ON THE SUM OF POWERS OF THE DEGREES OF GRAPHS

RENYU XU, JIANLIANG WU ${ }^{\boxtimes}$, GUANGHUI WANG and XIN ZHANG

(Received 9 September 2012; accepted 14 December 2012; first published online 8 March 2013)

Abstract

For positive integers p and q, let $\mathcal{G}_{p, q}$ be a class of graphs such that $|E(G)| \leq p|V(G)|-q$ for every $G \in \mathcal{G}_{p, q}$. In this paper, we consider the sum of the k th powers of the degrees of the vertices of a graph $G \in \mathcal{G}_{p, q}$ with $\Delta(G) \geq 2 p$. We obtain an upper bound for this sum that is linear in Δ^{k-1}. These graphs include the planar, 1-planar, t-degenerate, outerplanar, and series-parallel graphs.

2010 Mathematics subject classification: primary 05C07.
Keywords and phrases: degree sum, 1-planar graph, series-parallel graph, degenerate graph.

1. Introduction

All graphs considered in this paper are simple, finite and undirected. For a graph G, by $V(G), E(G), \Delta(G)$ and $\delta(G)$ we denote the vertex set, the edge set, the maximum degree and the minimum degree of G, respectively. For convenience, we set $n=|V(G)|$, $m=|E(G)|, \Delta=\Delta(G)$ and $\delta=\delta(G)$ throughout this paper. For a vertex $v \in V(G)$, let $N_{G}(v)$ be the set of neighbours of v in G and let $d_{G}(v)=\left|N_{G}(v)\right|$ be the degree of v in G. For a positive integer k, the sum of the k th powers of the degrees of the vertices of G, denoted by $\sum_{k}(G)$, is the value of $\sum_{v \in V(G)} d_{G}^{k}(v)$. For other undefined notation and terminology we refer the reader to [4].

In this paper, we consider the sum of the k th powers of the degrees of the vertices of certain classes of graphs. First of all, it is trivial that $\sum_{1}(G)=2 m$ for every graph G. For $k \geq 2$, de Caen [2] proved that

$$
\sum_{2}(G) \leq m\left(\frac{2 m}{n-1}+n-2\right)
$$

This bound was generalised to hypergraphs by Bey [1] and improved to

$$
m\left(\frac{2 m}{n-1}+\frac{n-2}{n-1} \Delta+(\Delta-\delta)\left(1-\frac{\Delta}{n-1}\right)\right)
$$

$\overline{\text { Supported by NSFC (11271006, 61070230, 11026184, 11101243), RFDP (20100131120017), and SRF }}$ for ROCS and the Fundamental Research Funds for the Central Universities.
(C) 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00
by Das [8]. De Caen's inequality was also used by Li and Pan [7] to provide an upper bound on the largest eigenvalue of the Laplacian of a graph. In [9], Cioabǎ generalised Das' bound to

$$
\sum_{k+1}(G) \leq \frac{2 m}{n}\left(\sum_{k}(G)+(n-1)\left(\Delta^{k}-\delta^{k}\right)\right)-\frac{\Delta^{k}-\delta^{k}}{n} \sum_{2}(G)
$$

Now we restrict G to be a planar graph, that is, a graph that can be drawn in the plane so that there are no crossed edges. Harant et al. [5] proved that

$$
\begin{equation*}
\sum_{k}(G) \leq \frac{(6-\delta) \Delta^{k}+(\Delta-6) \delta^{k}}{\Delta-\delta}\left(n-\frac{12}{6-\delta}\right)+\frac{12}{6-\delta} \delta^{k} \tag{1}
\end{equation*}
$$

if $\Delta(G) \geq 6$.
The aim of this paper is to extend this inequality to a larger class. For our purpose, we define $\mathcal{G}_{p, q}$ to be a class of graphs such that $|E(G)| \leq p|V(G)|-q$ for every $G \in \mathcal{G}_{p, q}$, where p and q are positive integers. The following theorem is the main result.

Theorem 1.1. For every simple graph $G \in \mathcal{G}_{p, q}$ with $\Delta(G) \geq 2 p$,

$$
\sum_{k}(G) \leq \frac{(2 p-\delta) \Delta^{k}+(\Delta-2 p) \delta^{k}}{\Delta-\delta}\left(n-\frac{2 q}{2 p-\delta}\right)+\frac{2 q}{2 p-\delta} \delta^{k}
$$

It is easy to check that Theorem 1.1 (with $p=3$ and $q=6$) implies (1). Moreover, the implicit condition $\Delta(G) \geq 2 p$ in Theorem 1.1 is necessary. This is because there exists a $(2 p-1)$-regular graph G with order at least 4 such that $e \leq p(n-2)$, where $e=|E(G)|$; thus the k th powers of the degrees of the vertices of G are exactly $\Delta^{k} n$. However, the leading coefficient of n in Theorem 1.1 is at most $(2 p-\delta) \Delta^{k-1}+o\left(\Delta^{k-1}\right)$.

A graph is 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. Pach and Tóth [6] proved that a simple 1-planar graph on n vertices has at most $4 n-8$ edges. This immediately yields a corollary of Theorem 1.1.

Corollary 1.2. For every simple 1-planar graph G with $\Delta \geq 8$,

$$
\sum_{k}(G) \leq \frac{(8-\delta) \Delta^{k}+(\Delta-8) \delta^{k}}{\Delta-\delta}\left(n-\frac{16}{8-\delta}\right)+\frac{16}{8-\delta} \delta^{k}
$$

Since every 7-regular 1-planar graph (for the existence of such a graph, see [3]) has $\sum_{k}(G)=\Delta^{k} n$, but the coefficient of n in Corollary 1.2 is at most $(8-\delta) \Delta^{k-1}+o\left(\Delta^{k-1}\right)$, the lower bound 8 for Δ in Corollary 1.2 is necessary.

A graph G is t-degenerate if $\delta(H) \leq t$ for every $H \subseteq G$. If G is a t-degenerate graph, then $G_{1}:=G$ can be reduced to the null graph by the following steps.

Step $i(1 \leq i \leq n-t) \quad$ Remove a vertex of degree at most t from G_{i}, and denote the resulting graph by G_{i+1}.
Step $n-t+1$ Remove all the vertices of G_{n-t+1}.

In each of the first $n-t$ steps, at most t edges are removed, and in the last step (note that G_{n-t+1}, which has t vertices, may be a complete graph), at most $t(t-1) / 2$ edges are removed. Therefore,

$$
|E(G)| \leq t(|V(G)|-t)+\frac{t(t-1)}{2}=t|V(G)|-\frac{t(t+1)}{2} .
$$

Setting $p=t$ and $q=t(t+1) / 2$ in Theorem 1.1, we immediately have the following corollary.
Corollary 1.3. For every simple t-degenerate graph G with $\Delta \geq 2 t$,

$$
\sum_{k}(G) \leq \frac{(2 t-\delta) \Delta^{k}+(\Delta-2 t) \delta^{k}}{\Delta-\delta}\left(n-\frac{t^{2}+t}{2 t-\delta}\right)+\frac{t^{2}+t}{2 t-\delta} \delta^{k}
$$

A graph is series-parallel if it may be turned into K_{2} by a sequence of the following operations: (a) replacement of a pair of parallel edges with a single edge that connects their common endpoints, (b) replacement of a pair of edges incident to a vertex of degree two with a single edge. By this definition, one can see that every series-parallel graph is 2-degenerate and contains at least two vertices of degree at most 2 . Let G be a series-parallel graph. If $\Delta=3$, then it is easy to verify that $\sum_{k}(G) \leq 2^{k+1}+(n-2) 3^{k}$. If $\Delta \geq 4$, then we can obtain an upper bound for the k th powers of the degrees of the vertices of G as in Corollary 1.3 by setting $t=2$ there. Combining these two cases, we have the following corollary.
Corollary 1.4. For every simple series-parallel graph G with $\Delta \geq 3$,

$$
\sum_{k}(G) \leq \frac{(4-\delta) \Delta^{k}+(\Delta-4) \delta^{k}}{\Delta-\delta}\left(n-\frac{6}{4-\delta}\right)+\frac{6}{4-\delta} \delta^{k}
$$

Since outerplanar graphs are 2-degenerate, the bound in Corollary 1.4 also applies to outerplanar graphs with $\Delta \geq 4$.

2. Proof of Theorem 1.1

Since $\Delta(G) \geq 2 p$, and $G \in \mathcal{G}_{p, q}$ yields that $\delta \leq 2 p-1<2 p$, we have $1 \leq \delta<\Delta$. It is easy to see that Theorem 1.1 holds for $k=1$. Thus in the following we let $k \geq 2$.

By n_{i} we denote the number of vertices of degree i of a graph G. It holds trivially that $\sum_{\delta \leq i \leq \Delta} n_{i}=n$. Since G has at most $p n-q$ edges, $\sum_{\delta \leq i \leq \Delta} i n_{i} \leq 2 p n-2 q$. Consider the following program \mathcal{P}.

$$
\begin{aligned}
\max : & f\left(x_{\delta}, \ldots, x_{\Delta}\right)=\sum_{\delta \leq i \leq \Delta} i^{k} x_{i} \\
\text { such that } & \sum_{\delta \leq i \leq \Delta} x_{i}=n, \\
& \sum_{\delta \leq i \leq \Delta} i x_{i} \leq 2 p n-2 q, \\
& x_{i} \geq 0\left(x_{i} \text { real, } i=\delta, \ldots, \Delta\right) .
\end{aligned}
$$

Let $\left(x_{\delta}, \ldots, x_{\Delta}\right)$ be an optimal solution of \mathcal{P}. It follows that $\sum_{k}(G) \leq f\left(x_{\delta}, \ldots, x_{\Delta}\right)$.

Claim 2.1. If $\Delta \geq 2 p+2$, then $x_{i}=0$ for $2 p+1 \leq i \leq \Delta-1$.
To prove the claim, assume that $x_{i}>0$ for some $i \in 2 p+1, \ldots, \Delta-1$. Let $y_{j}=x_{j}$ for $j \in\{\delta, \ldots, \Delta-1\} \backslash\{i, 2 p\}, y_{i}=0, y_{2 p}=x_{2 p}+(1-(2 p-i) /(2 p-\Delta)) x_{i}$ and $y_{\Delta}=$ $x_{\Delta}+((2 p-i) /(2 p-\Delta)) x_{i}$. Then $\sum_{\delta \leq j \leq \Delta} y_{j}=n, \quad \sum_{\delta \leq j \leq \Delta} j y_{j} \leq 2 p n-2 q, y_{j} \geq 0$ for $j=\delta, \ldots, \Delta$ and

$$
\begin{aligned}
f\left(y_{\delta}, \ldots, y_{\Delta}\right)-f\left(x_{\delta}, \ldots, x_{\Delta}\right)= & \left(-i^{k}+\frac{2 p-i}{2 p-\Delta} \Delta^{k}+\left(1-\frac{2 p-i}{2 p-\Delta}\right)(2 p)^{k}\right) x_{i} \\
= & \left((2 p)^{k}-i^{k}+\frac{i-2 p}{\Delta-2 p}\left(\Delta^{k}-(2 p)^{k}\right)\right) x_{i} \\
= & (i-2 p)\left(\left((2 p)^{k-1}+(2 p)^{k-2} \Delta+\cdots+2 p \Delta^{k-2}+\Delta^{k-1}\right)\right. \\
& \left.\quad-\left((2 p)^{k-1}+(2 p)^{k-2} i+\cdots+2 p i^{k-2}+i^{k-1}\right)\right) x_{i}
\end{aligned}
$$

$$
>0
$$

for $k \geq 2$, a contradiction.
Claim 2.2. If $\delta \leq 2 p-2$, then $x_{i}=0$ for $\delta+1 \leq i \leq 2 p-1$.
Assume that $x_{i}>0$ for an $i \in\{\delta+1, \ldots, 2 p-1\}$. Let $y_{j}=x_{j}$ for $j \in\{\delta+1$, $\ldots, \Delta\} \backslash\{i, 2 p\}, y_{i}=0, y_{\delta}=x_{\delta}+((2 p-i) /(2 p-\delta)) x_{i}$ and

$$
y_{2 p}=x_{2 p}+\left(1-\frac{2 p-i}{2 p-\delta}\right) x_{i}
$$

Then $\sum_{\delta \leq j \leq \Delta} y_{j}=n, \sum_{\delta \leq j \leq \Delta} j y_{j} \leq 2 p n-2 q, y_{j} \geq 0$ for $j=\delta, \ldots, \Delta$ and

$$
\begin{aligned}
f\left(y_{\delta}, \ldots, y_{\Delta}\right)-f\left(x_{\delta}, \ldots, x_{\Delta}\right)= & \left(-i^{k}+\frac{2 p-i}{2 p-\delta} \delta^{k}+\left(1-\frac{2 p-i}{2 p-\delta}\right)(2 p)^{k}\right) x_{i} \\
= & \left((2 p)^{k}-i^{k}+\frac{2 p-i}{2 p-\delta}\left(\delta^{k}-(2 p)^{k}\right)\right) x_{i} \\
= & (2 p-i)\left(\left((2 p)^{k-1}+(2 p)^{k-2} i+\cdots+2 p i^{k-2}+i^{k-1}\right)\right. \\
& \left.-\left((2 p)^{k-1}+(2 p)^{k-2} \delta+\cdots+2 p \delta^{k-2}+\delta^{k-1}\right)\right) x_{i}
\end{aligned}
$$

$$
>0
$$

for $k \geq 2$, a contradiction.
Claim 2.3. If $\Delta \geq 2 p+1$, then, among $x_{\delta}, \ldots, x_{\Delta}$, only $x_{\delta}, x_{2 p}$ and x_{Δ} may be nonzero; if $\Delta=2 p$, then, among $x_{\delta}, \ldots, x_{\Delta}$, only x_{δ} and x_{Δ} may be nonzero.

We only prove the first part of this claim, since the proof of the second part is similar. Recall that $\delta \leq 2 p-1$. If $\Delta \geq 2 p+2$ and $\delta \leq 2 p-2$, then by Claims 2.1 and 2.2 , we have $x_{i}=0$ for $i \in\{\delta+1, \ldots, \Delta-1\} \backslash\{2 p\}$, and this claim holds. If $2 p \leq \Delta \leq 2 p+1$ and $\delta \leq 2 p-2$, then by Claim 2.2, $x_{i}=0$ for $\delta+1 \leq i \leq 2 p-1$, so only $x_{\delta}, x_{2 p}$ and x_{Δ} may be nonzero. If $\Delta \geq 2 p+2$ and $\delta=2 p-1$, then by Claim 2.1, $x_{i}=0$ for $2 p+1 \leq i \leq \Delta-1$, so only $x_{\delta}, x_{2 p}$ and x_{Δ} may be nonzero. If $2 p \leq \Delta \leq 2 p+1$ and $\delta=2 p-1$, then this claim follows trivially.

We come back to the proof of Theorem 1.1. If $\Delta \geq 2 p+1$, then by Claim 2.3 and the restrictions of \mathcal{P}, we obtain that $x_{\delta}+x_{2 p}+x_{\Delta}=n$ and $\delta x_{\delta}+2 p x_{2 p}+\Delta x_{\Delta} \leq 2 p n-2 q$, which imply that $(2 p-\delta) x_{\delta} \geq 2 q+(\Delta-2 p) x_{\Delta}$ and

$$
x_{2 p}=n-x_{\delta}-x_{\Delta} \leq n-\frac{2 q}{2 p-\delta}-\frac{\Delta-\delta}{2 p-\delta} x_{\Delta} .
$$

Furthermore, since

$$
(2 p-\delta) x_{\Delta}=(2 p-\delta) n-(2 p-\delta) x_{\delta}-(2 p-\delta) x_{2 p}
$$

and

$$
(\Delta-2 p) x_{\Delta} \leq(2 p-\delta) x_{\delta}-2 q=(2 p-\delta) n-(2 p-\delta) x_{\Delta}-(2 p-\delta) x_{2 p}-2 q,
$$

we have

$$
(\Delta-\delta) x_{\Delta} \leq(2 p-\delta) n-(2 p-\delta) x_{2 p}-2 q .
$$

It follows that $x_{\Delta} \leq\left((2 p-\delta) n-(2 p-\delta) x_{2 p}-2 q\right) /(\Delta-\delta)$ and

$$
\begin{aligned}
f\left(x_{\delta}, \ldots, x_{\Delta}\right)= & \delta^{k} x_{\delta}+(2 p)^{k} x_{2 p}+\Delta^{k} x_{\Delta} \\
= & \delta^{k}\left(n-x_{2 p}-x_{\Delta}\right)+(2 p)^{k} x_{2 p}+\Delta^{k} x_{\Delta} \\
= & \delta^{k} n+\left((2 p)^{k}-\delta^{k}\right) x_{2 p}+\left(\Delta^{k}-\delta^{k}\right) x_{\Delta} \\
\leq & \delta^{k} n+\left((2 p)^{k}-\delta^{k}\right)\left(n-\frac{2 q}{2 p-\delta}-\frac{\Delta-\delta}{2 p-\delta} x_{\Delta}\right)+\left(\Delta^{k}-\delta^{k}\right) x_{\Delta} \\
= & (2 p)^{k}\left(n-\frac{2 q}{2 p-\delta}\right)+\frac{2 q}{2 p-\delta} \delta^{k}+\left(\Delta^{k}-\delta^{k}-\frac{(2 p)^{k}-\delta^{k}}{2 p-\delta}(\Delta-\delta)\right) x_{\Delta} \\
\leq & (2 p)^{k}\left(n-\frac{2 q}{2 p-\delta}\right)+\frac{2 q}{2 p-\delta} \delta^{k} \\
& \quad+\left(\Delta^{k}-\delta^{k}-\frac{(2 p)^{k}-\delta^{k}}{2 p-\delta}(\Delta-\delta)\right) \frac{(2 p-\delta) n-2 q}{\Delta-\delta} \\
= & \frac{(2 p-\delta) \Delta^{k}+(\Delta-2 p) \delta^{k}}{\Delta-\delta}\left(n-\frac{2 q}{2 p-\delta}\right)+\frac{2 q}{2 p-\delta} \delta^{k} .
\end{aligned}
$$

If $\Delta=2 p$, then by Claim 2.3 and the restrictions of \mathcal{P}, we obtain that $x_{\delta}+x_{2 p}=n$ and $\delta x_{\delta}+2 p x_{2 p} \leq 2 p n-2 q$. It follows that $(2 p-\delta) x_{\delta} \geq 2 q$ and $x_{2 p}=n-x_{\delta} \leq n-$ $2 q /(2 p-\delta)$, which implies that

$$
\begin{aligned}
f\left(x_{\delta}, \ldots, x_{\Delta}\right) & =\delta^{k} x_{\delta}+(2 p)^{k} x_{2 p} \\
& =\delta^{k}\left(n-x_{2 p}\right)+(2 p)^{k} x_{2 p} \\
& =\delta^{k} n+\left((2 p)^{k}-\delta^{k}\right) x_{2 p} \\
& \leq \delta^{k} n+\left((2 p)^{k}-\delta^{k}\right)\left(n-\frac{2 q}{2 p-\delta}\right) \\
& =(2 p)^{k}\left(n-\frac{2 q}{2 p-\delta}\right)+\frac{2 q}{2 p-\delta} \delta^{k} .
\end{aligned}
$$

This completes the proof of Theorem 1.1.

References

[1] C. Bey, 'An upper bound on the sum of the squares of the degrees in a hypergraph', Discrete Math. 269 (2003), 259-263.
[2] D. de Caen, 'An upper bound on the sum of squares of degrees in a graph', Discrete Math. 185 (1998), 245-248.
[3] I. Fabrici and T. Madaras, 'The structure of 1-planar graphs', Discrete Math. 307 (2007), 854-865.
[4] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications (North-Holland, New York, 1976).
[5] J. Harant, S. Jendrol and T. Madaras, 'Upper bounds on the sum of powers of the degrees of a simple planar graph', J. Graph Theory 67(2) (2011), 112-123.
[6] J. Pach and G. Tóth, 'Graphs drawn with few crossings per edge', Combinatorica 17(3) (1997), 427-439.
[7] J. S. Li and Y. L. Pan, 'de Caen's inequality and bounds on the largest Laplacian eigenvalue of a graph', Linear Algebra Appl. 328 (2001), 153-160.
[8] K. Ch. Das, 'Maximizing the sum of squares of the degrees of a graph', Discrete Math. 285 (2004), 57-66.
[9] S. M. Cioabă, 'Sums of powers of the degrees of a graph', Discrete Math. 306 (2006), 1959-1964.

RENYU XU, School of Mathematics, Shandong University, Jinan, 250100, PR China
e-mail: xu-renyu@163.com
JIANLIANG WU, School of Mathematics, Shandong University, Jinan, 250100, PR China
e-mail: jlwu@sdu.edu.cn
GUANGHUI WANG, School of Mathematics, Shandong University, Jinan, 250100, PR China

XIN ZHANG, Department of Mathematics, Xidian University, Xi'an, 710071, PR China

