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A DUALITY THEOREM FOR A MULTIPLE OBJECTIVE
FRACTIONAL OPTIMIZATION PROBLEM

T. WEIR

Characterizations of efficiency and proper efficiency are given

for classes of multiple objective fractional optimization problems.

These results are then applied to the case of multiple objective

fractional linear problems. A dual problem is given for the

multiple objective fractional problem and it is shown that for a

properly efficient primal solution the dual solution is also

properly efficient.

1. Introduction

In a recent paper [9] the author proposed a dual for a convex

multiple objective optimization problem relating properly efficient

solutions of the primal and the dual. Duality for nonconvex problems was

also considered. However, for such nonconvex problems, it was pointed

out, that the dual solution corresponding to a properly efficient primal

solution could not be guaranteed to be properly efficient.

In this paper characterizations of efficiency and proper efficiency

are given for classes of multiple objective fractional problems. Such

problems are generally not convex. The results specialize to a known

result for multiple objective linear fractional problems: for linear

fractional problems, all efficient solutions are properly efficient. For

the nonlinear multiple objective fractional problem, a dual is proposed,

in which the objective function is the same as that of the primal

multiple objective fractional problem. For this dual problem, it is

Received 13 January, 1986.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86
$A2.00 + 0.00.

415

https://doi.org/10.1017/S0004972700010303 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700010303


416 T. Weir

shown that the dual solutions are properly efficient.

2. Efficiency and proper efficiency

Consider the multiple objective optimization problem

(P) 'maximize' F (x) subject to h(x) > o .

n k
where X is an open convex subset of R and where F : X •*• R and

h : X •*• K are real vector valued functions. This is the problem of

finding the set of efficient or Pareto [7] optimal points for (P) : x

is said to be efficient if it is feasible for (P) and there exists no

other feasible point x for such that F(x) > F{x ) and F(x) f F{x ) .

o o

The notion of proper efficiency introduced by Kuhn and Tucker [3]

is a restriction of efficiency that allows only points x such that

there is no solution to

(1)

'F. (x ) d > o for some i ;
t- O

vF.(xQ)d > o for all j ? i

vh.{XQ)d > 0 for all 3 e J

where J = {i : h. (x ) = o} and where the Kuhn-Tucker constraint

qualification [3] is satisfied. Their motivation was that of excluding

solutions admitting a first order gain in one criterion at the expense

of but a second order gain in another.

Geoffrion's concept of proper efficiency [2] is a slightly restricted

definition of efficiency which eliminates the points causing unbounded

tradeoffs between the objectives {F.} •. x is to be properly efficient

if it is efficient for (P) and if there exists a scalar M > o such that,

if F. (x) > F .(x ) for some i and feasible x for (P) , there exists

j such that F.(x) < F.(x ) and
J j o

In this section we provide characterizations of efficiency for

several classes of multiple objective optimization problems. Results for

linear fractional problems will be given as special cases. In the
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following all functions will be assumed differentiable. We denote by E

the set of efficient points and by PE(KT) and PE{G) the set of

efficient points that are properly efficient in the sense of Kuhn and

Tucker and Geoffrion respectively.

LEMMA 1. If xQ is efficient for (P) and if F and each h., j e j3

are pseudoconvex at x then there is no solution to the system (1).

Proof. Suppose there exists d satisfying (1). Then for t 6 (o,l),

vF^ (x )(X + td - x ) > o ; The pseudoconvexity of F. at x then

implies

(2) F^xo + td) > Fi(xo) .

Similarly for a l l j f i , (1) and the pseudoconvexity of F. at x

implies that for t £ [o,l]

(3) Fj&o + td) > Fj&Q) .

Similarly, for all j S J and for t £ [o,l]

(4) hs{Xo + td) > hj{Xo) = ° •

For j & J , h • (x ) > o and by continuity there is t where o < t < 1

such that for t e [o,?]

(5) h.{XQ + td) > o .

Combining the results (2) - (5) contradicts the efficiency of x D

It is to be noted that the assumption in Lemma 1 on h. , j 6 J j is
3

the weak reverse convex constraint qualification. This constraint

qualification implies the Kuhn-Tucker constraint qualification [4].

The next result may be found in Geoffrion [2].

LEMMA 2. There is no solution to (1) if and only if there exists

X e Rk and y e if such that

(6) v I IP lx ) + v f yh(x ) = o
zl il
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m

(7) I ^ < * o ) = °
^=l

k
(8) X > o , I \. = 1 , y > o .

Combining Lemmas 1 and 2 gives

LEMMA 3. If XQ is efficient for (P) and if F and each h. ,

j £ / , are pseudoconvex at x then there exists 1 6 R and j 6 |f

such that (6), (7) and (8) are satisfied. a

Assuming F and h concave and that the Kuhn-Tucker constraint

qualification is satisfied Geoffrion showed that (6), (7) and (8) are

satisfied at x if and only if x G PE(G) . Under the same
o o

hypotheses Kuhn and Tucker showed that (6) , (7) and (8) are satisfied if

and only if x e PE(KT) . Thus for a concave problem (P) , if the

Kuhn-Tucker constraint qualification is satisfied, PE{G) = PE{KT) . The

next results extend the results of Geoffrion and Kuhn and Tucker to a

class of multiple objective fractional optimization problems.

Consider the problem

(FP) 'maximize' F(x) subject to h(x) > o .

Here F • (x) = —r- , i = 1,2,. . . ,k where each f. : X -*• R and

g. : X -*• R , i = 1,2,... ,k are concave and convex functions
Is

respectively with f. (x) > o , g • (x) > o for all x 6 X ; each g . ,

i = 1,2,...,7c is assumed to be bounded on X and each fa. , i = 1,2,...
Is

is concave. Note that each F- , i = 1,2,...,k is pseudoconcave but,

in general, not concave on X .

THEOREM 4. For the -problem (FP), if the Kuhn-Tucker constraint

qualification holds at x 3 there exists (X,y) such that (6), (7) and

(8) are satisfied if and only if x e PE(G) .

Proof. (=>) Let x be any feasible point for (FP) .
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m m
Then from (7) and (8) \ y .h. (x) - \ y.h.(.x ) > o and concavity

m m
of J y.h.(-) implies that v Y y .h.(x )(x - x ) > o . Thus, from (6),

• Is %r • Z- 'Z' O O

n. A • J . Ifct i

E 2- « . . Z . O / v v *•-
( VT . \X ) — •"-• -— • ^Q • ( X ) ) \3C ~ CC ) ^ O •

• Q • ( X ) t* O Q' • (*C ) Z- O O
*Z,= 1 2- O t- O

Write ^ ( x ) = I ( ^ ( x ) - ^ ° g^X)) , i = 1,2,....k ; t h e

concavity assumptions imply that each $. , i = 1,2,...,k is concave and

k
so y d). is concave.

^=l

k Xi fi{xo
]

Thus ^ j (/.(x) - -g.(x)) < o . Consequently x = x is a

global maximizer for the problem

k \. f • (x )
maximize £ ^ (f. (x) - \ ° g. (x))

subject to h(x) > o .

The Comprehensive Theorem of Geoffrion [2] then shows that z = xQ is

an element of PE{G) for the problem

(P1) 'maximize1 K(x) subject to h{x) > o

v% o

If x was not an element of PE{G) for (FP) then for every

M > o there is a feasible point x and an £ such that

. . ̂  . . and

f-(x) f.(x )
for all J such that * < -*— . Hence
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420 T. Weir

contradicting XQ^PE(G) for (P').

(«=) Follows from the Comprehensive Theorem in [2]. D

THEOREM 5. For the problem (FP), if the Kuhn-Tucker constraint

qualification holds at x , there exists (\,y) such that (6), (7) and

(8) are satisfied if and only if x e PE(KT) .

Proof. (=») The proof of Theorem 4 shows that if (6), (7) and (8)

are satisfied then x € PE{G) ; thus from [2], assuming the Kuhn-Tucker

constraint qualification, x £ PE{KT) .
o

(*=) T h i s i s g i v e n i n ( [ 3 ] , T h e o r e m 4 ) . D

COROLLARY 6. Under the assumptions of either Theorems 4 or 5

PE{G) = PE{KT) for the problem (FP). n

Consider now the multiple objective linear fractional problem

(LFP) 'maximize' F(x) subject to Ax < b

where F^x) = (a\ x + c^) / (d* x + f^) , e. 6 Rn , d{ e R" , B { e R ,

B. e R and d*. x + R. > o for a l l x e X , i = 1,2,. . . ,k .
U % Is

Since each F. is pseudoconvex on X , Lemma 3 and Theorem 4 imply

THEOREM 7.x is an efficient solution for (LFP) if and only if

XQ e PE(G) for (LFP). a

Similarly we have

THEOREM 8. x is an efficient solution for (LFP) if and only if

XQ G PE(KT) for (LFP). °

The result in Theorem 7 was first given by Choo [J]. However, there,

only proper efficiency as defined by Geoffrion was considered.

COROLLARY 9. For problem (LFP), E = PE{G) = PE{KT) . a
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3. Duality

The scalar valued fractional programming problem may be expressed

as

(F) maximize , •• • subject to h{x) > o .

Here X is an open convex subset in R ; f •. X -*• R and g • X -> R are

differentiable concave and convex functions respectively, with fix) > o ,

g(x) > o for all x 6 X . h •. X •* R is a differentiable concave

function. Various different dual problems to (F) have appeared in the

literature - see for example Schaible [8] where many references are

given. Following Mond and Weir [6], a dual probram for (F) is:

(x)(D) minimize *—•—r- subject togix)
fix) hix) = o

y > o , y hix) < o .

In this section we define a concept of duality for the multiple

objective problem and establish a duality theorem for (FP) giving

multiple objective analogs of the duality results for (F) and (D). Here

proper efficiency will be taken to be that defined by Geoffrion [2].

Given a problem

(P°) 'maximize' IJJ(X) subject to x £ S

where ip : Rn -»• Rk and S C R" , the problem

(D°) 'minimize' <\>ix) subject to x 6 T

where <j> : R* ->- Rk and T C Rl will be called a dual for (P°) if

(i) (Weak Duality). Whenever x is feasible for (P°) and u

feasible for (D°)

(ii) (Strong Duality). If (P ) has a properly efficient point x

then (D°) has a properly efficient point u and ip (x ) = d> [u ) .

o o o

The above concept of duality was defined in [9] and there an analog

of Wolfe's [10] duality theorem for convex multiple objective problems

was given. However, it was pointed out, that, for nonconvex problems, a
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dual solution corresponding to a properly efficient primal solution could

not be guaranteed to be properly efficient. For a dual problem to be

defined for (FP) below i t will be shown that the dual solutions are

properly efficient.

In relation to (FP) consider the problem

f S h{x)\ t
(FD) 'minimize' F (x) subject to v< > A- —— - > + vy h(x) = o

x^X [i=l V 9i(x)\
y h(x) < o

k
y > o , X > o , I X. = o

THEOREM 10 (Weak Duality). Let x be feasible for (FP) and

(u,y,X) feasible for (FD). Then F{x) ? F(u) .

Proof. Suppose to the contrary that there is an a; feasible for

(FP) and (u,X,y) feasible for (FD) such that F(x) > F(u) . Then for

some i e {1,2,...,k}

f.(x) fAu)^ > %

and for all j

f* (*) /,- (u)
> -i_

From the pseudoconcavity of each F. , i = 1,2,. .. ,k it follows that

(x - u) > o .

Hence, using the equality constraint of ( FD),

vy h{u) (x - u) < o .

But primal and dual feasibility gives

y h(x) > o and y h(u) < o ; thus, since h is concave,

v y h{u)(x - u) > o - a contradiction. °
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THEOREM 11 (Strong Duality). Let x be a properly efficient point

(FT), and let the Kuhn-Tucker constraint qualification be satisfied.

Then there exists (X,y) such that (x ,\,y) is a properly efficient

point for (FD) and the objectives of (FP) and (FD) are equal.

Proof. Since x is properly efficient for (FP) and the Kuhn-Tucker

constraint qualification is satisfied, Theorem 4 gives the existence of

k
A and y such that X > o , V A . = 1 , y > o and

(9) v| I X.J^L\+vy\(Xo) = 0

(10) y*h(xo) = o .

Thus [x ,\,y) is feasible for (FD) and the objectives are equal.

If (a; ,\,y) was not efficient for (FD) there would exist feasible

{u*,\*,y*) for (FD) such that, for some i E. {1,2,...,k}

and for all j

Then, since each F. , i = 1,2,...,k is pseudoconcave
"I

and

- u*) > o .
o

Hence, since X .* > o for all i ,
if

Using the equality constraint of (FD) then implies that

•y* h{u*)(x - u*) < o . But primal and dual feasibility implies
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y* h(x ) > o and y* h(.u*) < o ,- since h . is concave it follows that

vy* h(u*) (x - u*) > o - a contradiction. Thus (x ,\,y) is efficient

for (FD) . It remains to show that (x ,\,y) is properly efficient.

The proof of Theorem 4 and (9) and (10) shows that x solves the

problem

9i <*>
maximize

subject to h(x) > o .

The duality results of Mond and Weir [5] then shows that (x ,y) is

a solution for the problem

minimize ik l \_H(XJ WXJ J *i(V J
subject to

r k f.(x)r k
l

Li=i

v l ) X.. | +v_v ̂ (x) = o

t/ /z(x) < o

ĵ  > o .

As in the proof of Theorem 4, it then follows that (x ,\,y) is properly

efficient for (FD). °

REMARK 12. It is to be noted that if k = 1 then (FD) becomes the

problem (D) ; thus (FD) is a multiple objective analog of (D).
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