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1. V. Bernstein, N. Levinson, R. P. Boas, Jr., and others have
investigated under what conditions on the sequence {An}

K1 log|/(AJ| = US ar-i log|/(s)| (1.1)

for all functions /(z) regular and of suitably restricted growth in the half-
plane x^O. (For references see [1].)

In this note the restrictions on f(z) are that f(z) is regular, and not
identically zero in | arg z | < \n, continuous in | arg z | ^ \TT, and that for
some positive B

|/(z)|<e*i*l, \f(iy)\<e*LM ( «>(» (1.2)

where L > 0. Of the An I shall assume that they are real positive
numbers and that

VrU«>0 (n=l, 2, ...) (1.3)

The method of this paper could be adapted to deal with the more general
{Xn} considered by Levinson. I shall write

A(r) = Lr+l(r)

for the number of An not exceeding r.

N. Levinson proved [4, p. 108, Th. 38; t(u) = \l(u)\—l(u)]:

THEOREM A. / / f(z) and {Xn} are subject to the conditions stated and if

lim l(r)/r exists, (1.4)
r-*-a>

I u-*l(u)du = co (1.5)
Ji

and

then (1.1) holds.
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54 W. H. J. FUCHS

The condition (1.5) implies that the limit in (1.4) is not negative.
If this limit is positive, then (1.4) implies (1.5) and (1.6). The most
interesting case is

J(r)/r-»-O. (1.7)

I want to point out that a refinement of Theorem A leads to a best
possible result. This is most easily stated in terms of the function

<f,(r) = r«-!<«(«) = M+ f lJ& dw+constant

= S A^1—L logr+constant.

T H E O R E M B . Under the assumptions (1 .2) and (1 .3) the relation (1 .1)
holds if and only if

(i) lim<£(r) = oo (1 .8)

(ii) forgiven e > 0 , </>(¥)—<f>(X)>— e for Y>X>K(e). (1.9)

Because of (1.3) the conditions (1.5) and (1.8) are equivalent and
it is easy to see that (1.4) and (1.6) imply (1.9), but the converse is not
the case. Theorem B contains no condition like (1.4), but I shall show
(§2) that under the hypotheses of Theorem B {Aw} can be replaced by a
sub-sequence for which (1.8), (1.9) and (1.7) hold. In proving the
sufficiency part of Theorem B we may therefore assume (1.7), since (1.1)
is certainly true for {An} if it is true for a sub-sequence of {Am}.

The proof that (1.7), (1.8) and (1. 9) imply (1.1) can be carried out by
the method of R. P. Boas [1] and I therefore omit it.

The necessity of the conditions (1.8) and (1.9) is proved by the
construction of counter-examples in §§3-5.

2. I prove first that under the hypotheses (1.8) and (1.9)

r^0. (2.1)

(1.8) implies that \xml(r)/r JsO. If ]iml(r)/r = — a < 0, then there is a
sequence of Y-+co such that 1{Y)/Y < — <x+|e. For every such Y define
X as the largest r < Y such that l(r)/r>—$e. Since Uml(r)/r ^ 0, such
an X exists for all large Y and X -> oo with Y. Then

which contradicts (1.9).
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ON THE GROWTH OF FUNCTIONS OF MEAN TYPE 55

I show next that it is possible to replace {An} by a sub-sequence satisfying
(1.8), (1.9) and

r)/r = 0. (2.2)

This combined with (2.1) will prove that (1.7) holds for the new
sequence.

I define -e(X)= inf {<f>(v)-<f>(u)}.

The function e(X) is a decreasing, positive function tending1 to 0, by
(1.9). Let {Xn} be a sequence of positive numbers satisfying

(Xn+1-Xn)/Xne(Xn)->co.

It is easily seen from (1.3) and the definitions of l(r) and <f>(r) that
l(r)/r and <f>(r) vary by o(l) only as r varies in the interval <Xm, Xn+1y.
It will therefore be sufficient to verify (1.8), (1.9) and (2.2) for values
of r, X and Y tending to infinity through the sequence {Xn}. There is
nothing to prove if (2.2) holds to start with.

If 0 < )3 < lim l(r)/r, then

s> x ^ - x . = oo> (2 3)

where the summation is over all those intervals (Xr, Xv+1) containing at
least (L+p) (Xr+1—Xy) zeros. For suppose (2.3) false. Then, for a
given 8 > 0, there is a T such that

S' X*-g-X' <8. (2.4)

Now we estimate A(Xn) by estimating separately the number of A's ^ T,
the number of A's in intervals (Xr, Xr+1) not contributing to (2.3) and
in intervals contributing to (2.3). This yields, using (1.3),

X.>T

±- S' X-% x-\xn.
c X,>T A-v+l )

1 Limits in this section are always taken as the variable tends to °o.
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56 W. H. J. FTTOHS

By (2.4) and the definition of l(r) this would imply

Em" l(r)/r = E 5 l(Xn)/Xn < j8,

contrary to hypothesis.
We now choose a sequence {r]n} of positive numbers tending to zero

such that

X'V,X'%~X' = oo, (2.5)

where the summation is over the same v as in (2.3), and

2 , 4LZ^~X\ 8^%-4 . (2.6)

The sequence {AM} is now modified as follows. If the number of A's
in (Xn, Xn+1) is not greater than

(L+Vn)(Xn+1-Xn), (2.7)

all the A in this interval are retained (" unmodified interval "). If the
number of A's in (Xn, Xn+1) is greater than (2. 7), then A's from this interval
are dropped out until the number of remaining A is at most equal to (2.7).
For the modified sequence obviously

Z(r) A(Xn) T

lim -i-: = hm L. n> — L < 0.
•• Xn

Further, in a " modified interval " for the new sequence

> XH+1

For sufficiently small positive £

log(W):

Hence, for sufficiently large n,

I

X
By (2.6),
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Hence

> hn Xf~X» > fo, X^~Xn + e(Xn). (2 . 8)

Therefore, for the new sequence,

)-4>{Xp) = 9:£ [<KXk+1)-<f>(Xk)]
k=p

(2.9)

where the summation is extended over the " modified intervals ". This
is an immediate consequence of (2.8) if every set of consecutive
unmodified intervals is grouped with the preceding modified interval
(if any). (1.9) follows at once from (2.9), and (1. 8) is also a consequence
of (2.9) because of (2.5).

3. In this section I prove that the conclusion of Theorem B is false
if there are large intervals in which the density of the A's falls appreciably
below the value 1/L. More precisely, we make the following

Assumption A. There are constants M, ($, y, M < L, 0 < /? < y and
a sequence of .X-s-oo such that for u in the " exceptional interval "

J: X^u^Y, (l+p)X^Y<(l+y)X, (3.1)

A(u)-A(X)^M(u-X). (3.2)
Or, in other words,

Then for Z= (l+P)X
rZ

I u~2l(u)du
Jx

u-2{l(u)-l(X)}du

so that (1.9) is not satisfied under Assumption A.
Before constructing the required counter-example I prove that one

may assume without loss of generality that in the interval (3.1) also

-u)) (3.3)

where Ao(«) is the number of A's less than u.
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58 W. H. J. PUOHS

Choose N, M <N < L. Let Z be the least upper bound of all
TF<(1+;8)Z such that

A0(W)-A0(u)^N(W—u) (X^u^W).

If Z = (1+P)X, we need only replace M by N and Y by (1+P)X and
the assertion is proved. If Z < (1+)8)X, then for Z < w < (1+/?)X there
is a u = u(v) ^ X such that

A0{v)—A0(u) > N(v—u).

We can assume u^ Z, since otherwise u could be replaced by Z:

A0(v)-A0(Z) = A0(v)-A0(u)- [A0(Z)-A0(u)]

> N(v-u)-N(Z-u) = N(v-Z).

In particular there will be a sequence of Y's ̂  Z,

(l+f!)X=Y0>Y1>Y2...,

with N(Y0-Y1)<A0(Y0)-A0(Y1),

^ ( r i - 7 2 ) < A u ( r i ) - A 0 ( 7 2 ) ) etc.

This chain of inequalities breaks off when finally Yk = Z. This index
k exists, since every interval (Yh, Fft_1) contains at least one A and the
number of A in (Z, Yo) is finite. Addition of the inequalities gives

N[(1+P)X-Z] <AO[(1+P)X]-AO(Z)

<A0[(l+i3)X]-A0(X)

by (3.2). Hence

for some positive j8' = j8' (jS, M, N) and sufficiently large X. This shows
that we may assume (3 .3), changing M into N and fi into /?' in Assumption
A, if necessary.
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ON THE GROWTH OF FUNCTIONS OF MEAN TYPE 59

One aim is to show that under Assumption A there is a function /(z)
satisfying (1.2), but not (1.1). Let

g(z) = w

where G is Euler's constant. Then

n=l ^n~rz

We shall assume that there is an absolute constant S > 0 such that all
the end points of "exceptional intervals" (3.1) are at a distance greater
than 8 from the fj,n. This can be brought about, if necessary, by
shortening the exceptional intervals slightly (with a consequent small
alteration in the value of M).

To construct f(z) a sub-sequence {«/„} of the intervals (3.1) is chosen
for which Xr+1/Xy->co very rapidly. The counter-example is then pro-
vided by

f(z) = g(z)UPy(z),

where

Pr{z) = n £±? e-2^ IT ~ e*"* (^A " e2*"-/"* (3 .4)

and a, and the positive integer q, are chosen so that

- S P-1+ S A- !+^K = 0. (3.5)

To prove that/(z) satisfies (1.2) but not (1.1) we need first some facts
about the behaviour of P,(z). To save writing, the index v will be omitted
as long as we deal with one particular Jy = J. By (3.5)

(3.6)

LEMMA 1. Let Q(z) = z-1log|P(z)| where P(z) is given by (3.6).
Then, for given 77, 0 < t] < 1, the integer q and the number a in (3.5) can
be chosen so that

ivX < a < r)X, (3 .7)

provided that X is sufficiently large. Also, if -q in (3. 7) is small,

(\z\<la), (3.8)

= O((Y/\z\)*) (|*| > 27), (3.9)
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60 W. H. J. FTJOHS

and 0<Q(x)<Q(Y) (x>Y) (3.10)

Q(x)<Q{X) (a<x<X), (3.11)

Q(x)<0 (x<a). (3.12)

Proof. By (3 . 2) and (3. 3) the largest possible value of ZAm is attained
if the A are evenly spaced at distances l/M. Hence

ZX-i^M log(7/X)

while 2 /x-1 ~ L log (Y/X).
J

For integers m other than —1,
S \m < 2 /*"• < A (yi-^+Z1"^),
j J

where 4̂ is an absolute constant. Use of these estimates in (3.5) shows
that a > 0 so that, by suitable choice of the positive integer q, (3.7) can
be satisfied.

In | z | < a,

z-1 logP(z) = 2 S — p ; |S/»-«»-1-SA-2n-1-go-*l-1f,

and the estimates for the sums given above show that the coefficient of
Z2n j s #(a2n) an (j (;na^ ft j s negative for rj < ̂ 0(-3f, i , j8, y). This proves
the statements about Q in the range | z \ < a. The other statements are
proved similarly.

I return to the function /(z). It is not hard to see that it satisfies
(1.2) (see Lemma 3 of [3] for a closely related calculation). I show now
that/(z) does not satisfy (1.1) if the Xv increases very rapidly.

If E is the set of all x not belonging to the Jv, then

A î log | /(An) I < ES ari log | f(x) \,

since /(An) = 0 for Â  e J. It is therefore sufficient to prove that

fim x-1 log | f(z) | < Urn a;-1 log| f(x) |. (3.13)

By StirUng's formula,
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ON THE GBOWTH OF FUNCTIONS OF MEAN TYPE 61

as a;n->-oo through any set of values whose distance from the set of points
ljLn = n/L (n = 1, 2, ...) is positive.

If the X, are rapidly increasing, by (3.8) and (3.9)

x-1 log | UP9(x)\ = or1 log| Pk(x)\+o(l),

as a;-*oo, where Jk is the interval closest to x. (3.13) is therefore a
consequence of the following statement.

There is a constant a > 0 such that every J contains a point £ at a
distance 8 > 0 from every /*n such that

By (3 .10), (3 .11) and (3.12) it is enough to prove that £ can be chosen
so that

max

This will follow if we can find a £ such that

Q(£)>Q{X)+* (3.14)

and a £ (which might be different) such that

Q(£)>Q(Y)+*. (3.15)
I shall only show how to satisfy (3.14). The treatment of (3.15) is

analogous.
Consider

The contribution of a particular A to A is

A - X
D(X) = t 1 log -Z-Hog

A+X

Differentiation with respect to A shows that -D(A) decreases if a A > X is
moved closer to $. Also D(A)-*-0 as A->oo, and so D(A)<0 for A>f.
Hence A is decreased if the A inside J are moved closer to £ and if further
A are added between £ and Y (a and q being kept fixed).

Next we choose a suitable £ with the aid of

Cartan's Lemma. Given H > 0 and p points Ax, ..., Xp in the complex
plane, we can find a set of at most p circles with sum of radii less than
227 such that for every £ outside these circles
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with the exception of, at most, m— 1 of the A's. (For a proof of the Lemma
in this form see [6] with a = 1.)

We apply the Lemma to the A's between X and (l-\-k)X, where
0 < k < j8. The number, p, of such A's is at most kMX, by (3.2). We
choose H = kX/8. The circles of Cartan's Lemma cover at most a set
of measure 4/7 = kX/2 on the real axis. There is therefore outside the
Cartan circles a

with %k<o<%k, (3.16)

For this £ there is

no A satisfying | £—A| < (kX/8)/kMX = 1/8JW,

at most one A satisfying | ̂ —A| < 2/8M,

at most two A satisfying | £—A | < 3/8M,

We shall now estimate A under the assumption that there is

one A at a distance 1/8M from £,

one A at a distance 2/8M from g,

one A at a distance sj8M from £,

where s(^p) is the largest integer not exceeding kMX, while the remaining
A are equally spaced between (l-\-k)X and Y with a distance 1/M between
nearest neighbours. This position of the A can be obtained from their
original distribution by moving the A closer to £ and, perhaps, adding
further A > £. Both these operations decrease A, so that it will be
sufficient to prove (3.14) in this special case. Now we have

n A-f ^ A n/8M

KeJ "m/M+f
where mx and m2 are such that m ranges over all integers satisfying

(l+k)X <m/M < Y.

Or, in terms of F-functions,

https://doi.org/10.1017/S0013091500021301 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500021301


ON THE GROWTH OF FUNCTIONS OF MEAN TYPE 63

The further calculation is simplified if it is remarked that a change of
0(1) in the argument of any one of the F-functions changes the logarithm

of this F-function by O(log X). This enables us to write (i =

]og\B(S)\>logT>(kMX)+logr(l6(l+a)MX)

-log F (l6(l+o)MX+kMX)

+logT(MY-(l+e)MX)

-logT({l+k)MX-(l+o)MX)

-\ogT(MY+(l+a)MX)

+ 0(\ogX).

Or, by Stirling's Formula,

kMX logk+lQ(l+a)MX log 16(l+a)

+ {MY-(l+a)MX}log{(Y/X)-(l+a)}

+ (2+k+a)MX log (2+k+a)

- {MY+ (l+a)MX} log {(Y/X)+l+a}

+ 0(logX).
Similarly

log\R(X)\ < (8a+k)MX log (8a+k)

—8oMXlog8o

+ (16+8a)JO"log (16+8a)

— (l6+8a+k)MX log (16+

+ (MY-MX)log{(Y/X)~l}

-kMXlogk

+ (2+k)MXlog(2+k)

-(MY+MX)log{(Y/X)+l}

+O(logX).

https://doi.org/10.1017/S0013091500021301 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500021301


64 W. H. J. FUCHS

Now we choose k rather small and remember (3.16). Collecting those
terms in which the logarithm is equal to log i+0(1) and those in which
the logarithm is 0( 1), we obtain finally

log\R(t)\-X-i log|B(X)\ ^Mklogk+O(k+1^), (3.17)

where the constant implied in the 0-notation depends on M only.
Similarly,1 if

then

log I 8(£)\-X-i log\S(X)\>-Lk logk+o(k+^^j. (3.18)

Finally, if

then

n l + a—a/X . l-a/X)- log 1 + ; - l o g ^ p ^ }

(3.19)

by (3.5) and (3.10).
Now (3.14) is a consequence of (3.6), (3.17), (3.18) and (3.19).

4. To prove that (1.9) is a necessary condition for the assertion of
Theorem B we must still consider the case when both (1.9) and Assumption
A of the last section do not hold.

If Assumption A is false, then for every e, 0 < e < 1, we can find a
U = U(e) such that for every u> U there is a v satisfying

A(v)— A(u)>L(l — e)(v-u) (u<v<(l + e)it). (4.1)

Since the interval (u, v) must contain at least one A, every interval
(X, Z) with X > U can be covered by a finite number of non-overlapping

1 Here we use the fact that both { and X are at a distanoe greater than S from the
nearest/I..
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intervals (u, v). Therefore

4>{Z)-^(X)= 2 A- 1 - ,

ffe (4.2)

On the other hand, since (1.9) is false, there is an a > 0 and an infinite
sequence of intervals Jy = (Xv, Yy) (XF->oo) such that

<f>(Y,)-<f,(Xy)=-a.

This is compatible with (4. 2) only if

Y./X. + CO. (4.3)

We may also suppose that on an exceptional interval (X, Y)

(X<Z<Y) (4.4)

(otherwise replace X by a larger, 7 by a smaller number). Therefore,
ifX,<Z<Z'<Yv,

(4.5)

and reasoning similar to that leading to (4. 2) proves

LEMMA 2. For given positive numbers R, e, R> e, and L' > L there
is a constant K = K{L', R, e) such that for all large v the interval (Xv, KXV)
contains aninterval (Z, Z') with Z' \Z = R such that for Z ^.u, (1-f e)w ̂  Z'

—A(u) < L'eu.

[If this is not true for an interval (Z, RZ), then ultimately (for large v)
<j>(RZ)~<f>(Z) > k(L', e) > 0. There cannot be too many consecutive
such intervals, by (4.5).]
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Next we define a function f(z) depending on a parameter e > 0 which
will provide a counter-example for sufficiently small e.

We select a sub-sequence {J,} of the exceptional intervals such that

(i) Yv>X,e~\

(ii) X¥+1>Yve~*.

In view of (4.3) this is always possible. The sequence {&„} is defined
as follows. Outside the J, the k are evenly spaced at distances l/L, inside
a Jr every A belongs to {kn} and in addition further k's are added between
Xv and Xv/2e such that the minimum distance of two k's is greater than
Jc [c of (1.3)] and

S k-i-L log (Y,/Xv) = 0.

These requirements are compatible if e is sufficiently small. Note that
there is a constant b such that

S k-1—Llogx^b (4.6)

k<x

as a;-> oo through any sequence outside the J,.

Put f(z) = * II
n=l

It is easily seen that/(z) satisfies (1. 2).
I prove next that for x outside the Jv

(4.7)

where p here and everywhere in this section denotes a number which can
be made arbitrarily small by choosing e sufficiently small. We shall
need the following, easily proved, estimates of

W = log k—x
k+x

W<0 (0<x<k)

W=O(xW) (0<xlk<l)

W < 2x/k (0 < x/k)

W=2x/k+O(k/x) (0<klx< i).

(4.8)

(4.9)

(4.10)

(4.11)
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Let x be outside the J r ;

log|/(*)| = -2Za:loga;+ 2 + 2 + t S jlog

By (4.10)

By (4.8),

—a;

= —2La;loga;+S1+S2+S3.

Y.x<2x 2 ft-1.

£ 3 < 0 .

(4-12)

Also, by (4.8), S2 is increased if any terms arising from k'a inside a J,
which are not A's are omitted, for such k are necessarily greater than x.
This changes £2 to S2', say. All k contributing to S2' are either outside
the «/„ or belong to {A}. It follows that the range of summation can be
covered by a finite number of non-overlapping intervals (u, v) for which
(4.1) holds, where A(t) is the number of k'a not greater than t contributing
to S2'. Hence

S2' log
tC "— CC

k+x
-e) S (v-

X—U
) £ (v-i
u>x

v—x

^L(l —

The last two sums are Riemann sums approximating to

fi i-
I 1°S T
Jt 1-

and | <Zw=21oge-2+21og2+0(€2)

respectively.
Further, because of the spacing of the k and because of (4.2)1 and

(4.5)

1 The number t in (4. 2) is not the same e as here. In (4 . 2) e = o(l) as X
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as x->co. Collecting the information on S1; S2 and S3 and remembering
(4.6) we obtain (4.7). In particular

nm"^1 log 1/(^)1 ^2b-2L+P,

since log | f(\n) \ = — oo if Xn e Jv.
A contradiction to (1.1) will arise if there is a sequence {£r} such that

£,eJ, and
Em £-1 log|/(&)| > 2b-2L+2a-p. (4.13)

By Lemma 2, with B = e~4, L' = £ ( l+e ) , every interval J, (v> v0)
will contain an interval I = (Z, Ze-*) such that no interval (u, (1 + e) uj C /
has more than Z<(l + e) ew A's inside it. Also Z/X, is less than a constant
depending on e only. Let $v be as close to Ze~2 as is compatible with the
requirement that £„ is at a distance ^ \c from the nearest k. All A;'s in
(e£,, f»/e) a r e '̂s> s o that this last condition can be satisfied. To compute
g-1 log|/(£,)| we use the same notation as in (4.12) with £ = f, in place
of a. By (4.9)

By (4.11),

Sx>2^ S fc-!+0( 2 k/A = 2£ S fc^

since the number of k less than ef is 0(e£).
All k contributing to S2 are members of {A}. Using the upper bound

for the number of A's in (u, (l + e)«) found above and reasoning as before
we have

S +• S log
«£<*<f/a+«) u

Also, if N is the number of A in (f/(l + e), (1 + e)^), then, by (1.3),

> 1 O glog

But JV = O(eg) and so the right-hand side is
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As before

S2fc~1> S k~x—L log e—p.

Hence ultimately

But if £ is in the exceptional interval (X, Y),

S I 1 T 1 f" I V 7 1 7" 1 V l I / *C 7 1

K~L—L log f = I li K"1—iylOgjLl + l li K"1-

— I 2J fC—J

As X->oo, the first term tends to 6, the second is 0 and the last is

By hypothesis the first part is a; by our choice of £, £/Jf is less than some
fixed number depending on e only. Hence <f>(£)—<j>(X)->Q. (4. 13) now
follows from (4.14). This completes the proof that (1. 9) is a necessary
condition.

5. It remains to prove the necessity of (1. 8). Since we may assume
(1.9), (1.8) can be replaced by

But I have shown elsewhere [2, Theorem 1] that

(r) <oo
r->a>

implies the existence of a non-constant f(z) satisfying (1.2) and such
that /(An) = 0. For this f{z) the left-hand side of (1.1) is—oo. But the
right-hand side of (1.1) is greater than — oo, by a Phragmen-Lindelbf
theorem. Therefore the conclusion of Theorem B fails if (1.8) is not
satisfied.

I am greatly indebted to the referee for many improvements of an
earlier version of this paper.
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