 2007; Wu 2011), where bifurcating wakes emerge at higher Strouhal
numbers St and are associated with enhanced propulsion efficiency.
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Figure 14. Time-averaged velocity field at (a) r = 1.2 and (b) r = 2.4 for the parabolic convex attachment.
(c) Normalized x-component of the period-averaged velocity profiles at various positions along the plate and
wake for r = 1.2 and r = 2.4.

5. Summary

We use three-dimensional computer simulations to probe the hydrodynamic performance
of bio-mimetic elastic propulsors with tapered thickness. The propulsors are composed
of an active section at the base inducing the propulsor periodic oscillations in an
incompressible Newtonian fluid, and a passive attachment with tapered thickness. The
tapering aims to create the ABH effect leading to a wave speed decrease towards the
propulsor trailing edge, thereby suppressing the flexural wave reflection and promoting
the formation of travelling waves. As a result, the propulsors with ABH exhibit beating
patterns that feature travelling flexural waves propagating along the propulsor length.
By altering the propulsor thickness profile, the strength of ABH can be regulated
yielding propulsors with different ratios between the travelling and standing waves in
their beating patterns. We find that the travelling-to-standing wave ratio is approximately
zero for uniformly thick propulsors, indicating that the propulsor oscillations are standing
flexural waves, whereas for exponential and parabolic convex tapered propulsors, the
value of the ratio approaches unity, indicating the dominance of travelling waves in the
beating patterns. We directly evaluate and compare the hydrodynamic performance of
propulsors with beating patterns that exhibit different levels of travelling-to-standing wave
ratios.

Our simulations reveal that tapered propulsors with ABH significantly outperform
propulsors with uniform thickness in terms of the hydrodynamic thrust and efficiency for a
broad range of actuation frequencies, including resonance and off-resonance oscillations.
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Tapering increases the magnitude of the tip displacement compared with uniform
propulsors, thereby leading to greater thrust that is directly proportional to the tip
displacement magnitude. Furthermore, tapered propulsors with ABH leading to high
travelling-to-standing wave ratios demonstrate a superior efficiency defined as the ratio
of the dimensionless thrust and power. We show that the input power is proportional
to the amount of fluid displaced by an oscillating propulsor. For uniform propulsors
with standing wave oscillations, the frequency regimes leading to reduced input power
also result in the lower tip displacement magnitude and, therefore, weak thrust. Thus,
for uniform propulsors there is a trade-off between high thrust and high efficiency. By
contrast, travelling wave propulsion yields bending patterns with relatively low input
power while maintaining a high tip displacement amplitude.

We examine the flow field and vortical structures generated by propulsors with
standing and travelling waves and show that standing waves yield a reverse von Kármán
vortex street, whereas travelling waves generate a bifurcating wake downstream of the
propulsor. The travelling wave oscillations with bifurcating wake lead to significantly
higher propulsion and efficiency than standing wave oscillations of comparable
oscillation magnitude. We attribute this to the increased fluid transport by the travelling
waves propagating along the propulsor length. Furthermore, travelling waves increase
interactions among SEVs and TEVs by transporting SEVs towards the trailing edge.
Whereas, for standing wave oscillations, SEVs do not participate in generating forward
thrust, the interaction of SEVs with TEVs by travelling waves enhances the vorticity
and, therefore, the momentum transfer facilitating propulsion, similar to the positive
reinforcement observed for leading edge vortices (Lewin & Haj-Hariri 2003; Guglielmini
& Blondeaux 2004). The unique ability of tapered propulsors with ABH to generate high
thrust with high efficiency makes them excellent candidates for designing highly efficient
bio-mimetic robotic swimmers.

Our results support the observations that the travelling wave-based anguilliform
swimming of fishes such as eels and lampreys is beneficial for the efficient locomotion
(Lighthill 1970; Borazjani & Sotiropoulos 2010). Our simulations offer an explanation
for the better energetic performance reported for travelling wave-based swimming over
standing wave-based swimming at lower Re (Tytell 2010; Tytell et al. 2010). On the other
hand, we do not find an advantage of standing wave oscillations over travelling wave
oscillations in generating propulsion thrust, suggesting that travelling waves are beneficial
for thunniform swimming. We note that several aspects of our study can limit the extent
to which our results can be applied to biological fish. Here, we explore swimming at
Re = 2000, whereas thunniform and ostraciiform swimming are more typical for faster
fish with higher Re (Lindsey 1978; Sfakiotakis, Lane & Davies 1999). We consider
oscillations with a wavelength that is approximately twice longer than the propulsor length
as typical for thunniform fish, whereas angulliform fish have a wavelength approximately
half of the fish body length (Smits 2019). Furthermore, we consider propulsors with
simplified rectangular geometry and disregard the hydrodynamic effects of the fish body.
Finally, the form of fish swimming is tightly related to the fish physiology and, in
particular, the muscle function (Webb 1994; Müller & Van Leeuwen 2006; Cohen & Boyle
2010), which makes a direct hydrodynamic comparison between different forms of fish
swimming more challenging and points to the need for future studies using more elaborate
models.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.470.
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