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The impulsive swirl of a gas
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The motion of a sphere in a viscous gas has been studied since the time of Sir George
Gabriel Stokes who explored linear, steady and unsteady flows. While the unsteady Stokes
equation is often used to calculate these flows, this continuum treatment cannot capture
some key physical phenomena. This includes propulsion of a sphere by temperature
gradients on its surface, without convection. Taguchi et al. (J. Fluid Mech., 2021) now
calculate the flow generated by the impulsive rotation of a sphere in a gas, a problem
first proposed by Stokes, using the linearised Boltzmann-BGK (Bhatnagar, Gross, Krook)
equation. This statistical mechanical approach naturally captures continuum through to
collisionless flows; the latter occurs even when the gas mean free path is small. The heat
flow generated by the sphere is also determined – a non-continuum effect – showing its
direction reverses as the flow evolves. The predicted phenomena are yet to be observed in
experiment.

Key words: non-continuum effects, micro-/nano-fluid dynamics, kinetic theory

1. Introduction

Sir George Gabriel Stokes posed the now widely studied problem (Stokes 1851)

‘Suppose now the solid to be a sphere, having its centre at the origin. Let a be its radius,
its angular velocity, and suppose the fluid initially at rest. Then [the fluid velocity] v′ is to be
determined from the general equation (182). . .’

where (182) is the ‘unsteady Stokes equation’ (Kim & Karrila 2005). At the time, Stokes
calculated the long-time steady state motion of the fluid only, with Basset (1888) providing
the time-dependent solution for constant angular velocity. This result has since been
generalised to an arbitrary time-dependent angular velocity, Ω(t), where t is time, for
which the torque experienced by the sphere of radius, a, is (Kim & Karrila 2005)

T (t) = −8πμa3
{
Ω(t) + 1

3

∫ t

−∞
dΩ(τ )

dτ

(
1√

πα(t − τ)
− eα(t−τ)erfc

(√
α(t − τ)

))
dτ

}
,

(1.1)
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where μ is the fluid’s shear viscosity, α = μ/(ρa2) and ρ its density. The term,
Ω̇(τ )/

√
πα(t − τ), is identical to the Boussinesq–Basset memory term for the force

experienced by a sphere executing rectilinear motion. Superficially, this appears to produce
the same long-time transient decay for impulsive start up, varying as 1/

√
t. However, for

Ω(t) = Ω0H(t), where H(t) is the Heaviside function and Ω0 a constant vector, (1.1) gives
the following long-time solution:

T (t) = −8πμa3Ω0

(
1 + 1

6
√

π (αt)3/2 + · · · .

)
, αt � 1. (1.2)

That is, the time-dependent torque approaches steady state at a faster rate, with a time
power law of −3/2 (not −1/2). This result, and that for the force experienced by a sphere
in rectilinear motion, form part of the vernacular of modern fluid mechanics.

2. Overview

Now, 170 years after Stokes first posed his canonical flow problem (quoted above),
Taguchi, Tsuji & Kotera (2021) report its solution for arbitrary degrees of gas rarefaction.
This is achieved by solving the linearised Boltzmann-BGK (Bhatnagar, Gross, Krook)
equation, which in contrast to the unsteady Stokes equation (a one-dimensional diffusion
equation for this problem), represents a formidable challenge in mathematical analysis
(Cercignani 1988; Sone 2007).

Why is this important? Virtually all real gas flows contain regions where the continuum
hypothesis breaks down. The most obvious region is near a solid surface, where the
probability of gas molecules colliding with each other is small relative to the probability
of interacting with the surface, i.e. the flow is nearly ‘collisionless’. Molecular interactions
with the surface can push the gas strongly out of thermal equilibrium, violating a
fundamental tenet of continuum theory. A second and less obvious situation arises in
start-up problems, such as that studied by Taguchi et al. (2021). Initially, the gas molecules
do not have time to collide with each other, producing a collisionless flow everywhere.

A continuum treatment, which the unsteady Stokes equation delivers, cannot capture
these non-equilibrium flows. A more fundamental theory is needed, which is provided for
by the Boltzmann equation. Rather than requiring specification of a constitutive equation
for the gas – standard in continuum treatments – its formulation is based on a statistical
mechanical treatment of the molecular gas collisions. The linearised Boltzmann equation
(formulated for low Mach number) naturally gives rise to the (linear) unsteady Stokes
equation in the continuum limit (Nassios & Sader 2012; Takata & Hattori 2012), and
captures gas flows under arbitrary degrees of rarefaction at low Reynolds number.

The importance of using a Boltzmann treatment is highlighted by Taguchi et al. (2021)
for the heat flow vector; temperature of the sphere is chosen to be identical to that
of the stationary gas. Because a purely azimuthal flow arises at low Mach number, a
continuum treatment is strictly incompressible and isothermal, and hence predicts zero
heat flow. Solution to the linearised Boltzmann equation shows that this prediction is
incorrect: non-zero heat flow is always generated near the sphere’s surface, despite the
temperature not varying throughout the gas. This is beyond the continuum treatment
afforded by Fourier’s law for heat conduction, which requires a temperature gradient.
Following start-up, the heat flow vector points in the same direction as the sphere’s motion
but then reverses direction as it approaches steady state – with the same t−3/2 power-law
time dependence as for the torque in continuum flow; see § 1.

In fact, Taguchi et al. (2021) show that the long-time decay of all macroscopic flow
transients obeys the t−3/2 scaling law of (1.2), regardless of the degree of gas rarefaction.
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Figure 1. The VDF dependence on radial, cr, and azimuthal, cφ , molecular velocities, at the sphere’s surface,
(a) before, and (b) just after start up. The latter consists of two equilibrium sections, from the surrounding gas
and surface, where U0 is the sphere’s surface speed.

This includes the bulk velocity, stress and heat flow. This feature is not obvious at first sight
and shows that a non-continuum flow cannot be identified by observing this scaling law
alone. However, the strength of this transient varies with the degree of rarefaction. Perhaps
the most important transient from a measurement perspective is that for the torque exerted
by the gas on the rotating sphere. Numerical results are given in figure 13 and table 3 of
Taguchi et al. (2021) that can be used in practice.

Another characteristic feature of a real low Mach number gas flow, which does
not appear in the continuum treatment, is the presence of discontinuities. Rather than
directly giving the usual macroscopic variables such as bulk velocity and pressure,
the Boltzmann equation gives the distribution of molecular velocities in the gas; as
embodied in the ‘velocity distribution function’ (VDF). Once the VDF of a gas flow
is found, all macroscopic variables are generated by its moments. It is within the VDF
that discontinuities arise, which can provide insight not possible from the macroscopic
variables alone.

Consider motion of the gas just after start up when the flow is strictly collisionless.
Any gas molecule impinging on the sphere adsorbs and thermally equilibrates with its
surface before being re-emitted; the ‘diffuse boundary condition’. This process introduces
a discontinuity in the VDF at the surface, about the molecular velocity delineating
incoming and outgoing molecules – because incoming molecules are in equilibrium with
the surrounding gas, not the surface; see figure 1. The bulk gas velocity is the first moment
of the VDF, which in this small time (collisionless) flow gives a value half that of the
sphere’s surface, regardless of the degree of gas rarefaction. This is the value reported by
Taguchi et al. (2021) via solution of the Boltzmann equation. As time evolves, molecular
collisions take hold and the degree of slip at the surface reduces. If the gas mean free
path is small, this process ultimately leads to the no-slip condition, following which
(1.1) applies. Critically, the no-slip condition arises naturally from the diffuse boundary
condition and molecular collisions – it is not specified from the outset.

Taguchi et al. (2021) study all VDF discontinuities produced by the rotating sphere.
For a steady flow, these occur at the surface (as above) and in the gas along molecular
velocity directions making grazing incidence with the surface. The latter discontinuities
arise because molecules emitted from the surface and gas have different origins (Yap &
Sader 2016). For the present start-up flow, Taguchi et al. (2021) show that additional VDF
discontinuities appear throughout the gas due to the finite time required for molecules
to traverse the distance from the surface to a spatial position in the gas. Only molecules
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with very high speed can traverse this finite distance just after start up. This produces
transient VDF discontinuities that emerge at infinite molecular speed (ignoring relativistic
effects) and move towards zero molecular speed as time evolves, with collisions reducing
their strengths. These VDF discontinuities eventually disappear, with those for steady
flow remaining. Taguchi et al. (2021) show these additional VDF discontinuities generate
abrupt changes in the macroscopic variables near the sphere’s surface just after start up, at
a time proportional to distance from the surface.

3. Future

The theory by Taguchi et al. (2021) predicts phenomena for a problem of Stokes (1851) that
are yet to be observed in measurement; for which recent experimental advances may prove
useful (Box, Thompson & Mullin 2015). This theory invokes the BGK collision operator
for simplicity. While it erroneously gives a Prandtl number of unity, it can capture features
of more realistic collision models (Ladiges & Sader 2015). The diffuse boundary condition
is another simplification. Extension of the theory to more rigorous collision models and
realistic gas–surface interactions is an area for future work. Solution to the full nonlinear
Boltzmann equation would also allow for intriguing phenomena such as boundary layer
collision (Howarth 1951) to be studied. The influence of real gas effects on these and other
unsteady nonlinear phenomena remain to be explored.

Declaration of interest. The author reports no conflict of interest.

Author ORCIDs.
John Elie Sader http://orcid.org/0000-0002-7096-0627.

REFERENCES

BASSET, A.B. 1888 III. On the motion of a sphere in a viscous liquid. Phil. Trans. R. Soc. Lond. A 179, 43–63.
BOX, F., THOMPSON, A.B. & MULLIN, T. 2015 Torsional oscillations of a sphere in a Stokes flow. Exp.

Fluids 56, 209.
CERCIGNANI, C. 1988 The Boltzmann Equation and its Applications. Springer.
HOWARTH, L. 1951 Note on the boundary layer on a rotating sphere. Phil. Mag. 42, 1308–1315.
KIM, S. & KARRILA, S.J. 2005 Microhydrodynamics: Principles and Selected Applications. Dover

Publications.
LADIGES, D.R. & SADER, J.E. 2015 Frequency-domain deviational Monte Carlo method for linear oscillatory

gas flows. Phys. Fluids 27, 102002.
NASSIOS, J. & SADER, J.E. 2012 Asymptotic analysis of the Boltzmann-BGK equation for oscillatory flows.

J. Fluid Mech. 708, 197–249.
SONE, Y. 2007 Molecular Gas Dynamics: Theory, Techniques, and Applications. Springer.
STOKES, G.G. 1851 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb.

Phil. Soc. 9, 8–106.
TAGUCHI, S., TSUJI, T. & KOTERA, M. 2021 Transient behavior of a rarefied gas around a sphere caused by

impulsive rotation. J. Fluid Mech.
TAKATA, S. & HATTORI, M. 2012 Asymptotic theory for the time-dependent behavior of a slightly rarefied

gas over a smooth solid boundary. J. Stat. Phys. 147, 1182–1215.
YAP, Y.W. & SADER, J.E. 2016 Sphere oscillating in a rarefied gas. J. Fluid Mech. 794, 109–153.

912 F1-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
78

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0002-7096-0627
http://orcid.org/0000-0002-7096-0627
https://doi.org/10.1017/jfm.2020.1078

	1 Introduction
	2 Overview
	3 Future
	References

