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Abstract

Finite difference schemes for some two point boundary value problems are analysed. It is
found that for schemes defined on nonuniform grids, the order of the local truncation
error does not fully reflect the rate of convergence of the numerical approximation
obtained. Numerical results are presented that indicate that this is also the case for higher
dimensional problems.

1. Introduction

It is well known that finite difference schemes which use uniform spacings are
unsatisfactory for problems where the solution has rapid local variation such as
boundary layers. The basic problem is that if enough points are used to resolve
the layers, the computational effort becomes unacceptably large. On the other
hand, if not enough points are used to resolve the layers, the numerical solution
may well be a poor approximation even in the interior.

It is therefore necessary to consider finite difference schemes based on irregular
grid points. For problems where only first order derivatives need to be discretized,
simple finite difference schemes such as the Keller box scheme (Keller [5]) appear
to work well and although a general theory is not available, it has been shown by
Weiss [7] that for some classes of problems it is necessary'only to resolve the layer
regions adequately. However it has been found that finite difference schemes with
grid spacings that change discontinuously do not yield satisfactory results for
second and higher order equations. In fact, Crowder and Dalton [2] claim that
even if a large number of points are used in the boundary layers, such schemes
can lead to numerical solutions that are worse overall than the numerical
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solutions obtained using the corresponding finite difference scheme on a regular
grid with the same number of points.

The explanation given for this phenomenon (see for example Blottner [1], de
Rivas [3], Jones and Thompson [4]) is that the local truncation error may be much
larger for a scheme defined on an uneven grid than for the corresponding scheme
defined on an even grid. For example (see also Section 2) an elementary Taylor
series argument can be used to show that a three point approximation to the
second derivative of a function evaluated at a gridpoint can be second order
accurate if the grid is uniform but is only first order accurate for an arbitrary
grid. Thus, for second order problems, many finite difference schemes used in
practice will have a local truncation error that is an order less accurate than the
corresponding scheme on a uniform grid. While it is usually possible to devise
finite difference schemes on nonuniform grids that are second order accurate,
such schemes may have other undesirable properties such as being nonconserva-
tive. This fact has motivated the use of smooth coordinate transformations to
generate nonuniform grids. For such grids, the local truncation error of a finite
difference scheme is of the same order as the local truncation error of the
corresponding scheme on a regular grid. Examples of such coordinate transforma-
tions may be found in Blottner [1], de Rivas [3], Jones and Thompson [4] and
Orszag and Israeli [6].

Although the technique of using coordinate transformations to generate non-
uniform grids works well in practice, the justification for its use is misleading in
the sense that an assessment of the accuracy of a numerical solution based solely
on the order of the local truncation error of the scheme can be incorrect. To
support this claim, we examine a class of three point finite difference schemes for
the numerical solution of a second order system of ordinary differential equa-
tions. It is found that the asymptotic rate of convergence of the approximate
solutions obtained by the finite difference schemes with an arbitrary nonuniform
grid is the same as the asymptotic rate of convergence of the approximate
solutions obtained by finite difference schemes with a nonuniform grid generated
by a smooth coordinate transformation. Of course the order of the local trunca-
tion error will not be the same. However it is pointed out that it is possible for a
scheme to have zero order accuracy for the local truncation error and still be
convergent. These analytical results are verified numerically and further calcula-
tions are presented that indicate that the results extend to higher dimensions.

2. Analytical results

Consider the second order system of ordinary differential equations
(Ly)(x):= y"(x) + P(x)y'(x) + Q(x)y(x)

= f(x), 0<x<\, (2.1a)
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with the boundary conditions

By := 1W(O) + Boly'(0) + Bwy(l) + Buy'(l) = b. (2.1b)

Here, y and / are w-vector valued functions, P and Q are n X n matrix valued
functions, Brk, r = 0,1, k = 0,1, are In X n matrices and b is a 2«-vector. We
assume that the problem has a unique solution and, to avoid unnecessary
technical detail, that P, Q and / are smooth. Specifically, we assume that P,Q e
(C°°[0,l])nX"and/e (C°°[0,1])". Then,^ e (C°°[0,1])" and can be written as

y(x) = d>(x)b + C G(x,S)f{S)K
Jo

where G is the Green's function and $ is the fundamental solution.
Let

A:= {xo<x1 < ••• <xN]

be a partition and

hj = xj+l-xr h = max{hj).

For a function g e (C[x0, xN])n we associate the vector

and with the vectors Uj e R " , j = 0,...,JVwe associate the vector

"A = ( " o . - - - . " A ' ) r

We now discretize the differential equation (2.1a) by

SJyAxJ+1,xj_l] + TJyJ=fJ, j=l,...,N-l, (2 .2a)

and the boundary condition (2.1b) by

o, xr, x2]

N_2, xN_lt xN] = b (2.2b)

where

and

y*[xJ+i, XJ-I] = (yJ+i - y,-

are the standard divided differences, and Rp S, and Tj = O(l).
We shall assume that the scheme (2.2a, b) is stable. Specifically, for some/? > 1

and constants C1 and C2 that are independent of A,

(2-3)
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where

and | • | denotes a fixed finite dimensional norm. Such stability estimates can be
established by standard techniques, and the advantage of being able to establish a
stability result of (2.3) with/> < oo is obvious. It means for example that if a fixed
number of equations in the finite difference scheme (2.2a) are accurate of order
zero but the rest are accurate of order one, then the scheme still gives a numerical
solution that is asymptotically accurate of order \/p (provided of course that the
boundary conditions (2.2b) are consistent). However, in the subsequent analysis
we shall take the weakest form of (2.3), namely/? = oo. Then,

= m a x

Since we are primarily interested in the effect of the local truncation error, we
will assume that the discretization of the boundary condition is second order.
Thus, for any g e (C°°[0,1])",

B^-Bg=O{h2). (2.4)

We now consider the local truncation error of (2.2a). Using an elementary Taylor
series argument, it is easy to verify that for g e (C°°[0,1])",

2 $ A [ * , + I , xJt x,_d = g"(xj)+(hj - V i ) r ( * ; ) / 3 + O(h2)

and

&&[Xj+1, JCy-x] = g'(Xj) +(hJ ~ *y.l)«"(*;)/2 + O(h2).

It is clear from the above that it is still possible to construct schemes for which
the local truncation error is second order. The choice

Tj = Q(xj),

fj=f(Xj),

where

for example is second order. However, many schemes that are used in practice
will have a local truncation error with the structure

T, := fj-{LJ,)j = (hj - hj.Mxj) + O(h2) (2.5)

https://doi.org/10.1017/S0334270000004495 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004495


[ s ] Convergence of finite difference schemes 251

where TJ is a smooth vector valued function involving derivatives of the solution y.

The simplest examle of such a scheme is (2.2a) with

TJ=Q(XJ)

and

Unless some constraint is placed on the partition A, the local truncation error TA

given by (2.5) will be first order. One way to retain a second order truncation
error is to use smooth coordinate transformations. If Xj — x(£j), £y = j/N and
x G C2[0,l], then

and thus (2.5) will be second order. However, we shall show that stable schemes
which satisfy (2.4) and have a local truncation error of the form (2.5) yield
numerical solutions that are second order accurate.

Clearly the error
CA

 : = y* - h

satisfies

Taking the direct analogue of the continuous case we now attempt to approxi-
mate eA by eA where

N-l

Using the facts that
(1) G(x, £) is smooth for x < £ and x > £,
(2) G(x, | ) satisfies the homogeneous equation

Gxx(x, | ) + P(x)Gx(x, 0 + Q{x)G(x, | ) = 0, { # x,

(3) Gx(x, x-) - Gx(x, x + ) = 1, it follows that

(LAeA), = RJTJ + £ Gx(Xj, xJiS, - RjP(Xj))(hk + h ^

E G(xJt
k*j

| |00) (2.6a)
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where

Gx(*, S) = ^G(x, 0 , Gxx(x, n = £iG(x, S).

In addition, (2.4) implies fi^ = .B^ + O(h), BQl = B01 + O(h), B02 = O(h),
#io = 5 io + °(h)< ^ n = Bn + 0(h) and B12 = 0(h), and thus

J. (2.6b)
Equations (2.6a), (2.6b) lead immediately to the following results.

LEMMA 2.1. Let the local truncation error of the scheme (2.2a) be at least one and
let (2.2b) be accurate of order two. Then,

PROOF. Since the scheme is accurate of order one,

Rj=I+O(h),

and

Substitution into (2.6) then yields

\Mh - Oil. = o{h2),
and

and the result now follows immediately from (2.3).

THEOREM 2.1. Let the local truncation error be of the form

where rj is a smooth vector valued function. Then, if (2.4) holds,

= o(h2).

PROOF. From Lemma 2.1,

PAII . = I|8AII» + 0(h2)

https://doi.org/10.1017/S0334270000004495 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004495


[7) Convergence of finite difference schemes 253

Applying summation by parts to ij,
N-l

k-l

N-l
= E G(Xj,xk){h2

k- hl_1)ri(xk)/2 + O(h2)
k = l

E {Gt(xJt xk)V(xk) + G(xJt xk)r,(xk)}hi/2 + O(h2)
N-l

I
* = 1

where

Theorem 2.1, shows that a numerical scheme may yield an approximate
solution that is second order accurate even though the local truncation error is
only first order. It is also possible to construct numerical schemes that yield
convergent numerical solutions but have a local truncation error of order zero.
Consider for example (2.2a) with

TJ=Q(XJ),

and

Clearly, T, = (-iyf(xj) + O(h) and from (2.6) we obtain

Thus, from (2.3)

,and since (using summation by parts)

h = E G(xJt xk)(~l)k(hk + hk_x)f{xk)/2 = 0{h)
k<*\

we have
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If we retain higher order terms in (2.6a) and proceed as above it is straightfor-
ward though rather tedious to show that

and

for schemes with a local truncation error of the form (2.5).

3. Numerical results

To illustrate the theory in the previous section we examine the problem
y" + y'-2y = 0,

y(0) = 2,
It is easily verified that the solution is

y{x) = ex + e~2x.
We have applied to this problem the scheme

XJ-I] + ydx
J+i, Xj-i\ ~ 2yj = 0.

2, (j^-i + yN)/2 = e + <r2,
with

x0 = -ho/2, xN = 1 + hN_x/2.

Two different grid spacings have been used in the computation. The first grid
spacing is equally spaced with hj; = h = 1/(N — 1). For the unequally spaced
points, we have taken h2J = 2h2j+l = constant. The numerical results are tabu-
lated in Table 3.1 and clearly demonstrate the second order convergence predic-
ted by Theorem 2.1.

TABLE 3.1

N

19

39

79

159

Uniform grid

max \y - y(x)\
l<y<n

.1497 X 10"2

.3824 X 10"3

.9663 X 10•4

.2429 X 10"4

ratio

3.915

3.957

3.978

Nonuniform grid

max \y - y(x)\ ratio
Kj<N

.2632 X 10"2

3.892
.6762 X 10"3

3.947
.1713 X 10-3

3.973
.4312 X 10"4
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In order to illustrate that the previous results possibly extend to higher
dimensions, we have also considered the problem

dx2 dyz

with the Dirichlet boundary conditions

u(x,0) = gl(x), u{x,l) = 82(x), 0 < x < l ,

t*(P,y) = g3(y). " C 1 ' y) = s^y). o<y<\.

Specifically, we have considered the problem for which the solution is

u = exp(x- .y) .

We have applied to this problem the five point scheme

",o = gi(x,)> U,N =

where

0 < i < N,

Xt = Xi_l + /!,._!, yj = yj_x + 0 < I, j < N.

Again we have used two grid spacings in our computations. The first are equally
spaced points with A, = kj = 1/JV while the second grid spacings are nonuniform
with h2l = 2h2l_l = 4/3N, k2j = 2k2j_l = 4/3iV. The numerical results tabu-
lated in Table 3.2 indicate that the convergence in both cases is approximately
second order.

TABLE 3.2

N

20

40

80

160

Uniform grid

taax\u,j - u(x,,yj)\

.3289 X 10"4

.8272 X 10 "5

.2069 X 10"5

.5173 X 10"6

ratio

3.976

3.998

3.996

Nonuniform grid

max|Ui - u(Xi,yj)| ratio

.5934 X 10"4

4.610
.1287 X 10-"

4.313
.2985 X 10"5

4.158
.7178 X 10"6
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