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ABSTRACT 
Smart manufacturing enterprises rely on adapting to rapid engineering changes while minimizing the 
generated risk. Making informed decisions related to engineering changes and managing risks against 
unexpected costs requires more information to be extracted from limited data. However, limited 
information in early-stage design can come in many forms, namely text and images. The development 
of innovative design tools and processes to link multisource data together is essential to assist designers 
in building model-based engineering (MBE) systems. However, the formal computational linking of 
multisource data is yet to be realized in MBE. We propose a framework to implement transfer learning 
and integrate domain specific knowledge to bridge this information gap. A synthetic dataset is created 
using web scraping techniques based on keywords extracted from the requirements. Requirement-image 
pairs are used to fine tune a contrastive language-image pretraining model to acquire domain knowledge. 
The results demonstrate how the content of images can be used to indicate all affected requirements for 
tracing engineering changes in a complex system. 
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1 INTRODUCTION
Advances in smart factories, coupled with the disruptions of supply chains, have created a turning point
for manufacturing industries in terms of improving design resilience. Model-based approaches have
become increasingly prominent in manufacturing applications as machine learning is used more exten-
sively in design automation to assist in early-stage design. Despite the improvement in manufacturing
resilience, we have not fully exploited semi-structured (i.e., Sensor data) or unstructured data (i.e., Text
in natural language) for design improvement. Designing a complex system that takes advantage of
existing data would require the development of new tools and processes Castet (2017). This means that
domain experts should actively develop different design techniques to resolve dynamic design issues.
How to process multi-source data to aid knowledge acquisition during the design process has received
attention in recent years from other industry environments, such as the process industry, the manufac-
turing execution system , and the cyber-physical system. Implementing different types of models in
design and manufacture continues to present challenges and opportunities.
Current approaches to managing design changes still present unique challenges and are heavily depen-
dent on domain experts. In current systems of tracking design changes, domain experts are relied upon
to identify and interpret each change instance, which can be time-consuming and prone to errors. To
mitigate this deficiency, various design change propagation models are developed, including complex
network approaches Hein et al. (2021) and design structure matrices Stirgwolt et al. (2022). Besides
modeling engineering changes within requirement documents, few approaches exist to track design
changes across domains. Data analysis across multiple domains presents a number of unique chal-
lenges. First, due to confidentiality, few design documents are publicly available or can be used for
benchmark data sets. Second, it is not well understood how to extract meaningful information from
a variety of unstructured data sets. As natural languages possess greater lexical diversity, it is not
well understood how to extract domain knowledge from latent content from language models. In
requirement management (RM), the corresponding image data sets are rarely documented. To com-
pensate for the missing information, image scraping techniques can be deployed to gather online
images based upon the keywords provided. This study presents a framework for bridging the infor-
mation gap on how to trace design information across design domains by combining textual and visual
representations.
A promising solution for generating correlation between text and image is to implement joint embed-
ding, which is a machine learning technique designed to capture the association between different types
of data sets. Early studies in this area employed different approaches to analyze texts and images in
relation to each other. In recent years, a contrastive language-image pre-training (CLIP) model was
developed to deal with out-of-distribution predictions by using zero-shot learning Radford et al. (2021).
For typical image and text classification problems, both training and test data sets are from the same dis-
tribution. In contrast, the CLIP model uses a dot product to learn the joint embedding space and perform
zero-shot prediction on images with truly out-of-distribution samples. Several pre-trained CLIP mod-
els containing general knowledge can be further fine-tuned to learn domain-specific designs. Because of
these factors, we selected the CLIP model to learn the correspondence between requirements documents
and images.
This study proposes a method to address the current information gap of multi-source data issues within
MBE. We present a framework that can learn domain-specific knowledge by building correlations
between images and texts. As a result of this method, engineers can visualize the interconnections
between subsystems and manage the propagation of changes. It is important to note that in this paper
we don’t focus on a particular application as the research is still in the beginning phases and we are
attempting to provide a general framework. The study has three major contributions:
1. An alternative method is presented for filling in the missing visual information relating to each

requirement.
2. A framework is developed for leveraging transfer learning and establishing correlations between

design requirements and images of physical components.
3. This study contributes to the understanding of the factors affecting the fine-tuning of a model and

its ability to predict mechanical design outcomes.
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2 BACKGROUND
We discuss the technical background of three topics relevant to this research: design requirements in
product lifecycle management (PLM), image scraping, and joint embedding literature.

2.1 Requirements management in PLM

This study was prompted by earlier research on requirements management. As requirements documents
are collaboratively developed based on different domain knowledge, implementing and tracking engi-
neering changes across various fields can be problematic. A requirement risk is a potential mismatch
between stakeholder expectations and the outcome of a project. The evolution and management of
design changes can be challenging in a team environment Morkos et al. (2019); coupled with distribution
management, a process for approving engineering changes for documents within PLM Saaksvuori and
Immonen (2008) where engineers spend 15-40 percent of their time searching and checking information
within PLM systems while making difficult trade-off decisions to comply with customer requirements,
adds to those difficulties. There is evidence that requirements may not always correlate well with other
populated design documents within a project Morkos et al. (2010). Such discrepancies may result in
information loss during the propagation of engineering changes. Because each engineering change can
propagate through functional or non-functional requirements, an automated requirement change propa-
gation prediction (ARCPP) tool was developed to simulate the affected requirements based on keywords
Morkos (2012). With the integration of RM tools into PLM Violante et al. (2017), a product-centric
approach becomes increasingly critical to trace design information related to the physical product. In
contrast to functional requirements, a case study demonstrated that engineering design decisions are
often influenced by non-functional requirements in the automotive OEM industry Shankar et al. (2012).
To mitigate unexpected changes, the complexity of design change propagation necessitates the devel-
opment of a volatility measure to estimate the reactions of engineering changes to the basic change
instances Hein et al. (2021, 2022). Further, a topic model approach reduces the risks associated with
unexpected change propagation by dividing requirements documents into interpretable groups from
which propagation can be estimated Chen et al. (2021). Despite these advances, the propagation of
requirements must ultimately reflect on the physical component, and such information links are essential
for smart manufacturing.

2.1.1 Requirements in smart manufacturing

For smart manufacturing to achieve higher production, higher quality, and cost-effective rates, unstan-
dardized or unstructured data such as requirements must be reevaluated Wang et al. (2021). With the
integration of data science and manufacturing, the direction of requirement management in PLM will
undergo a paradigm shift. Future cloud manufacturing (CMfg) will be dependent on customers’ ser-
vice requirements Tao et al. (2015), such as decentralized production 3D printing. As blockchain-based
PLM advances, individual designers will be able to secure and maintain a record of their requirements
documents with other stakeholders, as well as other design information, including text, images (i.e.,
drawings) and 3D models. Adding a new block to the network will allow all systems from stakehold-
ers will verify and update synchronously on historical records. As design manufacturing requirements
continuously evolve, the direction of product requirements will increase in variety, quality, and service
while maximizing the satisfaction of customers.

2.1.2 Challenges in multi-source data and PLM

Current manufacturing sectors still face several major data challenges in implementing PLM (i.e., prod-
uct design, manufacturing, and customer service). The PLM front-end is a centralized network where
vendors manage all product information. Although data collection has grown rapidly, the “Big Data”
concept and technique still have limited application in the PLM domain Li et al. (2015) resulting in
current solutions still relying on software for managing, analyzing, and simulating engineering changes.
For instance, image files are often included with technical notes in a folder tree sent to suppliers David
and Rowe (2016). The automatic correlation of images with natural language, however, remains a work
in progress for manufacturers. Data driven approaches in manufacturing are often hindered by the lack
of open datasets. For manufacturers, however, the automatic correlation of images with natural language
remains a work in progress due to privacy, biases, and security concerns. Further, the lack of open access
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datasets will make it difficult to visualize the paired design changes with images of the corresponding
mechanical designs. Exploiting collected data from multiple sources is a challenging task that must be
accomplished to satisfy the requirements and ensure the success of industrial projects. Various industries
may utilize different formats or standards for production and design. Often, manufacturers are unaware
of how to obtain and store design information Li et al. (2015). It is equally challenging to explore
unstructured datasets from various types of data, such as natural language, images, and voice in addi-
tion to structured datasets. To integrate unstructured data into current MBE systems, more data-driven
approaches and strategies should be developed to provide cost-effective solutions.

2.2 Image scraping

Image retrieval techniques are used to correlate the most related images from a large database, which
are widely used in social web applications. As image data is not always accessible, image retrieval is
used to search and collect images from the Internet. Image retrieval can be divided into three cate-
gories: text-based image retrieval (TBIR) such as Google, content-based image retrieval (CBIR), and
semantic-based image retrieval (SBIR) Van Gemert (2003). Through a query, text-based retrieval can be
simplified into a keyword-based search, and the returned results can be visualized as images with seman-
tic similarity Datta et al. (2008). Combined with TBIR systems, web scraping is a technique which can
collect information from Google. Such scraping tasks include reading HTML links, image files, and
audio records. The challenge of collecting information online involves complicated website structures
and bot access as known as the Completely Automated Public Turing test to tell Computers and Humans
Apart (CAPTCHA). Many libraries are built to aid designers to automatically download images based
on queries, such as the Selenium, the Google-image-download, and the Beautiful Soup libraries. These
tools allow users to search and modify the raw content through appropriate parsers using Python. Based
on targeted image URL links, information is downloaded for downstream joint embedding analysis.

2.3 Joint embedding

As digital threads become more prevalent in industry, computer vision techniques are making their way
into other fields, such as manufacturing. Joint embedding involves learning different types of data, such
as images, texts, speech, and video, into a common latent vector space. Common research challenges
in this area are topics such as bi-directional image and text retrieval, and image captioning. Canonical
correlation analysis is often used to determine the linear combination of image and textual data that
maximizes the correlation between image-text pairs at a high memory overhead Hardoon et al. (2004).
Using this method, correlations can be built between images (i.e., engineering drawings or photos) and
text documents (i.e., requirements documents). A variety of loss functions were developed to overcome
the memory cost problem, including triplet loss function Schroff et al. (2015) and multi-class N -pair loss
Sohn (2016). The CLIP model, trained on 400 million images and texts from publicly available data sets,
is a supervised zero-shot learning technique. The zero-shot learning approach is characterized by the
fact that no classes are presented during testing that were presented during training Socher et al. (2013).
As the CLIP model can be boiled down to image and text embedding during training, this structure
allows diverse types of neural networks to be applied to the image and text encoders. Several common
building blocks are used in the construction of a text encoder, including the BERT or transformer-base
models Sanh et al. (2019). Meanwhile, a cosine similarity is then calculated among images and texts
and evaluated with a chosen loss function. As a part of testing, the zero-shot CLIP model provided more
reliable results for out-of-distribution image prediction. Often, neural network models are divided into
trained and tested groups based on the same distribution of data sets for downstream tasks. Without the
assumption that the new testing images come from the same distribution, it is difficult for models to
differentiate the new testing images into new classes. Various techniques are developed to overcome
such challenge of out-of-distribution images, including, few-shot learning Sung et al. (2018), and N-
shot learning Sirinam et al. (2019). In managing requirements documents, utilizing these techniques can
be helpful in controlling unexpected design changes that may occur in requirements documents.

3 EXPERIMENT
We describe how a synthetic image dataset can be created using existing requirements documents
obtained from industry projects to enhance the efficiency of engineering change management. Figure
1 shows the pipeline of the proposed pipeline using a fine-tuned CLIP model.
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Figure 1. Pipeline of proposed framework

3.1 Text preprocessing

The purpose of a text preprocessing step is to extract the most relevant keywords for image scraping,
as certain words contribute more to connecting visual ideas than others. Our first step is to elimi-
nate all non-alphanumeric characters and stopwords (e.g., “shall,” “etc,.” or “must”). The remainder
of the corpus consists of nouns, verbs, and adjectives filtered by part of speech (POS). A previous
study determined that nouns and verbs can be used to describe the physical architecture and functional
characteristics of projects Hein et al. (2018). Search queries are based on these keywords.

3.2 Synthetic image dataset

An industrial requirement dataset describing the design of a pipe assembly line is implemented in this
study Morkos (2012). The study incorporates requirements documents designed for a pipe threading
station from an industrial project. In total, 350 requirements are included, containing both functional
and non-functional requirements. Project details include topics such as design specifications, project
descriptions, equipment supplies, installation procedures, and shipping. After text preprocessing, each
sentence is reduced to phrases for retrieving online images.
A version of the search model is implemented to scrape images from online text searches. As the order
of keywords does not significantly affect the search results, queries are automatically sent to online
servers to retrieve images as a browser user. The original resolution image is downloaded locally using
several techniques and packages, including BeautifulSoup, Request, LXML XML toolkit, and regular
expressions (RegEx). As images can be extracted from several sources, a verification procedure is imple-
mented to ensure that all images are accessible through the Pillow library. For example, some images
cannot be downloaded from an online PDF document or a website protected by anti-bot tools such as
CAPTCHA. This requires manual verification to replace irrelevant images. Because images come in a
variety of sizes, we use the resampling LANCZOS1filter to rescale each image into a 300 × 300 pixel
size. By doing so, we avoid losing information on the edges.

3.3 CLIP model

As the number of image-requirement pairs is relatively small, directly training the model on CLIP
might not be effective. Instead, transfer learning allows the model to integrate previous knowledge with
domain-specific knowledge. In this experiment, we compared the performance of pre-trained and fine-
tuned CLIP models. Conducting an overall evaluation of zero-shot prediction accuracy is beyond the
scope of this study.

3.3.1 Prediction on pre-trained CLIP

A pre-trained model is typically trained on a large dataset that is intended for general use. Pretrained
models are typically generated using a variety of large open-source datasets. The direct application of a
pretrained model to a domain-specific task could provide a broadline assessment of performance. Using
a pre-trained CLIP model, we select an unforeseen image that is closely associated with the industrial
design to predict the most likely requirements. Similarly, the new image is subjected to the same filters
before being passed on to the image encoder. The transformer model is used to encode requirements. By
utilizing zero-shot predictions, the most relevant requirements are identified. Comparing to the baseline
model, a fine-tuned prediction model should provide improved performance for domain-specific tasks.

1 https://pillow.readthedocs.io/en/stable/releasenotes/2.7.0.html
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3.3.2 Prediction on fine-tuned CLIP

The requirement-image pair is first randomly shuffled into a training set with a batch size of ten. To
make a zero-shot prediction, out-of-distribution images should be selected from variant designs of man-
ufacturing pipe stations. The total number of epochs is twenty. Image and text losses are calculated
individually using cross-entropy. The Adam optimizer is implemented with a learning rate of 5e-6
and decoupled weight decay regularization of 0.4 for all layers. These values are adjusted based on
analysis and evaluation to fine-tune the hyperparameters. Similarly, the same prediction procedure is
implemented to output the top five requirements with their probabilities.

4 RESULT AND DISCUSSION
4.1 Synthetic dataset

As the created synthetic image dataset contains various types of images, Figure 2 presents several search
results from the industrial trial project. In response to different search terms, the collected images include
photographs, drawings, and document scans. Note that not all the returned images accurately reflect the
details of a search query, and we assume that the top image represents the most relevant results. When
the first image is not available, the next image is manually downloaded. Further, some images may not
capture the meaning of the requirements due to ambiguous words and short search queries. In such cases,
we consider some images to be noise. For example, in Figure 2 (e), upon sending the query “threading,
line, Bucker, station,” the retrieved result depicts a picture of a train departing the Buckner station.

Figure 2. Samples of collected synthetic image datasets with requirement keywords

Although a fine-tuned model may not learn valuable knowledge from irrelevant images, it is still possi-
ble to obtain limited useful information. In Figure 2 (f), many search queries related to non-functional
requirements contain the words “proposal,” “description,” “specification,” and “criteria,” which result in
a screenshot of a document. Though CLIP models may not capture detailed content from images, they
may still recognize these keywords as representing the concept of documents. In context-rich design
projects that include more image documents, designers may fine-tune the model or combine it with
additional neural networks to further extract textual information from images.
Similar search queries might return the same image. As an example, after word preprocessing, query
numbers 158 (‘box’, ‘end’, ‘threading’, ‘station’, ‘idler’, ‘radial’, ‘rollers’, ‘vrollers’) and 167 (‘box’,
‘end’, ‘threading’, ‘inspection’, ‘station’, ‘idler’, ‘pipe’, ‘radial’, ‘rollers’) have the same image result.
As both sentences contain many similar words and describe similar objects, the study uses the same
pictures to represent both requirements.
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4.2 Improvements in design

With the increasing number of epochs, the total loss decreases, as shown in Figure 4. The loss function
is averaged based on the cross-entropy loss between the image and the text. As a result of model fine-
tuning, training loss is significantly reduced (around 65%) after 10 epochs. As a trade-off decision, fine-
tuning a model could result in the loss of transfer knowledge and the acquisition of more domain-specific
information while increasing the number of epochs. Thus, we employed an early stop strategy during
the fine-tuning process to prevent overfitting. The CLIP model stops learning requirement-image pairs
after 20 epochs and provides the most interpretable results. It is important to recognize that fine-tuning
increases the risk of losing previous knowledge and gaining excessive domain-specific knowledge.

Figure 3. Variation of training error with increasing epochs

For the purpose of maintaining confidentiality, each requirement sentence is represented by certain
keywords, as shown in Figure 4. A fine-tuned CLIP model is tested using an out-of-distribution image
from a variant design in Figure 4, which has certain similarities to the actual pipe threading stations.

Pre-trained Model Fine-tuned Model

Keywords Percentage Keywords Percentage

‘lift’, ‘pipe’, ‘entry’, ‘end’, ‘table’, ‘paddle’,
‘threading’, ‘conveyor’, ‘transfer’, ‘box’

10.23% ‘vrollers’, ‘pipe’, ‘transfer’, ‘table’, ‘gravity’,
‘roll’, ‘towards’, ‘exit’, ‘conveyor’

32.66%

‘station’, ‘bucker’, ‘structural’, ‘contructed’,
‘frame’, ‘members’

5.09% ‘rail’,‘assemblies’,‘spaced’,‘half’,‘feet’,
‘spanning’,‘length’,‘transfer’,‘table’

13.12%

‘thirteen’, ‘table’, ‘line’, ‘threading’, ‘transfer’ 3.62% ‘pipe’,‘rest’,‘adjustable’,‘pipe’,‘stop’,
‘exit’,‘conveyor’

11.98%

‘project’, ‘description’ 3.59% ‘pipe’,‘secured’, ‘vrollers’,‘clamp’,‘high’,
‘speed’,‘transfer’,‘table’

7.31%

‘constructed’, ‘inch’, ‘structural’, ‘table’,
‘walls’, ‘tubing’, ‘transfer’, ‘quarter’

2.89% ‘pipe’,‘secured’,‘vrollers’,‘clamp’,‘high’,
‘speed’,‘transfer’,‘table’

7.31%

Figure 4 & Table 1 An image of conveyor system2 with model predictions

The pipe threading equipment outlined in the requirements document, as well as the storage equipment
shown in Figure 4, contain several types of conveyor systems that can be potentially adapted from one
to another. Rather than viewing this problem as a pure classification process, each requirement might

2 https://steelstorage.com/resources/photo-galleries/
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correspond to multiple images or vice versa. Therefore, the zero-shot prediction method is employed to
compute the probability for each requirement-image pair. Based on the results, the best result (10.23%)
is considered the most relevant requirement for the pre-trained model. In contrast, the top prediction
result from the fine-tuned model achieves higher accuracy by providing more relevant information.
Upon interpretation, the improved results have a closer relationship to functional requirements pertain-
ing to “pipe stations” or “transfer tables.” As the fine-tuned model can recognize the concept from
images and find the most relevant requirements, engineers should determine the appropriate number of
relevant requirements and make corresponding engineering adjustments.
A particularly interesting and noteworthy observation is the use of images that contain both image and
text data. The image in Figure 5 is chosen as a challenge for the fine-tuned model recognizing shapes and
text information simultaneously. The image depicts a conveyor ball transfer table, on which hardened
carbon steel balls are used to replace rollers. In such images, the fine-tuned CLIP model did not result in
significant performance improvements for the top prediction (2.5% improvement), as shown in Figure
5. In images that contained only photographic images and no text, the fine-tuned CLIP model was
considerably improved (22.4% improvement).
In the pre-trained model of Figure 5, two distinct requirements resulted in the same keyword phrases
after the pre-processing step. Depending on the design needs, adjusting the strategies in the preprocess-
ing step can greatly affect the interpretation of the final result. Aside from the differences in the resulted
requirements, both baseline and fine-tuned models recognize the new image as a transfer table. Upon
interpretation, the fine-tuned model predicts requirements that are more closely aligned with the transfer
table, both quantitatively and qualitatively.

Pre-trained Model Fine-tuned Model

Keywords Percentage Keywords Percentage

‘threading’, ‘line’, ‘thirteen’, ‘transfer’, ‘table’ 15.76% ‘pipe’, ‘pin’, ‘threading’, ‘station’, ‘transfer’,
‘table’, ‘towards’, ‘end’, ‘threading’, ‘inspection’,

18.03%

‘pipe’, ‘next’, ‘transfer’, ‘table’ 7.65% ‘design’, ‘vrollers’, ‘many’, ‘similar’, ‘features’,
‘vrollers’, ‘tube’, ‘uses’, ‘exception’, ‘high’,
‘temperature’, ‘designs’

14.06%

‘pipe’, ‘next’, ‘transfer’, ‘table’ 7.65% ‘threading’, ‘station’, ‘base’, ‘design’, ‘similar’,
‘stations’

9.63%

‘pipe’, ‘gravity’, ‘roll’, ‘transfer’, ‘table’, ‘towards’,
‘box’, ‘drift’, ‘threading’, ‘protector’, ‘station’

4.87% ‘pipe’, ‘gravity’, ‘roll’, ‘transfer’, ‘table’,
‘towards’, ‘bucker’, ‘station’

5.83%

‘transfer’, ‘table’, ‘designed’, ‘located’, ‘previous’,
‘next’, ‘operation’

3.41% ‘pin’, ‘end’, ‘blast’, ‘station’, ‘design’,
‘identical’, ‘box’, ‘blast’,

5.45%

Figure 5 & Table 2 An image of conveyor ball transfer table3 with requirement predictions

The out-of-distribution images are selected from a variant design as indicated earlier. As similarities
can be defined from different perspectives, the out-of-distribution images may take different forms. For
instance, taking images of the same object from various angles with a variety of backgrounds may also
be considered as testing images. As not all the mechanical components are symmetrical, different angles
of the same part might have an impact on the predictions.
The study suggests that the proposed framework could potentially be used to visualize requirement
traceability by taking images of various physical components. The most relevant requirements should
be determined for each image and evaluated regarding engineering changes. Although the synthetic
dataset contains some irrelevant images as noise, the fine-tuned CLIP model is still capable of learning
useful information and improving out-of-distribution prediction.

3 https://omtec.com/catalog/f1-conveyor-table/
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Through a synthetic dataset, the fine-tuned model can identify standard mechanical components from
collected images. For specialized mechanical parts, the image obtained from the internet may not accu-
rately reflect their physical components. A minor change in design may, however, be treated by an
out-of-distribution prediction and not necessitate a new simulation. As requirements are often added or
deleted during the reengineering process, designers need to repeat the analysis to achieve higher accu-
racy. The proposed process would allow engineers to realize the interconnection of heterogeneous data
quickly and reduce human error in the design process. Future work should explore different rotation-
invariant techniques to build a more robust model and integrate this framework into digital threads.
Rather than using 2D images, 3D point clouds could be another future direction. Further, the fine-tuned
model can be combined with augmented reality for industrial applications.

4.3 Study limitations

While there are benefits this approach provides to designers, it is important to note that it does not replace
the domain engineering design knowledge and expertise. Ultimately, the designer will need to make a
determination if the images are relevant and offer utility. The use of the images will also depend on the
designer’s familiarity with the working principle. This study does not consider the designer element of
this study - which is necessary to ensure such a tool could be implemented in design practice.

5 CONCLUSION
We propose a framework for bridging gaps in and synthesizing multi-source data to facilitate knowledge
acquisition and improve design efficiency. As image data may not always be available, we collected
online images by using keywords filtered from requirements documents using POS tagging which aids in
tracking engineering change propagation. To collect images from Google search results, a web scraping
technique is used. Images are manually verified and modified according to the closest interpretation of
requirements. The collected image dataset is verified and resampled to the same size. We demonstrate an
improvement in model prediction by showing the top five most relevant requirements after fine-tuning
the CLIP model. Testing images are selected from a variant design to assess the robustness of the model.
The major contributions of this work are threefold. First, we provide a method for constructing a
synthetic image dataset containing the physical components of requirements. Secondly, using transfer
learning, we combine prior knowledge with domain-specific information to understand the connection
between requirements and images forming out-of-distribution image datasets that can be identified for
identifying and interpreting requirements. Third, the predicted results illustrate the performance and lim-
itations of the models by indicating the most relevant requirements for invariant designs which engineers
can determine which components are affected to minimize risks for a complex system.
Future work can be extended in several directions. Several CLIP model architectures and other industrial
design documents should be considered to provide useful insights into different types of product designs
through comparison of various model architectures with publicly available design documentation.
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