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ON THE SUM OF POWERS OF THE DEGREES OF GRAPHS
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Abstract

For positive integers p and q, let Gp,q be a class of graphs such that |E(G)| ≤ p|V(G)| − q for every
G ∈ Gp,q. In this paper, we consider the sum of the kth powers of the degrees of the vertices of a graph
G ∈ Gp,q with ∆(G) ≥ 2p. We obtain an upper bound for this sum that is linear in ∆k−1. These graphs
include the planar, 1-planar, t-degenerate, outerplanar, and series-parallel graphs.
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1. Introduction

All graphs considered in this paper are simple, finite and undirected. For a graph G,
by V(G), E(G), ∆(G) and δ(G) we denote the vertex set, the edge set, the maximum
degree and the minimum degree of G, respectively. For convenience, we set n = |V(G)|,
m = |E(G)|, ∆ = ∆(G) and δ = δ(G) throughout this paper. For a vertex v ∈ V(G), let
NG(v) be the set of neighbours of v in G and let dG(v) = |NG(v)| be the degree of v
in G. For a positive integer k, the sum of the kth powers of the degrees of the vertices
of G, denoted by

∑
k(G), is the value of

∑
v∈V(G) dk

G(v). For other undefined notation
and terminology we refer the reader to [4].

In this paper, we consider the sum of the kth powers of the degrees of the vertices
of certain classes of graphs. First of all, it is trivial that

∑
1(G) = 2m for every graph G.

For k ≥ 2, de Caen [2] proved that∑
2
(G) ≤ m

( 2m
n − 1

+ n − 2
)
.

This bound was generalised to hypergraphs by Bey [1] and improved to

m
( 2m
n − 1

+
n − 2
n − 1

∆ + (∆ − δ)
(
1 −

∆

n − 1

))
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by Das [8]. De Caen’s inequality was also used by Li and Pan [7] to provide an upper
bound on the largest eigenvalue of the Laplacian of a graph. In [9], Cioabǎ generalised
Das’ bound to∑

k+1
(G) ≤

2m
n

(∑
k
(G) + (n − 1)(∆k − δk)

)
−

∆k − δk

n

∑
2
(G).

Now we restrict G to be a planar graph, that is, a graph that can be drawn in the
plane so that there are no crossed edges. Harant et al. [5] proved that∑

k
(G) ≤

(6 − δ)∆k + (∆ − 6)δk

∆ − δ

(
n −

12
6 − δ

)
+

12
6 − δ

δk (1)

if ∆(G) ≥ 6.
The aim of this paper is to extend this inequality to a larger class. For our purpose,

we defineGp,q to be a class of graphs such that |E(G)| ≤ p|V(G)| − q for every G ∈ Gp,q,
where p and q are positive integers. The following theorem is the main result.

T 1.1. For every simple graph G ∈ Gp,q with ∆(G) ≥ 2p,

∑
k
(G) ≤

(2p − δ)∆k + (∆ − 2p)δk

∆ − δ

(
n −

2q
2p − δ

)
+

2q
2p − δ

δk.

It is easy to check that Theorem 1.1 (with p = 3 and q = 6) implies (1). Moreover,
the implicit condition ∆(G) ≥ 2p in Theorem 1.1 is necessary. This is because there
exists a (2p − 1)-regular graph G with order at least 4 such that e ≤ p(n − 2), where
e = |E(G)|; thus the kth powers of the degrees of the vertices of G are exactly ∆kn.
However, the leading coefficient of n in Theorem 1.1 is at most (2p − δ)∆k−1 + o(∆k−1).

A graph is 1-planar if it can be drawn in the plane so that each edge is crossed by
at most one other edge. Pach and Tóth [6] proved that a simple 1-planar graph on n
vertices has at most 4n − 8 edges. This immediately yields a corollary of Theorem 1.1.

C 1.2. For every simple 1-planar graph G with ∆ ≥ 8,∑
k
(G) ≤

(8 − δ)∆k + (∆ − 8)δk

∆ − δ

(
n −

16
8 − δ

)
+

16
8 − δ

δk.

Since every 7-regular 1-planar graph (for the existence of such a graph, see [3]) has∑
k(G) = ∆kn, but the coefficient of n in Corollary 1.2 is at most (8 − δ)∆k−1 + o(∆k−1),

the lower bound 8 for ∆ in Corollary 1.2 is necessary.
A graph G is t-degenerate if δ(H) ≤ t for every H ⊆G. If G is a t-degenerate graph,

then G1 := G can be reduced to the null graph by the following steps.

Step i (1 ≤ i ≤ n − t) Remove a vertex of degree at most t from Gi, and
denote the resulting graph by Gi+1.

Step n − t + 1 Remove all the vertices of Gn−t+1.
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In each of the first n − t steps, at most t edges are removed, and in the last step (note
that Gn−t+1, which has t vertices, may be a complete graph), at most t(t − 1)/2 edges
are removed. Therefore,

|E(G)| ≤ t(|V(G)| − t) +
t(t − 1)

2
= t|V(G)| −

t(t + 1)
2

.

Setting p = t and q = t(t + 1)/2 in Theorem 1.1, we immediately have the following
corollary.

C 1.3. For every simple t-degenerate graph G with ∆ ≥ 2t,∑
k
(G) ≤

(2t − δ)∆k + (∆ − 2t)δk

∆ − δ

(
n −

t2 + t
2t − δ

)
+

t2 + t
2t − δ

δk.

A graph is series-parallel if it may be turned into K2 by a sequence of the following
operations: (a) replacement of a pair of parallel edges with a single edge that connects
their common endpoints, (b) replacement of a pair of edges incident to a vertex of
degree two with a single edge. By this definition, one can see that every series-parallel
graph is 2-degenerate and contains at least two vertices of degree at most 2. Let G be
a series-parallel graph. If ∆ = 3, then it is easy to verify that

∑
k(G) ≤ 2k+1 + (n − 2)3k.

If ∆ ≥ 4, then we can obtain an upper bound for the kth powers of the degrees of the
vertices of G as in Corollary 1.3 by setting t = 2 there. Combining these two cases, we
have the following corollary.

C 1.4. For every simple series-parallel graph G with ∆ ≥ 3,∑
k
(G) ≤

(4 − δ)∆k + (∆ − 4)δk

∆ − δ

(
n −

6
4 − δ

)
+

6
4 − δ

δk.

Since outerplanar graphs are 2-degenerate, the bound in Corollary 1.4 also applies
to outerplanar graphs with ∆ ≥ 4.

2. Proof of Theorem 1.1

Since ∆(G) ≥ 2p, and G ∈ Gp,q yields that δ ≤ 2p − 1 < 2p, we have 1 ≤ δ < ∆. It is
easy to see that Theorem 1.1 holds for k = 1. Thus in the following we let k ≥ 2.

By ni we denote the number of vertices of degree i of a graph G. It holds trivially
that

∑
δ≤i≤∆ ni = n. Since G has at most pn − q edges,

∑
δ≤i≤∆ ini ≤ 2pn − 2q. Consider

the following program P.

max : f (xδ, . . . , x∆) =
∑
δ≤i≤∆

ik xi

such that
∑
δ≤i≤∆

xi = n,∑
δ≤i≤∆

ixi ≤ 2pn − 2q,

xi ≥ 0 (xi real, i = δ, . . . , ∆).

Let (xδ, . . . , x∆) be an optimal solution of P. It follows that
∑

k(G) ≤ f (xδ, . . . , x∆).
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C 2.1. If ∆ ≥ 2p + 2, then xi = 0 for 2p + 1 ≤ i ≤ ∆ − 1.

To prove the claim, assume that xi > 0 for some i ∈ 2p + 1, . . . , ∆ − 1. Let y j = x j

for j ∈ {δ, . . . , ∆ − 1}\{i, 2p}, yi = 0, y2p = x2p + (1 − (2p − i)/(2p − ∆))xi and y∆ =

x∆ + ((2p − i)/(2p − ∆))xi. Then
∑
δ≤ j≤∆ y j = n,

∑
δ≤ j≤∆ jy j ≤ 2pn − 2q, y j ≥ 0 for

j = δ, . . . , ∆ and

f (yδ, . . . , y∆) − f (xδ, . . . , x∆) =

(
−ik +

2p − i
2p − ∆

∆k +

(
1 −

2p − i
2p − ∆

)
(2p)k

)
xi

=

(
(2p)k − ik +

i − 2p
∆ − 2p

(∆k − (2p)k)
)
xi

= (i − 2p)(((2p)k−1 + (2p)k−2∆ + · · · + 2p∆k−2 + ∆k−1)

− ((2p)k−1 + (2p)k−2i + · · · + 2pik−2 + ik−1))xi

> 0

for k ≥ 2, a contradiction.

C 2.2. If δ ≤ 2p − 2, then xi = 0 for δ + 1 ≤ i ≤ 2p − 1.

Assume that xi > 0 for an i ∈ {δ + 1, . . . , 2p − 1}. Let y j = x j for j ∈ {δ + 1,
. . . , ∆}\{i, 2p}, yi = 0, yδ = xδ + ((2p − i)/(2p − δ))xi and

y2p = x2p +

(
1 −

2p − i
2p − δ

)
xi.

Then
∑
δ≤ j≤∆ y j = n,

∑
δ≤ j≤∆ jy j ≤ 2pn − 2q, y j ≥ 0 for j = δ, . . . , ∆ and

f (yδ, . . . , y∆) − f (xδ, . . . , x∆) =

(
−ik +

2p − i
2p − δ

δk +

(
1 −

2p − i
2p − δ

)
(2p)k

)
xi

=

(
(2p)k − ik +

2p − i
2p − δ

(δk − (2p)k)
)
xi

= (2p − i)(((2p)k−1 + (2p)k−2i + · · · + 2pik−2 + ik−1)

− ((2p)k−1 + (2p)k−2δ + · · · + 2pδk−2 + δk−1))xi

> 0

for k ≥ 2, a contradiction.

C 2.3. If ∆ ≥ 2p + 1, then, among xδ, . . . , x∆, only xδ, x2p and x∆ may be nonzero;
if ∆ = 2p, then, among xδ, . . . , x∆, only xδ and x∆ may be nonzero.

We only prove the first part of this claim, since the proof of the second part is similar.
Recall that δ ≤ 2p − 1. If ∆ ≥ 2p + 2 and δ ≤ 2p − 2, then by Claims 2.1 and 2.2, we
have xi = 0 for i ∈ {δ + 1, . . . , ∆ − 1}\{2p}, and this claim holds. If 2p ≤ ∆ ≤ 2p + 1
and δ ≤ 2p − 2, then by Claim 2.2, xi = 0 for δ + 1 ≤ i ≤ 2p − 1, so only xδ, x2p and
x∆ may be nonzero. If ∆ ≥ 2p + 2 and δ = 2p − 1, then by Claim 2.1, xi = 0 for
2p + 1 ≤ i ≤ ∆ − 1, so only xδ, x2p and x∆ may be nonzero. If 2p ≤ ∆ ≤ 2p + 1 and
δ = 2p − 1, then this claim follows trivially.

https://doi.org/10.1017/S0004972713000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000063


[5] On the sum of powers of the degrees of graphs 357

We come back to the proof of Theorem 1.1. If ∆ ≥ 2p + 1, then by Claim 2.3 and the
restrictions of P, we obtain that xδ + x2p + x∆ = n and δxδ + 2px2p + ∆x∆ ≤ 2pn − 2q,
which imply that (2p − δ)xδ ≥ 2q + (∆ − 2p)x∆ and

x2p = n − xδ − x∆ ≤ n −
2q

2p − δ
−

∆ − δ

2p − δ
x∆.

Furthermore, since

(2p − δ)x∆ = (2p − δ)n − (2p − δ)xδ − (2p − δ)x2p

and

(∆ − 2p)x∆ ≤ (2p − δ)xδ − 2q = (2p − δ)n − (2p − δ)x∆ − (2p − δ)x2p − 2q,

we have
(∆ − δ)x∆ ≤ (2p − δ)n − (2p − δ)x2p − 2q.

It follows that x∆ ≤ ((2p − δ)n − (2p − δ)x2p − 2q)/(∆ − δ) and

f (xδ, . . . , x∆) = δk xδ + (2p)k x2p + ∆k x∆

= δk(n − x2p − x∆) + (2p)k x2p + ∆k x∆

= δkn + ((2p)k − δk)x2p + (∆k − δk)x∆

≤ δkn + ((2p)k − δk)
(
n −

2q
2p − δ

−
∆ − δ

2p − δ
x∆

)
+ (∆k − δk)x∆

= (2p)k
(
n −

2q
2p − δ

)
+

2q
2p − δ

δk +

(
∆k − δk −

(2p)k − δk

2p − δ
(∆ − δ)

)
x∆

≤ (2p)k
(
n −

2q
2p − δ

)
+

2q
2p − δ

δk

+

(
∆k − δk −

(2p)k − δk

2p − δ
(∆ − δ)

) (2p − δ)n − 2q
∆ − δ

=
(2p − δ)∆k + (∆ − 2p)δk

∆ − δ

(
n −

2q
2p − δ

)
+

2q
2p − δ

δk.

If ∆ = 2p, then by Claim 2.3 and the restrictions of P, we obtain that xδ + x2p = n
and δxδ + 2px2p ≤ 2pn − 2q. It follows that (2p − δ)xδ ≥ 2q and x2p = n − xδ ≤ n −
2q/(2p − δ), which implies that

f (xδ, . . . , x∆) = δk xδ + (2p)k x2p

= δk(n − x2p) + (2p)k x2p

= δkn + ((2p)k − δk)x2p

≤ δkn + ((2p)k − δk)
(
n −

2q
2p − δ

)
= (2p)k

(
n −

2q
2p − δ

)
+

2q
2p − δ

δk.

This completes the proof of Theorem 1.1.
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