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Abstract

A sphere theorem for non-axisymmetric Stokes flow of a viscous fluid of viscosity
He past a fluid sphere of viscosity /x' is stated and proved. The existing sphere
theorems in Stokes flow follow as special cases from the present theorem. It is
observed that the expression for drag on the fluid sphere is a linear combination of
rigid and shear-free drags.

1. Introduction

The study of the hydrodynamic forces on viscous drops moving in an ambient
fluid has various applications to problems such as dispersion of one fluid in
another.

The Stokes flow due to uniform translation of a spherical fluid particle in an
unbounded fluid medium was treated by both Rybczynski [15] and Hadamard
[6]. Using Lamb's [10] general solution, Hetsroni and Haber [8] have found
the solution for the flow fields, interior and exterior to a single spherical droplet
submerged in an unbounded arbitrary Stokes flow. They have also obtained the
expression for the drag on the droplet, which is a generalisation of Faxen's law
for a rigid spherical particle. This result for drag was also derived by Rallison
[14] using the reciprocal theorem. Making use of Lamb's [10] solution Fuentes
et al. [3, 4] have studied the images of singularities such as Stokeslet and the
higher order Stokes singularities near a viscous drop. As Lamb's [10] solution
is in the form of an infinite series, the algebra in [3, 4] is highly involved and
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the solution obtained is not in a closed form.
Shail [16] and Shail and Onslow [17] have proved sphere theorems for a class

of non-axisymmetric flows within and past a rigid sphere respectively. They
have employed a representation for velocity and pressure used in a paper by
Hackborn et al. [5]. However, this analysis is restricted to the cases where
the velocity dependence on the azimuthal angle, 0, is linear in cos0 and sin</>.
Essentially, in this case, the problem reduces to an equivalent axrsymmetric
problem and the solution is readily obtained using Collin's [2] theorem and
Butler's [1] theorem.

Recently, Palaniappan et al. [13] have given a general representation of the
solution of Stokes equations in a closed form in terms of two scalar functions
A and B which are biharmonic and harmonic respectively. It is also shown that
this solution is equivalent to Lamb's [10] general solution and a theorem for
non-axisymmetric Stokes flow past a rigid sphere is proved. In [12] a sphere
theorem for non-axisymmetric Stokes flow about a shear-free sphere is proved.

In this note, we prove a sphere theorem for a general non-axisymmetric Stokes
flow in and around a fluid sphere, by using the velocity representation given
in [13]. The flow fields interior and exterior to a fluid sphere are given in a
closed form in terms of the two scalar functions A and B. From this theorem the
results of [ 13,12] are deduced as special cases. The corresponding results for the
axisymmetric case are presented as a corollary to the theorem. The expression
for the drag on the fluid sphere is given and it is found to be a linear combination
of rigid and shear-free drags. Several illustrative examples are presented to
demonstrate the usefulness of our method and in each case the force acting on
the fluid spherical particle is calculated.

2. The problem

We consider the steady flow of a viscous, incompressible fluid (viscosity iie)
past a viscous fluid sphere (viscosity /LA'). The Stokes equations are as follows:
Exterior to the fluid sphere

Mc V2q' = grad pe, (1)

V • qe = 0; (2)

In the fluid sphere

M' V2q' = grad p', (3)

V • q' = 0, (4)
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where qe and q' are the velocities outside and in the fluid sphere respectively,
and pe and p' are the pressures. From [13], the velocity and pressure fields are
as follows: Outside the fluid sphere

qe = curl curl(rA') + curl(rB'), (5)

p* = /* + ,*• A(rV*A'), (6)

where

VAAe = 0, (7a)

V2Be = 0. (7b)

In the fluid sphere

q' = curl curl(rA') + curl(rfi'), (8)

pl = po + fj,' — (rV2A'), (9)

where

V4A' = 0, (10a)

V25' = 0. (10b)

From (5) the components of qe in the directions of r, 6, </> are respectively

q' = — ( c o t e Ae
0 + Ae

ee + cosec26> Ae
u), (l la)

r
qe

g = - — (Ae + rAe
r) + cosec6> B}, (lib)

d(f)

The components of q' can be written down by replacing the superscript e by
i in (1 la,b,c). The boundary conditions are

(I): the normal velocity vanishes at the surface of the sphere, i.e.,

q' = q'r = 0 on r = a.

(n): the tangential velocity components are continuous at the interface i.e.,

1e6 = <le, <&=<l\ on r = a.
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(III): the tangential stress components are continuous across the boundary i.e.,

Tr
ee = T'e, r r ; = 7 ^ on r = a,

where

T'rB and T^ can be obtained similarly be replacing V by V. The above
conditions are satisfied if, on r = a, we have

Ae = A1 = 0,

Ae
r = A'r; Be = B1,

HeA'rr = n'A-r ; H'^iy) = V-'^y)-

(12a,b)

(13a,b)

3. The theorem

THEOREM. Let the flow of a viscous, incompressible fluid (with viscosity fie) in
the absence of any boundary be characterized by a biharmonic A0(r, 0, <f>) and
a harmonic B0(r, 6,^>). Let the singularities (We extend the term 'singularity'
to include flows non-vanishing at infinity and regular everywhere else, such as
uniform flow, quadratic flow etc.) of these functions be at a distance greater
than 'a' from the origin. If Ao ~ o(r) and Bo ~ o(l) at the origin and if now
a fluid (with viscosity \x') sphere r = a be introduced in the flow field with
qe

r = q'r = 0, q% = q'e, q% = <?;, Tr
e
e = T'g and Tr% = T^ on the boundary

r = a, then the solution for r > a is

+

Ae(r, 0, cf>) = A0(r, 6, </>) + (1 - k) |"-^A0 (y, 9, <fi\]

a2) (a1 \ (r1 - a2) 8 (a2 \
-Ao(-,9,4>) + K- J- — Aol-,9,<t>)

r \r ) a dr \ r )
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Be(r, 9, <t>) = B0(r, 9,
L r \ r

3r T 2 /

339

+3(1 -k)-

— Bo(— ,9,<f>)
r \r )\

a (a2 \ 3r /*°'/r
-Bo I —, 9, <p] I RB0(R, 9, <(>)dR
r \r ) a3 Jo

I RB0(R,9,<f))dR
Jo

a6k fO2/r

-(l-2k)— Rl-3kBQ(R,9,<j>)dR
rik Jo

(16)

and the solution for r < a is

A'(r, 9, <f>) = (l-k
2a2 0(r, 9,

/ 2 _ 2

a2 dr

B'(r,e,<l>) = 2(1 -

- 3 ( 1 -

where k = (i'/(ixe + fx').

-7—^—v Ao(r, 9,(f>)\,
J

- 2k)rik~2 / R
Jo

B0(R, 9,

(17)

(18)

PROOF. By a direct verification, it can be shown that the expressions given
in (15)-(18) satisfy (7a,b) and (10a,b) together with the boundary conditions
(12a,b) - (14a,b). It is noted that Ae and Be ((15) and (16)) can be written as

Ae(r, 9, </>) = Ao(r, 9, <t>) + (1 - k)A*SF(r, 9, </>) + kAR(r, 9, <f>) (19)

Be(r, 9, (f>) = B0(r, 9, </>) + (1 - k)B*SF(r, 9, <f>) + kB*R(r, 9, <p)
ra

2/r

RB0(R,9,<t>)dR+3(1 - A . ) - f
Jo

-a-2k)^-f Rl-3xB0(R,9,<t>)dR ,(20)

where
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(r2+a2) (a1 \ (r2-a2)d (a2

AR{r,9,<P) = -K + ^ ( g A ) + ^ (
2ar a dr \r

4fl3

2 \ 2>r r2'*a (a2 \ 3r f"2/r

B*SF(r,e,(/>) = -B0(— ,0;</>)- — / RB0(R,9,(f))dR,
r \ r / a Jo

are the perturbed terms due to shear-free (suffix SF) and rigid (suffix «) spheres
[13, 12] respectively.

COROLLARY. Assuming Ae(r,9,(p) = Ae(r,9), A'(r,9,<f>) = A'(r,9),
Be(r,9,<j>) = B'(r, 9,(j>) = 0 in (15)-(18) and differentiating with respect
to 9, and setting dAe/d9 = i/e/rsm9, 8Al/d9 - xj/i/rsm9, dA0/d9 =
\j/o/ r sin 9 we obtain the theorem for axisymmetric Stokes flow past a fluid sphere
in terms of the Stokes stream function \j/(r,9). The corresponding solution for
the motion exterior to the fluid sphere is given by

(r, 9) = iro(r, 9) + (1 - A) T - ^ o ( - ,

(

and for the motion interior to the fluid sphere

f ' ( r , 9) = (I- X) \Ha r W , 0) + r ( r a ) ^ 0 ( r , 9)
[ 2a2 a2 dr

(r2 - a2)2
 2

4a2

where \j/{r,9) satisfies D*\]/ = 0 with

2 _ 92 sin6> 3 1 3

~ 'dr2 +~r2~~d9sin9"d9'
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4. Deductions

Rigid sphere Setting A. = 1 in (15) and (16) and noting that A' = B' = O we
obtain the theorem for non-axisymmetric Stokes flow past a rigid sphere [13].
Similarly, by setting A. — 1 in (21) we recover Collins' [2] sphere theorem for
axisymmetric flow.
Shear-free sphere Setting A. = a in (15) and (16) we get the theorem for
non-axisymmetric Stokes flow past a shear-free sphere [12], and setting A. = 0
in (21) we obtain Harper's theorem [7].

5. Drag on the fluid sphere

The expression for the drag on the fluid sphere is [8]

F = 2nfiea(2 + A.)[V0]o + Jifiea3X[V2\0]o, (23)

where Vo is the velocity due to the undisturbed flow and the subscript o indicates
evaluation of the quantities inside the square brackets at the centre of the sphere.
The equation (23) can be written as

kFR, (24)

where

FSF = 4nnea[\0]o, F* = 6nixea[\0]o V2

are the forces on the shear-free and rigid spheres respectively. When A. = 1, we
get the force acting on a rigid spherical particle placed in an arbitrary Stokes
flow (Faxen's law) and when X = 0, we recover the force acting on a shear-free
sphere. Note that the torque on the fluid sphere is zero. This is due to the
continuity of tangential stresses across the surface of the liquid drop.

6. Examples

6.1. Stokeslet outside the liquid sphere, perpendicular to the radius vector:
Consider a Stokeslet exerting a force (F,, 0, 0) at the point (0, 0, c), c > a. The
corresponding expressions for Ao and Bo due to this Stokeslet in an unbounded
fluid are [13]
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c / rsinOoil//,

4Un

where R2 = r2 — 2rccos9 + c2.
Applying the theorem we obtain the exterior and interior flow fields as

• cos6 — c) n , Rf\ cos4>

[8]

(25)

(26)

Ae(r,6,<t>) =
/ (rcos0-c) /?f\ cos
\ c ' c ) A-si

(r2 + a2)c cos </>
(R\- (r-— cos0j/?2j|

(r2 - a2) cos
a3r s'm9

x
/ c / 2 a 4 \ a2

I - \r I R2cos9 —
\r \ c2j r

c{r- ^cos6>):

) )
2)2

(27)

sin0

re sin 9

f s i n < / > f a 2 \ \
\ r^r [R2 + —cose-r)\
[ ar sin 9 \ c ) J

a2 \
*2 + —cos0-r)

c J
+ 0-A.)

3rsin0
a3csin9 \2

/ a2 [a2
 n "|\1

2 r \_2r J/j
2 [a2

6X / pa2/r

- (1 — 2A) — I / R-3k(R2-2cRcos9+c2y/2dR
r3x\Jo

< 2 8 '
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where
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= r cos9 ) — R2 + c cos9
\c ) r2

|log(— -ccos0+-/?2)-logc(l-cos0)|, (29)sin26>

aR2 = r2-2—rcos9 + —,

(a2 -r2) /(rcos0 - c )

(30)

R2\ .
—- I cos 0

r(r2-a2)d ((rcosQ-c) R^\
a2 dr \ re reJre

• cos 9 — c)(r'-a2)2
 2/(rcos9-c) R2\

——V2 R{ + -!• I cos^
4a2 \ re re)

(31)

+rcos9 -c)

- 3(1 - 2k)r3k~2 ( I R'3\R2- 2cR cos9 + c2)l/2dR

cosfl
(32)

This problem was also discussed by Fuentes [4] by making use of Lamb's
solutions. However the above analysis is simpler and the solution is in a closed
form. For this reason, the method proposed in Section 3 is more efficient. The
corresponding axisymmetric case was also discussed by Fuentes [3]. It may be
noted that these results can be easily obtained by using (21) and (22). The drag
on the fluid sphere may be calculated as explained in [13] and is given by

When A. = 1 in (33) we recover the expression for drag in the case of a rigid
sphere. This agrees with the result of Higdon [9] who has used Oseen's [11]
image solution to model the motion of micro-organisms by flagellar propulsion.

6.2. Rotlet at (0, 0, c), c > a: Consider a rotlet of strength (0, F2,0) located at
(0, 0, c). The corresponding expressions for Ao and Bo in an unbounded fluid
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cos d>
^-,

re sin 9

B0(r, 9, <f>) =

From the theorem

(c~rcos9 \ sine/)
I 1 — .
\ R{ ) rcsmO

A'{r, 9,<P) =
811/x II

c - r cos9]

-X)[cR2-rc + az r cos</>

2 .
- re + a2cos9]

Be(r,9,(t>) =

2 2 ° 7

—(r — a )—[cR2 — re + acos9]

Fi

' )

(c — r cos 0 \ sin

/?i ) rcsin9

\r-^cos9) \ sin</>

2a2dc j acsin9

3(1 _
2a2c 3c c

r 3 X - l

(c-i?cogg)

~
/-(r2-a2) 3 / - cos0

[10]

(34)

(35)

(36)
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Fi
'(r, 9, 0) =811/x

- 3(1 -

sin</> f / ( c — rcosO) 1 \
- X)—?- 2 K- '- - -

csmQ [ \ rRx r)

The drag on the fluid sphere is found to be

To the best of the authors knowledge, this result was not available in literature.

6.3. Potential doublet at (0, 0, c),c > a: Consider a potential-doublet of
strength (Si, 0,0) located at (0, 0, c). The corresponding expressions for Ao

and Bo are

*fc-rp!e\«±

A'=

Bo = 0. (42)

Applying the theorem we obtain

Si cos</>

re sin 9

•rcosfl \ r3 / O — — COS9) \

r(r2 + a2) / (r - a-<
-k-

. (43)

Ai _ 5 i , , ,v COS(^ \{a2 -r1^-r2) (c-rcos9 \

rV- a ' )3 /c-rcogg 1\1

The drag in this case is

The authors believe that this is a new result.

https://doi.org/10.1017/S0334270000009334 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009334


346 D. Palaniappan, S. D. Nigam and T. Amaranath [12]

6.4. Stokes-doublet at (0, 0, c): The expressions for Ao and Bo for a Stokes-
doublet of strength M in an unbounded fluid are (refer to (31) and (32) of [13])

0) [ *e* sin'g * ' ~ ^
2

H r^-ir - c cos 9 + r cos2 9) sin 20, (46)
re sim 0 J

"1
) sin 20,J

„ x M [l"-2cos0 1 2cos0 I 1 1 .
B0(r, 6, 0) = — - . /?! + — — cos 20 - — . 47

811/x [|_rc2sin20 c/?[ re sin2 9\ cRi)

The exterior and interior flow fields can be obtained by applying the theorem
(Section 3). It is found that the drag on the fluid sphere in this case is zero.
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