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This paper presents quasilinear theory (QLT) for a classical plasma interacting with
inhomogeneous turbulence. The particle Hamiltonian is kept general; for example,
relativistic, electromagnetic and gravitational effects are subsumed. A Fokker–Planck
equation for the dressed ‘oscillation-centre’ distribution is derived from the Klimontovich
equation and captures quasilinear diffusion, interaction with the background fields
and ponderomotive effects simultaneously. The local diffusion coefficient is manifestly
positive-semidefinite. Waves are allowed to be off-shell (i.e. not constrained by a
dispersion relation), and a collision integral of the Balescu–Lenard type emerges in
a form that is not restricted to any particular Hamiltonian. This operator conserves
particles, momentum and energy, and it also satisfies the H-theorem, as usual. As a
spin-off, a general expression for the spectrum of microscopic fluctuations is derived. For
on-shell waves, which satisfy a quasilinear wave-kinetic equation, the theory conserves
the momentum and energy of the wave–plasma system. The action of non-resonant waves
is also conserved, unlike in the standard version of QLT. Dewar’s oscillation-centre
QLT of electrostatic turbulence (Phys. Fluids, vol. 16, 1973, p. 1102) is proven formally
as a particular case and given a concise formulation. Also discussed as examples are
relativistic electromagnetic and gravitational interactions, and QLT for gravitational waves
is proposed.
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1. Introduction
1.1. Background

Electromagnetic waves are present in plasmas naturally, and they are also launched into
plasmas using external antennas, for example, for plasma heating and current drive (Fisch
1987; Stix 1992; Pinsker 2001). Nonlinear effects produced by these waves are often
modelled within the quasilinear (QL) approximation, meaning that the nonlinearities are
retained in the low-frequency (‘average’) dynamics but neglected in the high-frequency
dynamics. Two separate paradigms exist within this approach.

In the first paradigm, commonly known as ‘the’ QL theory (QLT), the focus is on
resonant interactions. Non-resonant particles are considered as a background that is
homogeneous in spatial (Vedenov, Velikhov & Sagdeev 1961; Drummond & Pines 1962;
Kennel & Engelmann 1966; Rogister & Oberman 1968, 1969) or generalized coordinates
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2 I.Y. Dodin

(Kaufman 1972; Eriksson & Helander 1994; Catto, Lee & Ram 2017); then, the oscillating
fields can be described in terms of global modes. This approach has the advantage
of simplicity, but its applications are limited in that real plasmas are never actually
homogeneous in any predefined variables (and, furthermore, tend to exhibit nonlinear
instabilities in the presence of intense waves). The ‘ponderomotive’ dynamics determined
by the gradients of the wave and plasma parameters is lost in this approach; then, spurious
effects can emerge and have to be dealt with (Lee et al. 2018).

The second paradigm successfully captures the ponderomotive dynamics by introducing
effective Hamiltonians for the particle average motion (Gaponov & Miller 1958; Motz
& Watson 1967; Cary & Kaufman 1981; Kaufman 1987; Dodin 2014). But, as usual in
perturbation theory (Lichtenberg & Lieberman 1992), those Hamiltonians are by default
singular for resonant interactions. Thus, such models have limited reach as well, and
remarkable subtleties are still found even in basic QL problems. For example, it is still
debated (Ochs & Fisch 2021a; Ochs 2021) to which extent the QL effects that remove
resonant particles while capturing their energy (Fisch & Rax 1992) also remove charge
along with the resonant particles, thereby driving plasma rotation (Fetterman & Fisch
2008). This state of affairs means, arguably, that a clear comprehensive theory of QL
wave–plasma interactions remains to be developed – a challenge that must be faced.

The first framework that subsumed both resonant and non-resonant interactions in
inhomogeneous plasmas was proposed by Dewar (1973) for electrostatic turbulence in
non-magnetized plasma and is known as ‘oscillation-centre’ (OC) QLT. It was later
extended by McDonald, Grebogi & Kaufman (1985) to non-relativistic magnetized
plasma. However, both of these models are partly heuristic and limited in several respects.
For example, they are bounded by the limitations of the variational approach used therein,
and they separate resonant particles from non-resonant particles somewhat arbitrarily
(see also Ye & Kaufman 1992). Both models also assume specific particle Hamiltonians
and require that waves be governed by a QL wave-kinetic equation (WKE), i.e. be only
weakly dissipative, or ‘on-shell’. (Somewhat similar formulations were also proposed,
independently and without references to the OC formalism, in Weibel 1981; Yasseen 1983;
Yasseen & Vaclavik 1986.) This means that collisions and microscopic fluctuations are
automatically excluded. Attempts to merge QLT and the WKE with the theory of plasma
collisions were made (Rogister & Oberman 1968; Schlickeiser & Yoon 2014; Yoon et
al. 2016) but have not yielded a local theory applicable to inhomogeneous plasma. In
particular, the existing models rely on global-mode decompositions and treat complex
frequencies heuristically. Thus, the challenge stands.

Related problems are also of interest in the context of gravitostatic interactions
(Chavanis 2012; Hamilton 2020; Magorrian 2021), where inhomogeneity of the
background fields cannot be neglected in principle (Binney & Tremaine 2008). (To our
knowledge, OC QLT analogues have not been considered in this field.) Similar challenges
also arise in QLT of dispersive gravitational waves (Garg & Dodin 2020, 2021a). Hence,
one cannot help but wonder whether a specific form of the particle Hamiltonian really
matters for developing QLT or it is irrelevant and therefore should not be assumed. Since
basic theory of linear waves is independent of Maxwell’s equations (Dodin & Fisch 2012;
Tracy et al. 2014; Dodin, Zhmoginov & Ruiz 2017), a general QLT might be possible too,
and it might be easier to develop than a zoo of problem-specific models.

1.2. Outline
Here, we propose a general QLT that allows for plasma inhomogeneity and is not restricted
to any particular Hamiltonian or interaction field. By starting with the Klimontovich
equation, we derive a model that captures QL diffusion, interaction with background fields
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and ponderomotive effects simultaneously. The local diffusion coefficient in this model is
manifestly positive-semidefinite. Waves are allowed to be off-shell, and a collision integral
of the Balescu–Lenard type emerges for general Hamiltonian interactions. This operator
conserves particles, momentum and energy, and it also satisfies the H-theorem, as usual.
As a spin-off, a general expression for the spectrum of microscopic fluctuations of the
interaction field is derived. For on-shell waves governed by the WKE, the theory conserves
the momentum and energy of the wave–plasma system. The action of non-resonant
waves is also conserved, unlike in the standard version of QLT.1 Dewar’s OC QLT of
electrostatic turbulence (Dewar 1973) is proven formally as a particular case and given
a concise formulation. Also discussed as examples are relativistic electromagnetic and
gravitational interactions, and QLT for gravitational waves is proposed. Overall, our
formulation interconnects many known results that in the past were derived independently
and reproduces them within a unifying framework.

This progress is made by giving up the traditional Fourier–Laplace approach. The author
takes the stance that the global-mode language is unnatural for inhomogeneous-plasma
problems (i.e. all real-plasma problems). A fundamental theory must be local. Likewise,
the variational approach that is used sometimes in QL calculations is not universally
advantageous, especially for describing dissipation. Instead of those methods, we use
operator analysis and the Weyl symbol calculus, as has also been proven fruitful in other
recent studies of ponderomotive effects and turbulence (Ruiz 2017; Ruiz & Dodin 2017b;
Zhu & Dodin 2021) and linear-wave theory (Dodin et al. 2019). No logical leaps are made
in this paper other than assuming the QL approximation per se and a certain ordering.2
In a nutshell, we treat the commonly known QL-diffusion coefficient as a non-local
operator, and we systematically approximate it using the Weyl symbol calculus. It is the
non-locality of this operator that gives rise to ponderomotive effects and ensures the proper
conservation laws. The existing concept of ‘adiabatic diffusion’ (Galeev & Sagdeev 1985;
Stix 1992) captures some of that, but systematic application of operator analysis yields a
more general, more accurate and more rigorous theory.

The author hopes not that this paper is an entertaining read. However, the paper
was intended as self-contained, maximally structured and easily searchable, so readers
interested in specific questions could find and understand answers without having to
read the whole paper. The text is organized as follows. In § 2, we present a primer on
the Weyl symbol calculus and the associated notation. In § 3, we formulate our general
model. In § 4, we introduce the necessary auxiliary theorems. In § 5, we derive a QL
model for plasma interacting with prescribed waves. The waves may or may not be
on-shell or self-consistent. (Their origin and dynamics are not addressed in § 5.) In § 6, we
consider interactions with self-consistent waves. In particular, we separate out microscopic
fluctuations, calculate their average distribution and derive the corresponding collision
operator. In § 7, we assume that the remaining macroscopic waves are on-shell, rederive
the WKE, and show that our QL model combined with the WKE is conservative. In § 8, we
discuss the general properties that our model predicts for plasmas in thermal equilibrium.
In § 9, we show how to apply our theory to non-relativistic electrostatic interactions,
relativistic electromagnetic interactions, Newtonian gravity and relativistic gravity. In
§ 10, we summarize our results. Auxiliary calculations are presented in Appendices A–D,
and Appendix G summarizes our notation. This notation is extensive and may not be

1The standard QLT (as in, for example, Drummond & Pines 1962) does not properly conserve energy–momentum
either, even though it is formally conservative (see § 7.3.2).

2We treat the traditional QL approximation as a given mathematical model. We seek to push this model to its limits
rather than to examine its validity, which is a separate issue. For discussions on the validity of the QL approximation, see
Besse et al. (2011), Escande et al. (2018) and Crews & Shumlak (2022).
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particularly intuitive. Thus, readers are encouraged to occasionally scout § 9 for examples
even before fully absorbing the preceding sections.

An impatient reader can also skip calculations entirely and consult only the summaries
of the individual sections (2.3, 3.4, 4.4, 5.6, 6.9, 7.6 and 8.5; they are mostly
self-contained) and then proceed to the examples in § 9. However, the main point of this
work is not just the final results per se (surely, some readers will find them obvious) but
also that they are derived with minimal assumptions and rigorously, which makes them
reliable. A reader may also notice that we rederive some known results along the way, for
example, basic linear-wave theory and the WKE. This is done for completeness and, more
importantly, with the goal to present all pieces of the story within a unified notation.

2. A math primer

Here, we summarize the machinery to be used in the next sections. This machinery is not
new, but a brief overview is in order at least to introduce the necessary notation. A more
comprehensive summary, with proofs, can be found in Dodin et al. (2019, supplementary
material). For extended discussions, see Tracy et al. (2014), Ruiz (2017), McDonald (1988)
and Littlejohn (1986).

2.1. Weyl symbol calculus on spacetime
2.1.1. Basic notation

We denote the time variable as t, space coordinates as x ≡ (x1, x2, . . . , xn), spacetime
coordinates as x ≡ (x0, x1, . . . , xn), where x0 .= t and xi .= xi. The symbol .= denotes
definitions, and Latin indices from the middle of the alphabet (i, j, . . .) range from 1 to
n unless specified otherwise. We assume the spacetime-coordinate domain to be Rn.3
Functions on x form a Hilbert space Hx with an inner product that we define as

〈ξ |ψ〉 .=
ˆ

dx ξ ∗(x)ψ(x). (2.1)

The symbol ∗ denotes complex conjugate,

dx
.= dx0 dx1 . . . dxn = dt dx1 . . . dxn (2.2)

(a similar convention is assumed also for other multi-dimensional variables used below),
and integrals in this paper are taken over (−∞,∞) unless specified otherwise. Operators
on Hx will be denoted with carets, and we will use indexes H and A to denote their
Hermitian and anti-Hermitian parts. For a given operator Â, one has Â = ÂH + îAA,

ÂH = Â
†
H
.= 1

2
(̂A+ Â

†
), ÂA = Â

†
A
.= 1

2i
(̂A− Â

†
), (2.3)

where † denotes the Hermitian adjoint with respect to the inner product (2.1). The case of
a more general inner product is detailed in Dodin et al. (2019, supplementary material).

2.1.2. Vector fields
For multi-component fields ψ ≡ (ψ1, ψ2, . . . , ψM)ᵀ (our ᵀ denotes the matrix trans-

pose), or ‘row vectors’ (actually, tuples), we define the dual ‘column vectors’
ψ† ≡ (ψ∗1 , ψ∗2 , . . . , ψ∗M)ᵀ via ψ† .= gψ∗. The matrix g is assumed to be real, diagonal,

3This excludes periodic boundary conditions, albeit not entirely (§ 3.1). Other than that, the spacetime metric can
still be non-Euclidean, as illustrated by an application to relativistic gravity in § 9.4. See also the footnotes in §§ 2.1.3 and
6.1.
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invertible and constant; other than that, it can be chosen as suits a specific problem. (For
example, a unit matrix may suffice.) This induces the standard rule of index manipulation

ψi = gijψ
j, ψ i = gijψj, i, j = 1, 2, . . . ,M, (2.4)

where gij are elements of g and gij are elements of g−1. Summation over repeating indices
is assumed. The rules of matrix multiplication apply to row and column vectors as usual.
Then, for ψ ≡ (ψ1, ψ2, . . . , ψM)ᵀ and ξ ≡ (ξ 1, ξ 2, . . . , ξM)ᵀ, the quantity ψξ is a matrix
with elements ψ iξ j, ψξ † is a matrix with elements ψ iξ ∗j and ξ †ψ is its scalar trace:4

ξ †ψ = tr(ψξ †
) = ξ ∗i ψ i = gijξ

i∗ψ j, i, j = 1, 2, . . . ,M. (2.5)

(Similarly, for χ ≡ (χ1, χ2, . . . , χM) and η ≡ (η1, η2, . . . , ηM), ηχ is a matrix with
elements ηiχj.) We use (2.5) to define a Hilbert space H M

x of M-dimensional vector fields
on x, specifically, by adopting the inner product

〈ξ |ψ〉 .=
ˆ

dx ξ †
(x)ψ(x). (2.6)

Below, the distinction between H M
x and Hx will be assumed but not emphasized. Also

note that (2.5) yields

ξ †
(ψψ†)ξ = (ξ †ψ)(ψ†ξ) = |ξ †ψ |2 � 0, (2.7)

for any ξ and ψ . Thus, dyadic matrices of the form ψψ† are positive-semidefinite, even
though ψ†ψ may be negative (when g is not positive-definite).

For general matrices, the indices can be raised and lowered using g and g−1 as usual.
The Hermitian adjoint A† for a given matrix A is defined such that (A†ξ)†ψ = ξ †

(Aψ) for
any ψ and ξ , which means

(A†)j
i = (A)i∗j ≡ Ai∗

j, i, j = 1, 2, . . . ,M. (2.8)

The Hermitian and anti-Hermitian parts are defined as

AH = A†
H
.= 1

2
(A+ A†), AA = A†

A
.= 1

2i
(A− A†), (2.9)

so A = AH + iAA. For one-dimensional matrices (scalars), one has A = A,

AH = A∗H = re A, AA = A∗A = im A, (2.10)

where re and im denote the real part and the imaginary part, respectively. We also define

matrix operators Â as matrices of the corresponding operators Â
i

j . Because g is constant,
index manipulation applies as usual. Also as usual, one has

ÂH = Â
†
H
.= 1

2
(̂A+ Â

†
), ÂA = Â

†
A
.= 1

2i
(̂A− Â

†
), (2.11)

and Â = ÂH + îAA, where † is the Hermitian adjoint with respect to the inner product
(2.6).

4A common notation is ξ†ψ = ξ · ψ , but we reserve the dot-product notation for a scalar product of different
quantities (§ 2.1.3).
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2.1.3. Bra–ket notation
Let us define the following operators that are Hermitian under the inner product (2.1):

x̂ 0 ≡ t̂ .= t, x̂ i ≡ x̂ i .= xi, k̂0 ≡ −ω̂ .= −i∂t, k̂i
.= −i∂i, (2.12)

where ∂0 ≡ ∂t
.= ∂/∂x0 and ∂i

.= ∂/∂xi. Accordingly,

x̂ ≡ ( x̂ 0, x̂ 1, . . . , x̂ n) = (̂ t, x̂), k̂ ≡ (̂k0, k̂1, . . . , k̂n) = (−ω̂, k̂) (2.13)

are understood as the spacetime-position operator and the corresponding wavevector
operator, which will also be expressed as follows:

x̂ = x, k̂ = −i∂x. (2.14)

Also note the commutation property, where δ j
i is the Kronecker symbol:5

[ x̂ i, k̂j] = iδi
j, i, j = 0, 1, . . . , n. (2.15)

The eigenvectors of the operators (2.14) will be denoted as ‘kets’ |x〉 and |k〉:6

x̂ |x〉 = x |x〉 , k̂ |k〉 = k |k〉 , (2.16)

and we assume the usual normalization

〈x1|x2〉 = δ(x1 − x2), 〈k1|k2〉 = δ(k1 − k2), (2.17)

where δ is the Dirac delta function. Both sets {|x〉 , x ∈ Rn} and {|k〉 , k ∈ Rn}, where
n
.= n+ 1, form a complete basis on Hx, and the eigenvalues of these operators form

an extended real phase space (x, k), where

x ≡ (t, x), k ≡ (−ω,k). (2.18)

The notation k · s .= −ωτ + k · s will be assumed for any s ≡ (τ, s) and k · s .= kisi. In
particular, for any ψ and constant s, one has

exp(îk · s)ψ(x) = exp(s · ∂x)ψ(x) = ψ(x+ s), (2.19)

as seen from comparing the Taylor expansions in s of the latter two expressions. (A
generalization of this formula is discussed in § 4.1.) Also,

〈x|k〉 = 〈k|x〉∗ = (2π)−n/2 exp(ik · x), (2.20)

and ˆ
dx |x〉 〈x| = 1̂,

ˆ
dk |k〉 〈k| = 1̂. (2.21)

Here, ‘bra’ 〈x| is the one-form dual to |x〉, 〈k| is the one-form dual to |k〉, and 1̂ is
the unit operator. Any field ψ on x can be viewed as the x representation (‘coordinate

5Spaces with periodic boundary conditions require a different approach (Rigas et al. 2011), so they are not considered
here (yet see § 3.1). That said, for a system that is large enough, the boundary conditions are unimportant; then the toolbox
presented here is applicable as is.

6More precisely, |x〉 is the ket |e(̂x; x)〉 that is an eigenvector of each x̂i with the corresponding eigenvalues being xi.
A similar comment applies to |k〉.
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representation’) of |ψ〉, i.e. the projection of an abstract ket vector |ψ〉 ∈Hx on |x〉:
ψ(x) = 〈x|ψ〉 . (2.22)

Similarly, 〈k|ψ〉 is the k representation (‘spectral representation’) of |ψ〉, or the Fourier
image of ψ :

◦
ψ(k)

.= 〈k|ψ〉 = 1
(2π)n/2

ˆ
dx e−ik·xψ(x). (2.23)

2.1.4. Wigner–Weyl transform
For a given operator Â and a given field ψ , Âψ can be expressed in the integral form

Âψ(x) =
ˆ

dx′ 〈x|̂A|x′〉ψ(x′), (2.24)

where 〈x|̂A|x′〉 is a function of (x, x′). This is called the x representation (‘coordinate
representation’) of Â. Equivalently, Â can be given a phase-space, or Weyl, representation,
i.e. expressed through a function of the phase-space coordinates, A(x, k)7:

Â = 1
(2π)n

ˆ
dx dk ds |x+ s/2〉A(x, k) eik·s 〈x− s/2| ≡ operxA. (2.25)

The function A(x, k), called the Weyl symbol (or just ‘symbol’) of Â, is given by

A(x, k)
.=
ˆ

ds 〈x+ s/2|̂A|x− s/2〉 e−ik·s ≡ symbxÂ. (2.26)

The x and phase-space representations are connected by the Fourier transform:

〈x|̂A|x′〉 = 1
(2π)n

ˆ
dk eik·(x−x′) A

(
x+ x′

2
, k

)
. (2.27)

This also leads to the following notable properties of Weyl symbols:

〈x|̂A|x〉 = 1
(2π)n

ˆ
dk A(x, k), 〈k|̂A|k〉 = 1

(2π)n

ˆ
dx A(x, k). (2.28)

An operator unambiguously determines its symbol, and vice versa. We denote this
isomorphism as Â↔ A. The mapping Â �→ A is called the Wigner transform, and
A �→ Â is called the Weyl transform. For uniformity, we call them the direct and inverse
Wigner–Weyl transform. The isomorphism ↔ is natural in that it has the following
properties:

1̂↔ 1, x̂↔ x, k̂↔ k, h( x̂)↔ h(x), h(̂k)↔ h(k), Â
† ↔ A∗, (2.29)

where h is any function and Â is any operator. The product of two operators maps to the
so-called Moyal product, or star product, of their symbols (Moyal 1949):

Â B̂ ↔ A(x, k) 
 B(x, k)
.= A(x, k)eiL̂x/2B(x, k), (2.30)

which is associative:

Â B̂ Ĉ ↔ (A 
 B) 
 C = A 
 (B 
 C) ≡ A 
 B 
 C. (2.31)

7Analytic continuation to complex arguments is possible, but by default, x and k are real.
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Here, L̂x
.=
←
∂x ·

→
∂k −

←
∂k ·

→
∂x, and the arrows indicate the directions in which the derivatives

act. For example, AL̂xB is just the canonical Poisson bracket on (x, k):

AL̂xB = {A,B}x .= −∂A

∂t
∂B

∂ω
+ ∂A

∂ω

∂B

∂t
+ ∂A

∂xi

∂B

∂ki
− ∂A

∂ki

∂B

∂xi
. (2.32)

These formulas readily yield

h( x̂ )̂kα ↔ kαh(x)+ i
2
∂αh(x), k̂αh( x̂ )↔ kαh(x)− i

2
∂αh(x), (2.33)

also h(̂k)eiK·̂x ↔ h(k) 
 eiK·x = h(k+ K/2)eiK·x, etc. Another notable formula to be used
below, which flows from (2.28) and (2.31), is

〈x|̂A B̂ Ĉ|x〉 = 1
(2π)n

ˆ
dk (A 
 B 
 C)(x, k). (2.34)

The Moyal product is particularly handy when ∂x∂k ∼ ε � 1. Such ε is often called the
geometrical-optics parameter. Since L̂x = O(ε), one can express the Moyal product as an
asymptotic series in powers of ε:


 = 1̂+ iL̂x/2− L̂ 2
x/8+ . . . . (2.35)

2.1.5. Weyl expansion of operators
Operators can be approximated by approximating their symbols (McDonald 1988;

Dodin et al. 2019). If Â is approximately local in x (i.e. if Âψ(x) is determined by values
ψ(x+ s) only with small enough s), its symbol can be adequately represented by the first
few terms of the Taylor expansion in k:

A(x, k) = A(x, 0)+�0(x) · k+ . . . , �0(x)
.= (∂kA(x, k))k=0. (2.36)

Application of operx to this formula leads to

Â ≈ A( x̂, 0)+ 1
2
(�̂0 · k̂+ k̂ · �̂0)+ . . . , (2.37)

where �̂0
.= �0( x̂ ). One can also rewrite (2.37) using the commutation property

[̂k, �̂0] = −i(∂x ·�0)( x̂ ). (2.38)

In the x representation, this leads to

Â = A(x, 0)− i�0(x) · ∂x − i
2
(∂x ·�0(x))+ . . . . (2.39)

The effect of a non-local operator on eikonal (monochromatic or quasimonochromatic)
fields can be approximated similarly. Suppose ψ = eiθ ψ̆ , where the dependence of
k
.= ∂xθ and ψ̆ on x is slower than that of θ by factor ε � 1. Then, Âψ = eiθ Â

′
ψ̆ , where

Â
′ .= e−iθ (̂x)Âeiθ (̂x), and the symbol of Â

′ can be approximated as follows:

A′(x, k) = A(x, k(x)+ k)+O(ε2). (2.40)

By expanding this in k and applying operx, one obtains

Â
′ = A(x, k(x))− i�(x) · ∂x − i

2
(∂x ·�(x))+O(ε2), (2.41)

where �(x) .= (∂kA(x, k))k=k(x). Neglecting the O(ε2) corrections in this formula leads to
what is commonly known as the geometrical-optics approximation (Dodin et al. 2019).
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2.1.6. Wigner functions
Any ket |ψ〉 generates a dyadic |ψ〉 〈ψ |. In quantum mechanics, such dyadics are known

as density operators (of pure states). For our purposes, though, it is more convenient to
define the density operator in a slightly different form, namely, as

Ŵψ
.= (2π)−n |ψ〉 〈ψ | . (2.42)

The symbol of this operator, Wψ = symbxŴψ , is a real function called the Wigner
function. It is given by

Wψ(x, k) = 1
(2π)n

ˆ
ds 〈x+ s/2|ψ〉 〈ψ |x− s/2〉 e−ik·s

= 1
(2π)n

ˆ
dsψ(x+ s/2)ψ∗(x− s/2) e−ik·s, (2.43)

which is manifestly real and can be understood as the (inverse) Fourier image of

Cψ(x, s)
.= ψ(x+ s/2)ψ∗(x− s/2) =

ˆ
dk Wψ(x, k) eik·s. (2.44)

Any function bilinear in ψ and ψ∗ can be expressed through Wψ . Specifically, for any
operators L̂ and R̂, one has

(̂Lψ(x))(̂Rψ(x))∗ = 〈x|̂L|ψ〉 〈ψ |̂R†|x〉
= (2π)n 〈x|̂L Ŵψ R̂

†|x〉
= ´

dk L(x, k) 
Wψ(x, k) 
 R∗(x, k), (2.45)

where L and R are the corresponding symbols and (2.28) was used along with (2.31). As a
corollary, and as also seen from (2.28), one has

|ψ(x)|2 =
ˆ

dk Wψ(x, k), | ◦ψ(k)|2 =
ˆ

dx Wψ(x, k). (2.46)

As a reminder, ψ(x) = 〈x|ψ〉 and
◦
ψ(k)

.= 〈k|ψ〉 is the Fourier image of ψ (2.23), so
|ψ(x)|2 and | ◦ψ(k)|2 can be loosely understood as the densities of quanta (associated
with the field ψ) in the x-space and the k-space, respectively. Because of (2.46), Wψ is
commonly attributed as a quasiprobability distribution of wave quanta in phase space.
(The prefix ‘quasi’ is added because Wψ can be negative.) In case of real fields, which
satisfy 〈x|ψ〉 = 〈ψ |x〉, one also has

Wψ(x, k) = Wψ(x,−k). (2.47)

Of particular importance are Wigner functions averaged over a sufficiently large
phase-space volume ΔxΔk � 1. The average Wigner function Wψ is a local property
of the field (as opposed to, say, the field’s global Fourier spectrum) and satisfies
(Appendix A)

Wψ � 0. (2.48)
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2.1.7. Generalization to vector fields
In case of vector (tuple) fields ψ = (ψ1, ψ2, . . . , ψM)ᵀ, kets are column vectors, |ψ〉 =

(|ψ1〉 , |ψ2〉 , . . . , |ψM〉)ᵀ, and bras are row vectors, 〈ψ | = (〈ψ1| , 〈ψ2| , . . . , 〈ψM|)ᵀ. The
operators acting on such kets and bras are matrices of operators. The Weyl symbol of a
matrix operator is defined as the matrix of the corresponding symbols. As a result, the
symbol of a Hermitian adjoint of a given operator is the Hermitian adjoint of the symbol
of that operator:

Â† ↔ A†, (2.49)

and as a corollary, the symbol of a Hermitian matrix operator is a Hermitian matrix.
In particular, the density operator of a given vector field ψ is a matrix operator

Ŵψ
.= (2π)−n |ψ〉 〈ψ | . (2.50)

The symbol of this operator, Wψ = symbxŴψ , is a Hermitian matrix function8

Wψ(x, k) = 1
(2π)n

ˆ
dsψ(x+ s/2)ψ†(x− s/2) e−ik·s (2.51)

called the Wigner matrix. (It is also called the ‘Wigner tensor’ when ψ is a true vector
rather than a tuple.) It can be understood as the (inverse) Fourier image of

Cψ(x, s)
.= ψ(x+ s/2)ψ†(x− s/2) =

ˆ
dk Wψ(x, k) eik·s. (2.52)

The analogue of (2.45) is (Appendix B.1)

(̂Lψ(x))(̂Rψ(x))† = ´
dk L(x, k) 
Wψ(x, k) 
 R†(x, k). (2.53a)

The Wigner matrix averaged over a sufficiently large phase-space volume ΔxΔk � 1 is a
local property of the field, and it is positive-semidefinite (Appendix A).

For real fields, one also has

Wψ(x, k) = Wᵀ
ψ(x,−k) = W∗ψ(x,−k), (2.53b)

and (2.53) yields the following corollary at ε → 0, when 
 becomes the usual product
(Appendix B.1):

(̂Lψ)†R̂ψ =
ˆ

dk tr
(
Wψ(L

†R)H
)
. (2.53c)

The generalizations of the other formulas from the previous sections are obvious.

2.2. Weyl symbol calculus on phase space
2.2.1. Notation

Consider a Hamiltonian system with coordinates x ≡ (x1, x2, . . . , xn) and canonical
momenta p ≡ ( p1, p2, . . . , pn). Together, these variables comprise the phase-space
coordinates z ≡ (x, p), i.e.

z ≡ (z1, . . . , z2n) = (x1, . . . , xn, p1, . . . , pn). (2.54)

Components of z will be denoted with Greek indices ranging from 1 to 2n.9

8By construction, Ŵψ is a matrix with mixed indices, (Ŵψ )
i
j. In §§ 5.1 and 5.2, we also operate with a Wigner

matrix that has two upper indices. In such cases, the dagger † in (2.51) is assumed replaced with complex conjugation.
For the said sections, this means that † in (2.51) can be simply omitted, because the field of interest there is real.

9However, the index σ is reserved as a tag for individual particles and waves.
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Quasilinear theory 11

Hamilton’s equations for zα can be written as żα = {zα,H}, or equivalently, as

żα = Jαβ ∂βH. (2.55)

Here, H = H(t, z) is a Hamiltonian, ∂β
.= ∂/∂zβ ,

{A,B} .= Jαβ (∂αA)(∂βB) (2.56)

is the Poisson bracket on z, and Jαβ is the canonical Poisson structure:

J = −Jᵀ =
(

0n 1n
−1n 0n

)
, (2.57)

where 0n is an n-dimensional zero matrix, and 1n is an n-dimensional unit matrix. The
corresponding equation for the probability distribution f (t, z) is

∂tf = {H, f }. (2.58)

Solutions of (2.58) and other functions of the extended-phase-space coordinates X ≡ (t, z)
can be considered as vectors in the Hilbert space HX with the usual inner product10

〈ξ |ψ〉 .=
ˆ

dX ξ ∗(X )ψ(X ). (2.59)

Assuming the notation N .= dim X = 2n+ 1, one has

dX .= dX1 dX2 . . . dXN = dt dx1 . . . dxn dp1, . . . , dpn. (2.60)

Let us introduce the position operator on z,

ẑ .= (x1, . . . , xn︸ ︷︷ ︸
x̂

, p1, . . . , pn︸ ︷︷ ︸
p̂

), (2.61)

and the momentum operator on z,

q̂ ≡ (−i∂1, . . . ,−i∂n︸ ︷︷ ︸
k̂

,−i∂1, . . . ,−i∂n︸ ︷︷ ︸
r̂

), (2.62)

where ∂i
.= ∂/∂xi but ∂ i .= ∂/∂pi; that is, ẑ = (̂x, p̂), q̂ = (̂k, r̂ ) and

ẑ α .= zα, q̂α
.= −i∂α. (2.63)

Then, much like in § 2.1, one can also introduce the position and momentum operators on
the extended phase space X :

X̂ = ( t̂, ẑ ) = ( t̂, x̂, p̂ ), K̂ = (−ω̂, q̂ ) = (−ω̂, k̂, r̂ ). (2.64)

Assuming the convention that Latin indices from the beginning of the alphabet
(a, b, c, . . .) range from 0 to 2n, and ∂a

.= ∂/∂Xa, one can compactly express this as

X̂a = Xa, K̂a = −i∂a. (2.65)

10Note that the inner product (2.59) is different from (2.1). Still, we use the same notation assuming it will be clear
from the context which inner product is used in each given case.
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12 I.Y. Dodin

The eigenvectors of these operators will be denoted |X 〉 and |K〉:

X̂ |X 〉 = X |X 〉 , K̂ |K〉 = K |K〉 , (2.66)

and we assume the usual normalization

〈X 1|X 2〉 = δ(X 1 − X 2), 〈K 1|K 2〉 = δ(K 1 − K 2). (2.67)

Both sets {|X 〉 ,X ∈ RN} and {|K〉 ,K ∈ RN} form a complete basis on HX , and the
eigenvalues of these operators form a real extended phase space (X ,K), where

X ≡ (t, z), K ≡ (−ω, q). (2.68)

Particularly note the following formula, which will be used below:

Jαβ q̂αqβ =
(

k̂ r̂
) ( 0n 1n
−1n 0n

)(
k
r

)
= k̂ · r − r̂ · k. (2.69)

2.2.2. Wigner–Weyl transform
One can construct the Weyl symbol calculus on the extended phase space X just like

it is done on spacetime x in § 2.1, with an obvious modification of the notation. The
Wigner–Weyl transform is defined as

A(X ,K) =
ˆ

dS 〈X + S/2|̂A|X − S/2〉 e−iK ·S ≡ symbXÂ, (2.70)

Â = 1
(2π)N

ˆ
dX dK dS |X + S/2〉A(X ,K) 〈X − S/2| eiK ·S ≡ operXA. (2.71)

(Notice the change in the font and in the index compared with (2.26) and (2.25).) The
corresponding Moyal product is denoted � (as opposed to 
 introduced earlier) and is
given by

A � B = A(X ,K) eiL̂X/2B(X ,K), (2.72)

where L̂X
.=
←
∂X ·

→
∂K −

←
∂K ·

→
∂X can be expressed as follows:

AL̂XB .= −∂A
∂t
∂B
∂ω
+ ∂A
∂ω

∂B
∂t
+ ∂A
∂xi

∂B
∂ki
− ∂A
∂ki

∂B
∂xi
+ ∂A
∂pi

∂B
∂ri
− ∂A
∂ri

∂B
∂pi
. (2.73)

If an operator Â is local in p, its X representation and x representation satisfy

〈t, x, p|Â|t′, x′, p′〉 = 〈t, x|Â|t′, x′〉 δ(p− p′), (2.74)

and therefore the Weyl symbol of Â is the same irrespective of whether the operator is
considered on HX or on Hx. In this case, we will use a unifying notation symb Â instead
of symbXÂ and symbxÂ.

https://doi.org/10.1017/S0022377822000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000502


Quasilinear theory 13

2.2.3. Wigner functions and Wigner matrices
The density operator of a given scalar field ψ is given by

Ŵψ
.= (2π)−N |ψ〉 〈ψ | . (2.75)

The symbol of this operator, Wψ = symbXŴψ , is a real function called the Wigner
function. It is given by

Wψ(X ,K) = 1
(2π)N

ˆ
dSψ(X + S/2)ψ∗(X − S/2) e−iK ·S, (2.76)

which can be understood as the (inverse) Fourier image of

Cψ(X ,S)
.= ψ(X + S/2)ψ∗(X − S/2) =

ˆ
dK Wψ(X ,K) eiK ·S. (2.77)

In particular, one has ˆ
dr symbXŴψ = symbxŴψ(p), (2.78)

where the right-hand side is Wψ given by (2.43), with p treated as a parameter. Also, for
real fields,

Wψ(X ,K) = Wψ(X ,−K). (2.79)

The density operator of a given vector field ψ = (ψ1, ψ2, . . . , ψM) is a matrix operator

Ŵ ψ
.= (2π)−N |ψ〉 〈ψ | . (2.80)

The symbol of this operator, or the Wigner matrix, is a Hermitian matrix function

W ψ(X ,K) = 1
(2π)N

ˆ
dSψ(X + S/2)ψ†(X − S/2) e−iK ·S, (2.81)

which can be understood as the (inverse) Fourier image of

Cψ(X ,S)
.= ψ(X + S/2)ψ†(X − S/2) =

ˆ
dK W ψ(X ,K) eiK ·S. (2.82)

In particular, one has ˆ
dr symbXŴ ψ = symbxŴψ(p), (2.83)

where the right-hand side is Wψ given by (2.51), with p treated as a parameter. Also, for
real fields,

W ψ(X ,K) =W ᵀ
ψ(X ,−K) =W ∗

ψ(X ,−K). (2.84)

Like those on (x, k), the Wigner matrices (Wigner functions) on (X ,K)
become positive-semidefinite (non-negative), and characterize local properties of the
corresponding fields, when averaged over a sufficiently large phase-space volume
ΔX ΔK � 1.
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2.3. Summary of § 2
In summary, we have introduced a generic n-dimensional physical space x,
the dual n-dimensional wavevector space k, the corresponding n-dimensional
(n = n+ 1) spacetime x ≡ (t, x) and the dual n-dimensional wavevector space
k ≡ (−ω,k). We have also introduced an n-dimensional momentum space p, the
corresponding 2n-dimensional phase space z ≡ (x, p), the N-dimensional (N = 2n+ 1)
extended space X ≡ (t, z) ≡ (t, x, p) and the dual N-dimensional wavevector space
K ≡ (−ω, q) ≡ (−ω,k, r), where r is the n-dimensional wavevector space dual to p. We
have also introduced the 2N-dimensional phase space (X ,K). Each of the said variables
has a corresponding operator associated with it, which is denoted with a caret. For
example, x̂ is the operator of position in the x space, and k̂ = −i∂x is the corresponding
wavevector operator.

Functions on x form a Hilbert space Hx, and the corresponding bra–ket notation is
introduced as usual. Any operator Â on Hx can be represented by its Weyl symbol A(x, k).
The correspondence between operators and their symbols, Â↔ A, is determined by the
Wigner–Weyl transform and is natural in the sense that (2.29) is satisfied. In particular,
Â B̂↔ A 
 B, where 
 is the Moyal product on (x, k). When the geometrical-optics
parameter is negligible (ε → 0), one has Â = A( x̂, k̂) and the Moyal product becomes
the usual product. Similarly, functions on X form a Hilbert space HX , the corresponding
bra–ket notation is also introduced as usual, any operator Â on HX can be represented by
its Weyl symbol A(X ,K), and Â B̂↔ A � B. An operator that is local in p has the same
symbol irrespective of whether it is considered on Hx or on HX .

Any given field ψ generates the corresponding density operator (2π)−n |ψ〉 〈ψ | and its
symbol called the Wigner function (Wigner matrix, if the field is a vector). If the density
operator is considered on Hx, it is denoted Ŵψ and the corresponding Wigner function
is denoted Wψ(x, k). If the density operator is considered on HX , it is denoted Ŵψ and
the corresponding Wigner function is denoted Wψ(X ,K). The two Wigner functions are
related via

´
dr Wψ(t, x, p, ω,k, r) = Wψ(t, x, ω,k; p), where p enters Wψ as a parameter,

if at all. If averaged over a sufficiently large phase-space volume, the Wigner functions
(matrices) are non-negative (positive-semidefinite) and characterize local properties of the
corresponding fields.

3. Model

Here, we introduce the general assumptions and the key ingredients of our theory.

3.1. Basic assumptions
3.1.1. Ordering

Let us consider particles governed by a Hamiltonian H = H + H̃ such that

H̃ = O(ε)� H = O(1). (3.1)

In other words, H̃ serves as a small perturbation to the leading-order Hamiltonian H. The
system will be described in canonical variables z ≡ (x, p) ∈ R2n. Let us also assume that
the system is close to being homogeneous in x. This includes two conditions. First, we
require that the external fields are weak (yet see § 3.1.2), meaning

∂xH ∼ κxH = O(ε), ∂pH ∼ κpH = O(1), (3.2)
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where ε � 1 is a small parameter, κx and κp are the characteristic inverse scales in the
x and p spaces, respectively, and the bar denotes local averaging.11 Hence, the particle
momenta p are close to being local invariants. Second, the statistical properties of H̃ are
also assumed to vary in x slowly. These properties can be characterized using the density
operator of the perturbation Hamiltonian,

Ŵ .= (2π)−N |H̃〉 〈H̃| , (3.3)

and its symbol, the (real) Wigner function, as in (2.43):

W(X ,K) = 1
(2π)N

ˆ
dS H̃(X + S/2)H̃(X − S/2) e−iK ·S. (3.4)

Specifically, we will use the average Wigner function, W, which represents the Fourier
spectrum of the symmetrized autocorrelation function of H̃:

C(X ,S) .= H̃(X + S/2)H̃(X − S/2) =
ˆ

dK W(X ,K) eiK ·S. (3.5)

The averaging is performed over sufficiently large volume of x to eliminate rapid
oscillations and also over phase-space volumes ΔX ΔK � 1, which guarantees W to be
non-negative and local (§ 2.2.3). The function W can be understood as a measure of the
phase-space density of wave quanta when the latter is well defined (§ 7).

We will assume12

∂tW = O(ε), ∂xW = O(ε), ∂pW = O(1). (3.6)

That said, we will also allow (albeit not require) for oscillations to be constrained by a
dispersion relation. In this case, W ∝ δ(ω − ω(t, x)), so (3.6) per se is not satisfied; then
we assume a similar ordering for

´
dωW instead. Also note that in application to the

standard QLT of homogeneous turbulence (Stix 1992, chapter 16), ε is understood as the
geometrical-optics parameter characterizing the smallness of the linear-instability growth
rates. (We discuss the ordering further in the end of § 3.3.)

3.1.2. Quasilinear approximation
The particle-motion equations can be written as

żα = {zα,H + H̃} = vα + uα, (3.7)

where vα and uα are understood as the unperturbed phase-space velocity and the
perturbation to the phase-space velocity, respectively:

vα
.= Jαβ∂βH, uα .= Jαβ∂βH̃. (3.8)

The notation vi (with i = 1, 2, . . . n) will also be used for the spatial part of the phase-space
velocity vα, i.e. for the true velocity per se. Likewise, v will be used to denote either the
phase-space velocity vector or the spatial velocity vector depending on the context. Also
note that a slightly different definition of v will be used starting from § 5.6.

11An exception will be made for eikonal waves, specifically, for quantities evaluated on the local wavevector k ≡
(−ω,k).

12As a reminder, the notation A = O(ε) does not rule out the possibility that A/ε is small. Also note that the terms
‘∼’ and ‘of order’ in this paper mean the same as ‘O’.
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16 I.Y. Dodin

The corresponding Klimontovich equation for the particle distribution f (t, z) is

∂tf = {H + H̃, f }. (3.9)

(If collisions are not of interest, (3.9) can as well be understood as the Vlasov equation.
Also, a small collision term can be included ad hoc; see the comment in the end of § 3.3.)
Let us search for f in the form

f = f + f̃ , f̃ = 0. (3.10)

The equations for f and f̃ are obtained as the average and oscillating parts of (3.9), and we
neglect the nonlinearity in the equation for f̃ , following the standard QL approximation
(Stix 1992, chapter 16). Then, one obtains

∂tf = {H, f } + {H̃, f̃ }, (3.11)

∂t̃ f = {H, f̃ } + {H̃, f }. (3.12)

A comment is due here regarding plasmas in strong fields and magnetized plasmas
in particular. Our formulation can be applied to such plasmas in canonical angle–action
variables (φ, J). For fast angle variables, the ordering (3.2) is not satisfied and the Weyl
symbol calculus is inapplicable as is (see the footnote in § 2.1.3). Such systems can be
accommodated by representing the distribution function as a Fourier series in φ and
treating the individual-harmonic amplitudes separately as slow functions of the remaining
coordinates. Then, our averaging procedure subsumes averaging over φ, so the averaged
quantities are φ-independent and (3.2) is reinstated. In particular, magnetized plasmas can
be described using guiding-centre variables. Although not canonical by default (Littlejohn
1983), they can always be cast in a canonical form, at least in principle (Littlejohn 1979).
Examples of canonical guiding-centre variables are reviewed in Cary & Brizard (2009).
To make the connection with the homogeneous-plasma theory, one can also order the
canonical pairs of guiding-centre variables such that they would describe the gyromotion,
the parallel motion, and the drifts separately (Wong 2000). This readily leads to results
similar to those in Catto et al. (2017). Further discussions on this topic are left to future
papers.

3.2. Equation for f̃
Let us consider solutions of (3.12) as a subclass of solutions of the more general equation

∂τ f̃ = L̂̃f +F , F (X ) .= {H̃, f }. (3.13)

Here, we have introduced an auxiliary second ‘time’ τ , the operator

L̂ .= −∂t + {H, ‚} = −∂t + Jαβ(∂αH)∂β = −∂t − vλ∂λ = −Va∂a (3.14)

(here and further, ‚ denotes a placeholder), and V (X ) ≡ (1, v(t, z)) is the unperturbed
velocity in the X space. Note that

∂aVa = ∂λvλ = 0 (3.15)

due to the incompressibility of the phase flow. Hence, [∂a,Va] = 0, so L̂ is anti-Hermitian.
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Let us search for a solution of (3.13) in the form13

f̃ (τ,X ) = eL̂τ ξ(τ,X ). (3.16)

Then, ∂τ f̃ = L̂ f̃ + eL̂τ ∂τ ξ , so ∂τ ξ = e−L̂τF (X ) and therefore

ξ(τ,X ) = e−L̂τ0ξ0(X )+
ˆ τ

τ0

dτ ′ e−L̂τ ′F (X ), (3.17)

where ξ0(X )
.= f̃ (τ0,X ). Hence, one obtains

f̃ (τ,X ) = eL̂(τ−τ0)ξ0(X )+
ˆ τ

τ0

dτ ′ e−L̂(τ ′−τ)F (X ), (3.18)

or equivalently, using τ ′′ .= τ − τ ′,

f̃ (τ,X ) = g0(τ,X )+
ˆ τ−τ0

0
dτ ′′ T̂τ ′′F (X ). (3.19)

Here, g0 is a solution of ∂τg0 = L̂g0, specifically,

g0(τ,X )
.= T̂τ−τ0ξ0(X ), g0(τ0,X ) = f̃ (τ0,X ), (3.20)

and we have also introduced
T̂τ
.= eL̂τ = e−τVa∂a . (3.21)

Because L̂ is anti-Hermitian, the operator T̂τ is unitary, and comparison with (2.19) shows
that it can be recognized as a shift operator. For further details, see § 4.1.

Using T̂τ , one can express (3.19) as

f̃ = g0 + Ĝ F , Ĝ
.= ´ τ−τ0

0 dτ ′ T̂τ ′, (3.22)

where Ĝ is the Green’s operator understood as the right inverse of the operator ∂τ − L̂,
or on the space of τ -independent functions, ∂t − {H, ‚}. Let us rewrite this operator as
Ĝ = Ĝ< + Ĝ>, where

Ĝ<=
ˆ τ−τ0

0
dτ ′ e−ντ

′
T̂τ ′, Ĝ>=

ˆ τ−τ0

0
dτ ′ (1− e−ντ

′
)T̂τ ′, (3.23)

and ν is a positive constant. Note that Ĝ< is well defined at τ0 →−∞, meaning that Ĝ<F
is well defined for any physical (bounded) field F .14 Thus, so is g0 + Ĝ>F . Let us take
τ0 →−∞ and then take ν → 0+. (Here, 0+ denotes that ν must remain positive, i.e. the
upper limit is taken.) Then, (3.22) can be expressed as

f̃ = g+ ĜF , g .= lim
ν→0+

lim
τ0→−∞

(g0 + Ĝ>F ). (3.24)

Here, we introduced an ‘effective’ Green’s operator Ĝ .= limν→0+ limτ0→−∞ Ĝ<, i.e.

Ĝ .= lim
ν→0+

ˆ ∞
0

dτ e−ντ T̂τ . (3.25)

This operator will be discussed in § 4.2, and g will be discussed in § 4.3. Meanwhile, note
that because τ is just an auxiliary variable, we will be interested in solutions independent

13Using the auxiliary variable τ allows us to express the propagator as a regular exponential, rather than ordered
exponential, even for t-dependent H, because L̂ is independent of τ .

14Unlike classic plasma-wave theory, this approach does not involve spectral decomposition, so there is no need to
consider fields that are exponential in time on the whole interval (−∞,∞).
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18 I.Y. Dodin

of τ . In particular, this means that f̃ (τ0,X ) = f̃ (X ), so ξ0(X ) = f̃ (X ), so (3.20) leads to

g0(τ,X ) = T̂τ−τ0̃ f (X ). (3.26)

3.3. Equation for f
Using (3.22), one can rewrite (3.12) for f as follows:

∂tf = {H, f } + {H̃, g} + {H̃, Ĝ{H̃, f }}. (3.27)

Notice that
{H̃, g} = −{g, H̃} = −∂α(Jαβ g∂βH̃) = −∂α(uαg), (3.28)

and also

{H̃, Ĝ{H̃, f }} = ∂β(Jαβ(∂αH̃)Ĝ{H̃, f })
= ∂β(Jαβ(∂αH̃)Ĝ(Jμν(∂μH̃)(∂ν f )))

= ∂β(uβĜ(uν∂ν f )). (3.29)

The field uα enters here as a multiplication factor and can be considered as an operator:

û αψ(X ) .= uα(X )ψ(X ). (3.30)

Then, (3.29) can be compactly represented as

{H̃, Ĝ{H̃, f }} = ∂α( û αĜ û β∂β f ). (3.31)

We will also use the notation

dt
.= ∂t + vγ ∂γ = ∂t − {H, ‚}. (3.32)

This leads to the following equation for f :

dtf = ∂α(D̂αβ∂β f )+ Γ, (3.33)

where we introduced the following average quantities:

D̂αβ .= û αĜ ûβ, Γ
.= −∂α(uαg). (3.34)

Our goal is to derive explicit approximate expressions for the quantities (3.34) and to
rewrite (3.33) in a more tractable form using the assumptions introduced in § 3.1. We will
use15

∂tf ∼ {H, f } = O(ε), dtf = O(ε2), (3.35)

and we will keep terms of order ε, ε2 and εε2 in the equation for f , while terms of order
ε4, ε2ε2 and higher will be neglected. This implies the ordering

ε2 � ε � ε � 1. (3.36)

As a reminder, ε is a linear measure of the characteristic amplitude of oscillations, and ε is
the geometrical-optics parameter, which is proportional to the inverse scale of the plasma

15Starting with § 5.6, we will assume dt f ∼ εε2f instead.
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inhomogeneity in spacetime. As usual then, linear dissipation is assumed to be of order ε.
This model implies the assumption that collisionless dissipation is much stronger than
collisional dissipation, which is to emerge as an effect quadratic in f̃ (§ 6). Furthermore, the
inverse plasma parameter16 will be assumed to be of order ε, so the collision operator for
f (§ 6.8) will be of order εε2. Within the assumed accuracy, this operator must be retained,
while the dynamics of f̃ is considered linear and therefore collisionless. Alternatively,
one can switch from the Klimontovich description to the Vlasov–Boltzmann description
and introduce an ad hoc order-ε collision operator directly in (3.9). This will alter the
Green’s operator, but the conceptual formulation would remain the same, so it will not be
considered separately in detail.

3.4. Summary of § 3
Our QL model is defined as usual, except: (i) we allow for a general particle
Hamiltonian H; (ii) we use the Klimontovich equation rather than the Vlasov equation
to retain collisions; (iii) we use local averaging (denoted with overbar) and allow for weak
inhomogeneity of all averaged quantities; (iv) we retain the initial conditions g for the
oscillating part of the distribution function (defined as in (3.24) but yet to be calculated
explicitly). Then, the average part of the distribution function satisfies

∂tf − {H, f } = ∂α(D̂αβ∂β f )+ Γ, (3.37)

where D̂αβ .= ûαĜ ûβ , Γ .= −∂α(uαg), uα is the wave-driven perturbation of the
phase-space velocity (see (3.8)), û α is the same quantity considered as an operator on
HX (see (3.30)) and Ĝ is the ‘effective’ Green’s operator given by

Ĝ .= lim
ν→0+

ˆ ∞
0

dτ e−ντ−τVa∂a . (3.38)

Also, ∂α ≡ ∂/∂zα, and {‚, ‚} is the Poisson bracket on the particle phase space z.
The equation for f used in the standard QLT is recovered from (3.37) by neglecting Γ and
the spatial gradients (in particular, the whole Poisson bracket) and also by approximating
the operator D̂αβ with a local function of z.

4. Preliminaries

Before we start calculating the functions in (3.37) explicitly, let us get some
preliminaries out of the way. In this section, we discuss the shift operators T̂τ (§ 4.1),
approximate the operator Ĝ (§ 4.2) and develop a model for the function g that encodes
the initial conditions for f̃ (§ 4.3).

4.1. Shift operator
Here, we derive some properties of the shift operator T̂τ introduced in § 3.2.

4.1.1. T̂τ as a shift
Here, we formally prove (an admittedly obvious fact) that

T̂τψ(X ) = ψ(X − �τ (X )), �a
τ (X )

.= ´ τ
0 dt Va(Y (t,X )), (4.1)

where the ‘characteristics’ Ya solve17

dYa

dτ
= −Va(Y ), Ya(τ = 0) = Xa, (4.2)

16By the plasma parameter we mean the number of particles within the Debye sphere.
17In terms of t′ .= t − τ , (4.2) has a more recognizable form dYa/dt′ = Va(Y ), with Ya(t′ = t) = Xa.
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20 I.Y. Dodin

and thus �a
τ can be Taylor-expanded in τ as

�a
τ (X ) = τVa − 1

2
τ 2Vb∂bVa + . . . , Va ≡ Va(X ). (4.3)

As the first step to proving (4.1), let us Taylor-expand Va around a fixed point X 1:

Va = Va
1 + (∂bVa

1 ) δX
b + . . . , δXa .= Xa − Xa

1, (4.4)

where Va
1 ≡ Va(X 1). If one neglects the first and higher derivatives of Va, one obtains

T̂τψ(X ) ≈ e−τVa
1 ∂aψ(X ) = ψ(X − τV 1). (4.5)

By taking the limit X 1 → X , which corresponds to V 1 → V , one obtains

T̂τψ(X ) = ψ(X − τV )+O(τ 2). (4.6)

Similarly, if one neglects the second and higher derivatives of Va, one obtains18

T̂τψ(X ) = e−τ(V
a
1+(∂bVa

1 )δX
b+...)∂aψ(X )

≈ e−τ(∂bVa
1 )δX

b∂a e−τVa
1 ∂a e−

1
2 [−τ(∂bVa

1 )δX
b∂a,−τVc

1∂c]ψ(X )

≈ e−τ(∂bVa
1 )δX

b∂a e−τVa
1 ∂a e

1
2 τ

2Vc
1(∂bVa

1 )[∂c,δXb∂a]ψ(X )

≈ e−τ(∂bVa
1 )δX

b∂a e−τVa
1 ∂a e

1
2 τ

2Vb
1 (∂bVa

1 )∂aψ(X )

≈ e−τ(∂bVa
1 )δX

b∂a e−τVa
1 ∂a+ 1

2 τ
2Vb

1 (∂bVa
1 )∂aψ(X )

≈ e−τ(∂bVa
1 )δX

b∂aψ(X − τV 1 + 1
2 τ

2Vb
1∂bV 1). (4.7)

In the limit X 1 → X , when e−τ(∂bVa
1 )δX

b∂a → 1 and V 1 → V , one obtains

T̂τψ(X ) = ψ
(

X − τV (X )+ 1
2
τ 2(V · ∂X )V

)
+O(τ 3). (4.8)

In conjunction with (4.3), equations (4.6) and (4.8) show agreement with the sought result
(4.3) within the assumed accuracy. One can also retain m derivatives of V and derive the
corresponding approximations similarly. Then the error will be O(τm+2).

For an order-one time interval τ , one can split this interval on Nτ � 1 subintervals of
small duration τ/Nτ and apply finite-m formulas (for example, (4.6) or (4.8)) to those.
Then the total error scales as O(N−m−1

τ ) and the exact formula (4.1) is obtained at
Nτ →∞.

4.1.2. Symbol of T̂τ
Using the bra–ket notation, (4.1) can be written as

〈X |̂Tτ |ψ〉 = 〈X − �τ (X )|ψ〉 . (4.9)

Thus, 〈X | T̂τ = 〈X − �τ (X )|, so

〈X 1 |̂Tτ |X 2〉 = 〈X 1 − �τ (X 1)|X 2〉 = δ(X 1 − X 2 − �τ (X 1)). (4.10)

18We use the Zassenhaus formula eÂ+B̂ = eÂ eB̂ e−[̂A,̂B]/2e[̂B,[̂A,̂B]]/3+[̂A,[̂A,̂B]]/6 · · ·
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Using (2.70), one obtains the Weyl symbol of T̂τ in the form

Tτ (X ,K) =
ˆ

dS e−iK ·S δ(S − �τ (X + S/2)). (4.11)

From (4.3), one has

�a
τ (X + S/2) = τVa(X + S/2)− (τ 2/2)Vb∂bVa +O(ε2)

= τVa + (τ/2)(∂bVa)Sb − (τ 2/2)Vb∂bVa +O(ε2)

= Ma
bVbτ + ma

bSb +O(ε2), (4.12)

where we introduced a matrix M .= 1−m, or explicitly,

Ma
b
.= δa

b − ma
b, ma

b
.= (τ/2)(∂bVa). (4.13)

Let us express the term O(ε2) in (4.12) as −Ma
bμ

b. Then,

δ(S − �τ (X + S/2)) = δ(S −MV τ −mS +Mμ)

= δ(M(S − V τ + μ))
= δ(S − V τ + μ)/| det M |. (4.14)

Because m = O(ε), the well-known formula yields det M = 1+ tr m+O(ε2). But
tr m = 0 by (3.15), so

δ(S − �τ (X + S/2)) = δ(S − V τ + μ)+O(ε2). (4.15)

The last term O(ε2) is insignificant and can be neglected right away, so (4.11) leads to

Tτ (X ,K) ≈ exp(iτΩ(X ,K)+ iK · μ), (4.16)

where we have introduced the following notation:

Ω(X ,K) .= −K · V (X ) = ω − qαvα = ω − k · v +O(ε). (4.17)

By definition, μ is a polynomial of τ with coefficients that are of order ε2 and therefore
small. But because τ can be large, and because μ is under the exponent, this makes Tτ
potentially sensitive to this term, so we retain it (for now).

4.2. Effective Green’s operator
The effective Green’s operator (3.25) can be understood as the right inverse of the operator
(cf. § 3.2)

L̂eff
.= lim
ν→0+

(∂t − {H, ‚} + ν), (4.18)

so we denote it also as Ĝ = L̂−1
eff (which is admittedly abuse of notation). Because L̂eff has

real X representation by definition, the X representation of Ĝ is real too. In particular,
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22 I.Y. Dodin

〈X + S/2|Ĝ|X − S/2〉 is real, hence

G(X ,−K) = G∗(X ,K) (4.19)

by definition of the Weyl symbol (2.70). As a corollary, the derivative of G(X ,K) with
respect to the ath component of the whole second argument, denoted G|a, satisfies

(G|a(X ,K))∗ = −G|a(X ,−K). (4.20)

Also note that Ĝ can be expressed as

Ĝ = lim
ν→0+

i(ω̂ − ẋîki − ṗîr i + iν)−1 (4.21)

(the notation ‘limν→0+ A(ω + iν)’ will also be shortened as ‘A(ω + i0)’), whence

∂G
∂ri
= O(ṗi) = O(ε). (4.22)

Due to (4.16), the leading-order approximation of the symbol of the operator (3.25) is
G(X ,K) = G0(Ω(X ,K)), where

G0(Ω)
.= lim
ν→0+

ˆ ∞
0

dτ e−ντ+iΩτ = π δ(Ω)+ i pv
1
Ω

(4.23)

and the (standard) notation pv(1/Ω) is defined as follows:

pv
1
Ω

.= lim
ν→0+

Ω

ν2 +Ω2
. (4.24)

This means, in particular, that for any A, one has

J [A,G0] .=
ˆ

dK A(X ,K)G0(Ω(X ,K))

= π
ˆ

dK A(X ,K)δ(Ω(X ,K))+ i
 

dK
A(X ,K)
Ω(X ,K)

, (4.25)

where
ffl

is a principal-value integral. Also usefully, G0 = G0 and

∂aJ [A,G0] =
ˆ

dK A(X ,K)G′0(Ω(X ,K)) ∂aΩ(X ,K)

= −(∂aVb(X ))
ˆ

dK KbA(X ,K)G′0(Ω(X ,K))

= −(∂aVb(X ))
ð

∂Ω

ˆ
dK KbA(X ,K)G0(Ω(X ,K)), (4.26)

where the notation ð/∂λ ≡ ðλ is defined, for any λ and Q, as follows:

ð

∂λ

ˆ
Q(λ) .=

(
∂

∂ϑ

ˆ
Q(λ+ ϑ)

)
ϑ=0
. (4.27)

Now let us reinstate the term μ in (4.16). It is readily seen (Appendix B.2) that, although
μ may significantly affect Tτ per se, its effect on J [A,G] is small, namely,

J [A,G]− J [A,G0] = O(ε2). (4.28)
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Below, we apply this formulation to A = O(ε2), in which case (4.28) becomes
J [A,G]− J [A,G0] = O(ε2ε2). Such corrections are negligible within our model, so
from now on we adopt

G(X ,K) ≈ G(X ,K) ≈ G0(Ω(X ,K)). (4.29)

4.3. Initial conditions
Consider the function g from (3.24). Using (3.26), the latter can be written as follows:

g = lim
ν→0+

lim
τ0→−∞

(
T̂τ−τ0̃ f (X )+

ˆ τ−τ0

0
dτ ′ (1− e−ντ

′
)T̂τ ′F (X )

)
. (4.30)

Because (1− e−ντ ) is smooth and T̂τF is rapidly oscillating, the second term in the
external parenthesis is an oscillatory function of τ0 with the average negligible at ν → 0.
But the whole expression in these parenthesis is independent of τ0 at large τ0 (§ 3.2).
Thus, it can be replaced with its own average over τ0, denoted 〈. . .〉τ0 . Because there is no
ν-dependence left in this case, one can also omit limν→0+. That gives

g = lim
τ0→−∞

〈T̂τ−τ0̃ f (X )〉τ0 . (4.31)

Using

f (X ) =
∑
σ

δ(z − zσ (t)), f(X ) .=
∑
σ

δ(z − zσ (t)), (4.32)

where the sum is taken over individual particles, one can write19

f (X ) ≈ f(X )−∑σ z̃σ (X )∂zδ(z − zσ (X )), (4.33)

where zσ
.= zσ − zσ are the H̃-driven small deviations from the particle unperturbed

trajectories zσ . Then, f = f(X ), and the linearized perturbation f̃ .= f − f is given by

f̃ (X ) = f(X )− f(X )︸ ︷︷ ︸
f̃˜

−∑σ z̃σ (X )∂zδ(z − zσ (X ))︸ ︷︷ ︸
f̃

. (4.34)

By definition, the unperturbed trajectories zσ satisfy L̂δ(z − zσ (X )) = 0, where L̂ as in
(3.14); thus,

T̂τ−τ0̃ f˜= eL̂(τ−τ0 )̃f˜= f̃˜. (4.35)

Also, 〈T̂τ−τ0̃ f 〉τ0 = 0, because z̃σ are oscillatory functions of X that is slowly evolved by
T̂τ−τ0 . Hence, g is the microscopic part of the unperturbed distribution function:

g = f̃˜= f(X )− f(X ). (4.36)

This indicates that the term Γ defined in (3.34) is due to collisional effects. We postpone
discussing these effects until § 6, so Γ will be ignored for now.

19Taylor-expanding delta functions is admittedly a questionable procedure, but here it is understood as a shorthand
for Taylor-expanding integrals of f .
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4.4. Summary of § 4
The main result of this section is that the Weyl symbol of the effective Green’s operator Ĝ
can be approximated within the assumed accuracy as follows:

G(X ,K) ≈ G0(Ω(X ,K)), Ω(X ,K) .= −K · V (X ). (4.37)

Here, V is the unperturbed velocity in the X space, so Ω(X ,K) = ω − k · v +O(ε),
where v is the unperturbed velocity in the x space, and

G0(Ω) = π δ(Ω)+ i pv
1
Ω
, pv

1
Ω

.= lim
ν→0+

Ω

ν2 +Ω2
. (4.38)

We also show that the term Γ defined in (3.34) is due to collisional effects. We postpone
discussing these effects until § 6, so Γ will be ignored for now.

5. Interaction with prescribed fields

In this section, we explore the effect of the diffusion operator D̂αβ . The oscillations will
be described by W as a prescribed function, so they are allowed (yet not required) to be
‘off-shell’, i.e. do not have to be constrained by a dispersion relation. Examples of off-shell
fluctuations include driven near-field oscillations, evanescent waves and microscopic
fluctuations (see also § 6). We will first derive the symbol of D̂αβ and, using this symbol,
approximate the diffusion operator with a differential operator (§ 5.1). Then, we will
calculate the coefficients in the approximate expression for D̂αβ (§§ 5.2 and 5.3). Finally,
we will introduce the concept of the OC distribution (§ 5.4) and summarize and simplify
the resulting equations (§ 5.6).

5.1. Expansion of the dispersion operator
The (effective) Green’s operator can be represented through its symbol G using (2.71):

Ĝ = 1
(2π)N

ˆ
dX dK dS |X + S/2〉G(X ,K) 〈X − S/2| eiK ·S. (5.1)

The corresponding representation of û α is even simpler, because the symbol of û α is
independent of K :20

û α =
ˆ

dX |X 〉 uα(X ) 〈X | . (5.2)

Let us also introduce the Wigner matrix of uα, denoted Wαβ
u , and its inverse Fourier

transform Cαβu as in § 2.2.3. Using these together with (2.67), one obtains

(2π)Nû αĜ û β =
ˆ

dX ′ dX ′′ dX dK dS uα(X ′)uβ(X ′′)G(X ,K) eiK ·S

× |X ′〉 〈X ′|X + S/2〉 〈X − S/2|X ′′〉 〈X ′′|

=
ˆ

dX dK dS Cαβu (X ,S)G(X ,K) eiK ·S |X + S/2〉 〈X − S/2|

=
ˆ

dX ′ dK ′ dK ′′ dS′Wαβ
u (X

′,K ′)G(X ′,K ′′) ei(K ′+K ′′)·S′

× |X ′ + S′/2〉 〈X ′ − S′/2| . (5.3)

20One can also derive (5.2) formally from (2.71).
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Then, by taking symbX of (5.3), one finds that the symbol of D̂αβ is a convolution of W
αβ

u
and G (Appendix B.3):

Dαβ(X ,K) =
ˆ

dK ′W
αβ

u (X ,K
′)G(X ,K − K ′). (5.4)

Let us Taylor-expand the symbol (5.4) in K :

Dαβ(X ,K) ≈
ˆ

dK ′W
αβ

u (X ,K
′)G(X ,−K ′)

+ Kc

ˆ
dK ′W

αβ

u (X ,K
′)G|c(X ,−K ′)+O(KaKbG|ab). (5.5)

As a reminder, G|a(X ,−K) = −∂aG(X ,−K) denotes the derivative of G with respect to
(the ath component of) the whole second argument, −Ka, and

Ka
∂G
∂Ka
= ω ∂G

∂ω
+ ki

∂G
∂ki
+ ri ∂G

∂ri
. (5.6)

Upon application of operX , ω gets replaced (roughly) with i∂t = O(ε) and ki gets replaced
(also roughly) with −i∂i = O(ε). By (4.22), the last term in (5.6) is of order ε too. This
means that the contribution of the whole Ka∂

aG term to the equation for f is of order ε. The
standard QLT neglects this contribution entirely, i.e. adopts Dαβ(X ,K) ≈ Dαβ(X , 0), in
which case the diffusion operator becomes just a local function of phase-space variables,
D̂αβ ≈ Dαβ(X , 0). In this work, we retain corrections to the first order in X , i.e. keep the
second term in (5.5) as well, while neglecting the higher-order terms as usual.

Within this model, one can rewrite (5.5) as follows:

Dαβ(X ,K) ≈ Dαβ

0 (X )+ KcΘ
αβc(X ). (5.7)

Here, we used (4.19) and introduced

Dαβ

0 (X )
.=
ˆ

dK W
αβ

u (X ,K)G
∗(X ,K), (5.8)

Θαβc(X ) .= −
ˆ

dK W
αβ

u (X ,K)(G
|c(X ,K))∗, (5.9)

which satisfy (Appendix B.4)

Dαβ

0 (X ) = (Dαβ

0 (X ))
∗, Θαβc(X ) = −(Θαβc(X ))∗. (5.10)

The first-order Weyl expansion of D̂αβ is obtained by applying operX to (5.7). Namely, for
any ψ , one has (cf. § 2.1.5)

D̂αβψ ≈ Dαβ

0 ψ − iΘαβc∂cψ − i
2
(∂cΘ

αβc)ψ. (5.11)

What remains now is to calculate the functions Dαβ

0 and Θαβc explicitly.
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5.2. Wigner matrix of the velocity oscillations
To express D̂αβ through the Wigner function W of the perturbation Hamiltonian (§ 3.1.1),
we need to express Wαβ

u through W. Recall that Wαβ
u is the symbol of the density

operator Ŵαβ
u
.= (2π)−N |uα〉 〈uβ | (§ 2.2.3). By definition (3.8), one has uα = iJαμq̂μH̃,

where q̂α
.= −i∂α (§ 2.2.1). Then,

Ŵαβ
u = (2π)−NJαμq̂μ |H̃〉 〈H̃| q̂νJβν = JαμJβν q̂μŴq̂ν, (5.12)

where Ŵ is the density operator whose symbol is W. By applying symbX , one obtains

Wαβ
u = JαμJβν(qμ� W � qν), (5.13)

where � is the Moyal product (2.72). Using formulas analogous to (2.33) in the (X ,K)
space, one obtains

qμ� W � qν =
(

qμW − i
2
∂W
∂zμ

)
� qν

= qμqνW − i
2

qν
∂W
∂zμ
+ i

2
∂

∂zν

(
qμWh − i

2
∂W
∂zμ

)
= qμqνWh + i

2

(
qμ
∂W
∂zν
− qν

∂W
∂zμ

)
+ 1

4
∂2W
∂zμ∂zν

. (5.14)

Hence, Wαβ
u and W are connected via the following exact formula:

Wαβ
u = JαμJβν

(
qμqνW − i

2

(
qν
∂W
∂zμ
− qμ

∂W
∂zν

)
+ 1

4
∂2W
∂zμ∂zν

)
. (5.15)

5.3. Nonlinear potentials

Due to (5.10), one has Dαβ

0 = re Dαβ

0 . Using this together with (5.8), (5.15), (4.29), and
(4.23), one obtains

Dαβ

0 = JαμJβν re
ˆ

dK
(

π δ(Ω)− i pv
1
Ω

)
.

×
(

qμqνW − i
2

(
qν
∂W
∂zμ
− qμ

∂W
∂zν

)
+ 1

4
∂2W
∂zμ∂zν

)
, (5.16)

with notation as in (2.10). This can be written as Dαβ

0 = Dαβ + �αβ + ςαβ , where

Dαβ
.= JαμJβν

ˆ
dK π δ(Ω) qμqνW, (5.17)

and we also introduced

�αβ
.= −1

2
JαμJβν

 
dK

(
qν
∂W
∂zμ
− qμ

∂W
∂zν

)
1
Ω
, (5.18)

ςαβ
.= 1

4
JαμJβν

ˆ
dK π δ(Ω)

∂2W
∂zμ∂zν

. (5.19)
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As shown in Appendix B.5, the contributions of these two functions to (3.33) are

∂

∂zα

(
�αβ

∂f
∂zβ

)
= O(εε2),

∂

∂zα

(
ςαβ

∂f
∂zβ

)
= O(ε2ε2). (5.20)

Thus, �αβ must be retained and ςαβ must be neglected, which leads to

Dαβ

0 ≈ Dαβ + �αβ. (5.21)

The function Θαβc = i imΘαβc can be written as follows:

Θαβc(X ) = iJαμJβν
ˆ

dK qμqνW(X ,K)
∂

∂Kc
pv

1
Ω(X ,K)

= −iVc(X )�αβ(X ),

where we introduced

�αβ
.= JαμJβν

ð

∂Ω

 
dK

qμqνW
Ω

(5.22)

and ð is defined as in (4.27). Then finally, one can rewrite (5.11) as follows:

D̂αβψ ≈ (Dαβ + �αβ)ψ −�αβVc∂cψ − 1
2

Vc(∂c�
αβ)ψ

= (Dαβ + �αβ)ψ −�αβ(∂t + vλ∂λ)ψ − 1
2
((∂t + vλ∂λ)�αβ)ψ, (5.23)

where we used (3.15). With some algebra (Appendix B.6), and assuming the notation

Φ = −Jμν
∂

∂zμ

 
dK

qνW
2Ω

, (5.24)

one finds that (5.23) leads to

∂α(D̂αβ∂β f ) = ∂α(Dαβ∂β f )− 1
2

dt∂α(�
αβ∂β f )+ {Φ, f }. (5.25)

Hence, (3.33) becomes (to the extent that Γ is negligible; see § 6.7)

dtf + 1
2

dt∂α(�
αβ∂β f )− {Φ, f } = ∂α(Dαβ∂β f ). (5.26)

The functions �αβ , Φ and Dαβ that determine the coefficients in this equation are
fundamental and, for the lack of a better term, will be called nonlinear potentials.
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5.4. Oscillation-centre distribution
Let us introduce

F .= f + 1
2
∂α(�

αβ∂β f ). (5.27)

Then, using (5.25), one can rewrite (5.26) as21

∂tF − {H,F} = ∂α(Dαβ∂βF), (5.28)

where corrections O(ε4) have been neglected and we introduced H .= H +Φ. As a
reminder, the nonlinear potentials in (5.28) are as follows:

Dαβ = JαμJβν
ˆ

dK π δ(Ω) qμqνW, (5.29)

�αβ = JαμJβν
ð

∂Ω

 
dK

qμqνW
Ω

, (5.30)

Φ = −Jμν
∂

∂zμ

 
dK

qνW
2Ω

. (5.31)

Equations (5.27)–(5.31) form a closed model that describes the evolution of the average
distribution f in turbulence with prescribed W. In particular, (5.28) can be interpreted as a
Liouville-type equation for F as an effective, or ‘dressed’, distribution. The latter can be
understood as the distribution of ‘dressed’ particles called OCs. Then, H serves as the OC
Hamiltonian, Dαβ is the phase-space diffusion coefficient, Φ is the ponderomotive energy,
Ω = ω − qαvα and vα .= Jαβ∂βH. Within the assumed accuracy, one can redefine vα to be
the OC velocity rather than the particle velocity; specifically,22

vα
.= Jαβ∂βH = Jαβ∂βH +O(ε2). (5.32)

Then, the presence of δ(Ω) in (5.29) signifies that OCs diffuse in phase space in
response to waves they are resonant with. Below, we use the terms ‘OCs’ and ‘particles’
interchangeably except where specified otherwise.

That said, the interpretation of OCs as particle-like objects is limited. Single-OC motion
equations are not introduced in our approach. (They would have been singular for resonant
interactions.) Accordingly, the transformation (5.27) of the distribution function f �→ F
is not derived from a coordinate transformation but rather is fundamental. As a result,
particles and OCs live in the same phase space, but the ‘dynamics of OCs’ can be
irreversible (§ 5.5). This qualitatively distinguishes our approach from the traditional OC
theory (Dewar 1973) and from the conceptually similar gyrokinetic theory (Littlejohn
1981; Cary & Brizard 2009), where coordinate transformations are central.

5.5. H-theorem
Because W is non-negative (§ 2.1.6), Dαβ is positive-semidefinite; that is,

Dαβψαψβ =
ˆ

dK π δ(Ω) a2W � 0, a .= Jαμψαqμ (5.33)

21The difference between F and f is related to the concept of so-called adiabatic diffusion (Galeev & Sagdeev 1985;
Stix 1992), which captures some but not all adiabatic effects.

22The advantage of the amended definition (5.32) is that it will lead to exact conservation laws of our theory, as to
be discussed in § 7.5.
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for any real ψ . This leads to the following theorem. Consider the OC entropy defined as

S
.= −

ˆ
dz F(t, z) ln F(t, z). (5.34)

According to (5.28), S satisfies

dS

dt
= −

ˆ
dz

d(F ln F)
dF

({H,F} + ∂α(Dαβ∂βF)
)

= −
ˆ

dz
d(F ln F)

dF
Jαβ(∂αH)(∂βF)−

ˆ
dz (1+ ln F) ∂α(Dαβ∂βF)

= −
ˆ

dz Jαβ(∂αH)∂β(F ln F)−
ˆ

dz ln F ∂α(Dαβ∂βF)

=
ˆ

dz (Jαβ∂2
αβH)F ln F +

ˆ
dz Dαβ(∂α ln F)(∂β ln F)F. (5.35)

The first integral vanishes due to Jαβ∂2
αβ = 0. The second integral is non-negative due to

(5.33). Thus,
dS

dt
� 0, (5.36)

which is recognized as the H-theorem (Lifshitz & Pitaevskii 1981, § 4) for QL OC
dynamics.

5.6. Summary of § 5
From now on, we assume that the right-hand side of (5.28) scales not as O(ε2) but as
O(εε2), either due to the scarcity of resonant particles or, for QL diffusion driven by
microscopic fluctuations (§ 6), due to the plasma parameter’s being large. Also, the spatial
derivatives can be neglected within the assumed accuracy in the definition of F (5.27) and
on the right-hand side of (5.28). Using this together with (2.69), and with (2.56) for the
Poisson bracket, our results can be summarized as follows.

QL evolution of a particle distribution in a prescribed wave field is governed by23

∂F
∂t
− ∂H
∂x
· ∂F
∂p
+ ∂H
∂p
· ∂F
∂x
= ∂

∂p
·
(

D
∂F
∂p

)
. (5.37)

The OC distribution F is defined as

F = f + 1
2
∂

∂p
·
(
�
∂f
∂p

)
, (5.38)

so the density of OCs is the same as the locally averaged density of the true particles:

N .=
ˆ

dp F =
ˆ

dp f . (5.39)

The function H is understood as the OC Hamiltonian. It is given by

H .= H +Φ, (5.40)

where H is the average Hamiltonian, which may include interaction with background
fields, and Φ is the ponderomotive potential. The nonlinear potentials that enter (5.37)

23Remember that here we neglect Γ (3.34), which is a part of the collision operator to be reinstated in § 6.
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can be calculated to the zeroth order in ε and are given by24

D =
ˆ

dω dk π kkW(t,k · v,k; p), (5.41)

� = ∂

∂ϑ

 
dω dk

kkW

ω − k · v + ϑ
∣∣∣∣
ϑ=0
, (5.42)

Φ = 1
2
∂

∂p
·
 

dω dk
kW

ω − k · v , (5.43)

where kk is a dyadic matrix with two lower indices, and the same conventions apply as in
§ 2.1.2. Also, v is hereby redefined as the OC spatial velocity, namely,

v
.= ∂pH = ∂pH +O(ε2). (5.44)

The function W is defined as

W(t, x, ω,k; p) .=
ˆ

dr W(t, x, p, ω,k, r), (5.45)

where W is the average Wigner function (3.4) of the perturbation Hamiltonian, i.e. the
spectrum of its symmetrized autocorrelation function (3.5). Due to (2.78), it can be
understood as the average of W

.= symbxŴ (where Ŵ is defined in (3.3)), i.e. as the Wigner
function of the perturbation Hamiltonian with p treated as a parameter. As such, W is
non-negative, so D is positive-semidefinite. This leads to an H-theorem (proven similarly
to (5.36)) for the entropy density σ .= − ´ dp F ln F:(

dσ
dt

)
D

� 0,
(
∂ψ

∂t

)
D

.= ∂

∂p
·
(

D
∂ψ

∂p

)
. (5.46)

Also note that for homogeneous turbulence in particular, where W is independent of x,
(2.46) yields that

ˆ
dωW(t, x, ω,k; p) = 1

Vn

ˆ
dω dx W(t, x, ω,k; p) = 1

Vn
|
◦

H̃(t,k, p)|2, (5.47)

where Vn is the plasma volume (the index n denotes the number of spatial dimensions)
and

◦
H̃ is the spatial spectrum of H̃ as defined in (2.23).

Equation (5.37) can be used to calculate the ponderomotive force ∂t
´

dp f that a given
wave field imparts on a plasma. This potentially resolves the controversies mentioned in
Kentwell & Jones (1987). We will revisit this subject for on-shell waves in § 7.5.

6. Interaction with self-consistent fields

Here, we explain how to calculate the function W in the presence of microscopic
fluctuations (non-zero g). In particular, we reinstate the term Γ that was omitted in
§ 5. We also show that a collision operator of the Balescu–Lenard type emerges from
our theory within a general interaction model. This calculation can be considered as a

24See § 9 for examples and § 6.6 for the explanation on how Φ is related to Δ, which is yet to be introduced. Also
note that in combination with (5.40), equation (5.43) generalizes the related results from Kentwell (1987), Fraiman &
Kostyukov (1995) and Dodin & Fisch (2014).
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generalization of that in Rogister & Oberman (1968) for homogeneous plasmas. Another
related calculation was proposed in Chavanis (2012) in application to potential interactions
in inhomogeneous systems using action–angle variables, with global averaging over the
angles. (See also Mynick (1988) for a related calculation in action–angle variables based
on the Fokker–Planck approach.) In contrast, our model holds for any Hamiltonian
interactions via any vector fields and allows for weak inhomogeneities in canonical
coordinates.

6.1. Interaction model
Let us assume that particles interact via an M-component real field Ψ ≡
(Ψ 1, Ψ 2, . . . , Ψ M)ᵀ. It is treated below as a column vector; hence the index ᵀ. (A complex
field can be accommodated by considering its real and imaginary parts as separate
components.) We split this field into the average part Ψ and the oscillating part Ψ̃ . The
former is considered given. For the latter, we assume the action integral of this field
without plasma in the form

S0 =
ˆ

dx L0, L0 = 1
2
Ψ̃ †Ξ̂ 0Ψ̃ (6.1)

(see § 9 for examples), where Ξ̂ 0 is a Hermitian operator25 and Ψ̃ † = Ψ̃ ᵀ is a row vector
dual to Ψ̃ . Plasma is allowed to consist of multiple species, henceforth denoted with
index s. Because Ψ̃ is assumed small, the generic Hamiltonian for each species s can
be Taylor-expanded in Ψ̃ and represented in a generic form

Hs(t, x, p) ≈ H0s + α̂†
s Ψ̃ +

1
2
(L̂sΨ̃ )

†(R̂sΨ̃ ) (6.2)

(see § 9 for examples), which can be considered as a second-order Taylor expansion
of the full Hamiltonian in Ψ̃ . Here, H0s ≡ H0s(t, x, p) is independent of Ψ̃ ≡ Ψ̃ (t, x),
α̂s ≡ (̂αs,1, α̂s,2, . . . , α̂s,M)

ᵀ is a column vector whose elements α̂s,i are linear operators on
Hx. The dagger is added so that α̂†

s could be understood as a row vector whose elements
α̂

†
s,i act on the individual components of the field; i.e. α̂†

s Ψ̃ ≡ α̂†
s,iΨ̃

i. We let α̂s be non-local
in t and x (for example, α̂s can be a spacetime derivative or a spacetime integral), and we
also let α̂s depend on p parametrically so

symb α̂s = αs(t, x, ω,k; p). (6.3)

The matrix operators L̂s and R̂s and their symbols Ls and Rs are understood similarly.
The Lagrangian density of the oscillating-field–plasma system is

Lp = 1
2
Ψ̃ †Ξ̂ 0Ψ̃ +

∑
s

∑
σs

(pσs
· ẋσs − Hs(t, xσs, pσs

))δ(x− xσs(t)), (6.4)

where the sum is taken over individual particles. Note that∑
σs

Hs(t, xσs, pσs
)δ(x− xσs(t)) =

ˆ
dp
∑
σs

δ(z − zσs(t))Hs(t, x, p)

=
ˆ

dp fs(t, x, p)Hs(t, x, p), (6.5)

25The field action often has the form S0 = 1
2

´
dx
√

g(gΨ̃ ∗)Ξ̂0Ψ̃ , where g(x) is a spacetime metric, g
.= | det g |,

and Ξ̂0 is Hermitian with respect to the inner product 〈ξ |ψ〉g .= ´
dx
√

g(gξ∗)ψ . Using Ψ̃ ′ .= g1/4Ψ̃ and
Ξ̂ ′0

.= g1/4gΞ̂0g
−1/4, one can cast this action in the form (6.1), with Ξ̂ ′0 that is Hermitian with respect to the inner

product (2.6).
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so the Ψ̃ -dependent part of the system action can be written as S = ´
dx L with

L = 1
2
Ψ̃ †Ξ̂ pΨ̃ −

∑
s

ˆ
dp f̃sα̂

†
s Ψ̃ , (6.6)

Ξ̂ p
.= Ξ̂ 0 −

∑
s

ˆ
dp L̂†

s fsR̂s. (6.7)

(The contribution of f̃s to the second term in (6.6) has been omitted because it averages
to zero at integration over spacetime and thus does not contribute to S.) This ‘abridged’
action is not sufficient to describe the particle motion, but it is sufficient to describe
the dynamics of Ψ̃ at given fs, as discussed below. The operator Ξ̂ p can be considered
Hermitian without loss of generality, because its anti-Hermitian part does not contribute
to S. Also, we assume that unless either of L̂ and R̂ is zero, the high-frequency field has
no three-wave resonances, so terms cubic in Ψ̃ can be neglected in S;26 then,

Ξ̂ p ≈ Ξ̂ 0 −
∑

s

ˆ
dp (L̂†

s FsR̂s)H. (6.8)

Using the same assumption, one can also adopt

Hs = H0s + 1
2
(L̂sΨ̃ )†(R̂sΨ̃ ), H̃s ≈ α̂†

s Ψ̃ , (6.9)

because in the absence of three-wave resonances, the oscillating part of (L̂sΨ̃ )
†(R̂sΨ̃ )

contributes only O(ε4) terms to the equation for Fs.

6.2. Field equations
The Euler–Lagrange equation for Ψ̃ derived from (6.6) is

Ξ̂ pΨ̃ =
∑

s

ˆ
dp α̂ s̃fs. (6.10)

Then, to the extent that the linear approximation for f̃s is sufficient (see below), one finds
that the oscillating part of the field satisfies

Ξ̂ pΨ̃ −
∑

s

ˆ
dp α̂sĜs{̂α†

s Ψ̃ , f s} =
∑

s

ˆ
dp α̂sgs, (6.11)

where we used (3.24). Note that the right-hand side of (6.11) is determined by microscopic
fluctuations gs(t, x, p) (§ 4.3). Equation (6.11) can also be expressed as

Ξ̂ Ψ̃ =
∑

s

ˆ
dp α̂sgs, (6.12)

where Ξ̂ is understood as the plasma dispersion operator and is given by

Ξ̂
.= Ξ̂ p −

∑
s

ˆ
dp α̂sĜs{̂α†

s ‚ , f s}, (6.13)

26This is tacitly assumed already in (6.2), where cubic terms are neglected. Also note that three-wave interactions
that involve resonances between low-frequency oscillations of Fs and two high-frequency waves, like Raman scattering
(Balakin et al. 2016), are still allowed.

https://doi.org/10.1017/S0022377822000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000502


Quasilinear theory 33

where ‚ is a placeholder. The general solution of (6.12) can be written as

Ψ̃ = Ψ̃ + Ψ̃˜, Ψ̃˜ =∑
s

ˆ
dp Ξ̂−1α̂sgs. (6.14)

Here, Ξ̂−1 is the right inverse of Ξ̂ (specifically, Ξ̂Ξ̂−1 = 1̂ yet Ξ̂−1Ξ̂ �= 1̂) such that Ψ̃˜
vanishes at zero g.27 The rest of the solution, Ψ̃ , is the macroscopic field that satisfies

Ξ̂ Ψ̃ = 0. (6.15)

In the special case when the dispersion operator is Hermitian (Ξ̂ = Ξ̂H), (6.15) also flows
from the ‘adiabatic’ macroscopic part of the action S, namely,

Sad
.= 1

2

ˆ
dx Ψ̃ †Ξ̂HΨ̃ . (6.16)

Because we have assumed a linear model for fs in (6.11), Ψ̃ is decoupled from Ψ̃˜, and
hence the dynamics of Ψ̃ turns out to be collisionless. This is justified, because collisional
dissipation is assumed to be much slower that collisionless dissipation (§ 3.3). One can
reinstate collisions in (6.15) by modifying Ĝs ad hoc, if necessary. Alternatively, one can
avoid separating Ψ̃ and Ψ̃˜ and, instead, derive an equation for the average Wigner matrix
of the whole Ψ̃ (McDonald 1991). However, this approach is beyond QLT, so it is not
considered in this paper.

6.3. Dispersion matrix
As readily seen from the definition (6.13), the operator Ξ̂ can be expressed as

Ξ̂ = Ξ̂ p − îkj

∑
s

ˆ
dp α̂sĜsα̂

†
s
∂Fs

∂pj
+O(ε, ε2). (6.17)

The corrections caused by non-zero ε and ε in this formula will be insignificant for our
purposes, so they will be neglected. In particular, this means that Gs

.= symbXĜs can be
adopted in the form independent of r (§ 4.2):

Gs ≈ i
ω − k · vs + i0

= π δ(ω − k · vs)+ i pv
1

ω − k · vs
. (6.18)

Then, Ĝs can be considered as an operator on Hx with p as a parameter, and
symb Ĝs = Gs(t, x, ω,k; p). Also,

symb (̂αsĜsα̂
†
s ) = αs 
 Gs 
 α

†
s ≈ αsGsα

†
s . (6.19)

This readily yields the ‘dispersion matrix’ Ξ .= symbxΞ̂ :

Ξ(ω,k) ≈ Ξ p(ω,k)+
∑

s

ˆ
dp
αs(ω,k; p)α†

s (ω,k; p)
ω − k · vs + i0

k · ∂Fs(p)
∂p

, (6.20)

Ξ p(ω,k) ≈ Ξ 0(ω,k)−
∑

s

ˆ
dp℘s(ω,k; p)Fs(p) (6.21)

(see § 9 for examples). Here, αsα
†
s is a dyadic matrix, and the arguments t and x are

henceforth omitted for brevity. Also, we introduced the operators ℘̂s = ℘̂†
s and their

27Most generally, the problem of finding Ξ̂−1 is the standard problem of calculating the field produced by a given
radiation source.
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symbols ℘s = ℘†
s as

℘̂s
.= (L̂†

s R̂)H, ℘s
.= symb ℘̂s ≈ (L†

s Rs)H. (6.22)

The appearance of +i0 in the denominator in (6.20) is related to the Landau rule.
(Remember that as arguments of Weyl symbols, ω and k are real by definition.) The
Hermitian and anti-Hermitian parts of the dispersion matrix are

ΞH(ω,k) ≈ Ξ p(ω,k)+
∑

s

 
dp
αs(ω,k; p)α†

s (ω,k; p)
ω − k · vs

k · ∂Fs(p)
∂p

, (6.23)

ΞA(ω,k) ≈ −π
∑

s

ˆ
dpαs(ω,k; p)α†

s (ω,k; p)δ(ω − k · vs)k · ∂Fs(p)
∂p

. (6.24)

Assuming the notation Ξ−† .= (Ξ †)−1, the inverse dispersion matrix can be expressed as

Ξ−1 = Ξ−1Ξ †Ξ−† = Ξ−1ΞHΞ
−† − iΞ−1ΞAΞ

−†. (6.25)

Because Ξ−† = (Ξ−1)†, this leads to the following formulas, which we will need later:

(Ξ−1)H = Ξ−1ΞHΞ
−†, (Ξ−1)A = −Ξ−1ΞAΞ

−†. (6.26)

6.4. Spectrum of microscopic fluctuations
Other objects to be used below are the density operators of the oscillating fields:

ŴΨ̃

.= (2π)−n |Ψ̃ 〉 〈Ψ̃ | , ŴΨ̃˜ .= (2π)−n |Ψ̃˜〉 〈Ψ̃˜| , (6.27)

and the corresponding average Wigner matrices on (x, k). The former, U
.= WΨ̃ , is readily

found by definition (2.51), and the latter, W
.= WΨ̃˜, is calculated as follows. Let us

consider gs(t, x, p) as a ket in Hx, with p as a parameter. Then, (6.14) readily yields

ŴΨ̃˜= 1
(2π)n

∑
s,s′

ˆ
dp dp′ Ξ̂−1α̂s(p) |gs(p)〉 〈gs′(p′)| α̂†

s′(p
′)Ξ̂−†. (6.28)

By applying symbx to this, one obtains

W =
∑
s,s′

ˆ
dp dp′Ξ−1 
 αs(p) 
Gss′(p, p′) 
 α

†
s′(p
′) 
Ξ−†, (6.29)

where most arguments are omitted for brevity and (Appendix B.7)

Gss′(p, p′)
.= 1
(2π)n

ˆ
ds e−ik·s gs(x+ s/2, p) gs′(x− s/2, p′)

≈ 1
(2π)n

δss′δ(p− p′)δ(ω − k · vs)Fs(p), (6.30)

assuming corrections due to inter-particle correlations are negligible. Then, (6.29) gives

W(ω,k) = 1
(2π)n

∑
s′

ˆ
dp′ δ(ω − k · v′s′)Fs′(p′)

× Ξ−1(ω,k)(αs′α
†
s′)(ω,k; p′)Ξ−†(ω,k), (6.31)

where v′s′
.= vs′(t, x, p′). It is readily seen from (6.31) that W is positive-semidefinite. One

can also recognize (6.31) as a manifestation of the dressed-particle superposition principle
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(Rostoker 1964). Specifically, (6.31) shows that the contributions of individual OCs to W
are additive and affected by the plasma collective response, i.e. by the difference between
Ξ and the vacuum dispersion matrix Ξ 0.

Using (6.31), one can also find other averages quadratic in the field via (cf. (2.53a))

(̂LΨ̃˜)(̂RΨ̃˜)† ≈
ˆ

dω dk (LWR†)(ω,k), (6.32)

where L̂ and R̂ are any linear operators and L and R are their symbols; for example,

Ψ̃˜(t, x)Ψ̃˜†(t, x) ≈
ˆ

dω dk W(ω,k). (6.33)

Because of this, we loosely attribute W as the spectrum of microscopic oscillations, but
see also § 8.2, where an alternative notation is introduced and a fluctuation–dissipation
theorem is derived from (6.31) for plasma in thermal equilibrium. See also § 9 for specific
examples.

6.5. Nonlinear potentials
From (6.14), the oscillating part of the Hamiltonian (6.9) can be split into the macroscopic
part and the microscopic part as H̃s = H̃s + H̃˜s, H̃s = α̂†

s Ψ̃ , and

H̃˜s(p) =
∑

s′

ˆ
dp′ X̂ss′(p, p′)gs′(p′). (6.34)

Here, X̂ss′ is an operator on Hx given by

X̂ss′(p, p′)
.= α̂†

s (p)Ξ̂
−1α̂s′(p′), (6.35)

with the symbol

Xss′(ω,k; p, p′) ≈ α†
s (ω,k; p)Ξ−1(ω,k)αs′(ω,k; p′) (6.36)

(see § 9 for examples). The corresponding average Wigner functions on (x, k) are
Ws = W

(m)
s +W

(μ)

s , where the index ‘m’ stands for ‘macroscopic’ and the index ‘μ’ stands
for ‘microscopic’. Because the dependence on t and x is slow, one can approximate them
as follows:

W
(m)
s ≈ α†

s (ω,k; p)U(ω,k)αs(ω,k; p), (6.37a)

W
(μ)

s ≈ α†
s (ω,k; p)W(ω,k)αs(ω,k; p). (6.37b)

The matrix U is positive-semidefinite as an average Wigner tensor (§ 2.1.7), and so is W
(§ 6.4). Hence, both W

(m)
s and W

(μ)

s are non-negative. Using (6.31), one can also rewrite the
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Wigner function of H̃˜s more compactly as

W
(μ)

s (ω,k; p) = (2π)−n
∑

s′

ˆ
dp′ δ(ω − k · v′s′)|Xss′(ω,k; p, p′)|2 Fs′(p′). (6.38)

Now we can represent the nonlinear potentials (5.41)–(5.43) as

Ds = D(m)
s + D(μ)s , �s = �(m)

s +�(μ)
s , Φs = Φ (m)

s +Φ(μ)s . (6.39)

Here, the index (m) denotes contributions from W
(m)
s and the index (μ) denotes contributions

from W
(μ)

s . Specifically,

D(m)
s =

ˆ
dk π kkW

(m)
s (k · vs,k; p), (6.40)

�(m)
s =

∂

∂ϑ

 
dω dk

kkW
(m)
s (ω,k; p)

ω − k · vs + ϑ

∣∣∣∣∣
ϑ=0

, (6.41)

Φ (m)
s =

1
2
∂

∂p
·
 

dω dk
kW

(m)
s (ω,k; p)
ω − k · vs

. (6.42)

Here, W
(m)
s is a non-negative function (6.37a), so D(m)

s is positive-semidefinite and leads to
an H-theorem similar to (5.46). One also has

D(μ)s =
∑

s′

ˆ
dk
(2π)n

dp′ π kk δ(k · vs − k · v′s′) |Xss′(k · vs,k; p, p′)|2 Fs′(p′), (6.43)

�(μ)
s =

∑
s′

∂

∂ϑ

 
dk
(2π)n

dp′
kkFs′(p′)

k · (v′s′ − vs)+ ϑ |Xss′(k · v′s′,k; p, p′)|2
∣∣∣∣
ϑ=0

, (6.44)

Φ(μ)s =
∑

s′

∂

∂p
·
 

dk
(2π)n

dp′
kFs′(p′)

2k · (v′s′ − vs)
|Xss′(k · v′s′,k; p, p′)|2. (6.45)

The functions�(μ)
s andΦ(μ)s scale as W

(μ)

s , i.e. as εε2 (§ 3.3). Their contribution to (5.37) is
of order ε�(μ)

s and εΦ(μ)s , respectively, so it scales as ε2ε2 and therefore is negligible within
our model. In contrast, D(μ)s must be retained alongside with D(m)

s . This is because although
weak, macroscopic fluctuations can resonate with particles from the bulk distribution,
while the stronger macroscopic fluctuations are assumed to resonate only with particles
from the tail distribution, which are few.

6.6. Oscillation-centre Hamiltonian
Within the assumed accuracy, the OC Hamiltonian is Hs = Hs +Φ (m)

s , and Hs is given by
(6.9). Combined with the general theorem (2.53c), the latter readily yields Hs = H0s + φs,
where

φs ≈ 1
2

ˆ
dω dk tr

(
U℘s

)
(6.46)

and the contribution of W has been neglected. Because both Φ (m)
s and φs are quadratic in

Ψ̃ and enter Hs only in the combination Δs
.= Φ (m)

s + φs, it is convenient to attribute the
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latter as the ‘total’ ponderomotive energy. Using (6.42) in combination with (6.37a), one
can express it as follows:

Δs = 1
2
∂

∂p
·
 

dω dk k
α†

s Uαs

ω − k · vs
+ 1

2

ˆ
dω dk tr

(
U℘s

)
(6.47)

(see § 9 for examples). Notably,

Δs = −1
2
δ

δFs

 
dω dk tr(ΞHU) = −δSad

δFs
, (6.48)

where δ/δFs denotes a functional derivative and Sad is the adiabatic action defined in (6.16).
Equation (6.48) is a generalization of the well-known ‘K–χ theorem’ (Kaufman & Holm
1984; Kaufman 1987). Loosely speaking, it says that the coefficient connecting Δs with
U is proportional to the linear polarizability of an individual particle of type s (Dodin et
al. 2017; Dodin & Fisch 2010a) (‘K’ in the name of this theorem is the same as our Δs,
and ‘χ ’ is the linear susceptibility). Also, the OC Hamiltonian and the OC velocity can be
expressed as

Hs = H0s +Δs, v = ∂pH0s + ∂pΔs. (6.49)

6.7. Polarization drag
Within the assumed accuracy, the OC distribution can be expressed as

Fs = f s +
1
2
∂

∂p
·
(
�(m)

s
∂f s

∂p

)
, (6.50)

and (5.37) becomes

∂Fs

∂t
− ∂Hs

∂x
· ∂Fs

∂p
+ ∂Hs

∂p
· ∂Fs

∂x
= ∂

∂p
·
(

D(m)
s
∂Fs

∂p

)
+ Cs, (6.51)

Cs
.= ∂

∂p
·
(

D(μ)s
∂Fs

∂p

)
+ Γs, (6.52)

where we have reinstated the term Γs introduced in § 3.3. As a collisional term, Γs is
needed only to the zeroth order in ε, so

Γs = {H̃s, gs} ≈ ∂p · (gs∂xH̃s) ≡ ∂p · ζ s, ζ s = i〈x|̂kH̃s〉 〈x|gs〉. (6.53)

Correlating with gs is only the microscopic part of H̃s, so using (6.34) one obtains

ζ s = i
∑

s′

ˆ
dp′ 〈x|̂kX̂ss′(p, p′)|gs′(p′)〉 〈gs(p)|x〉. (6.54)

Next, let us use (2.28) and ζ = re ζ to express this result as follows:

ζ s = i
∑

s′

ˆ
dω dk dp′ k 
 Xss′(ω,k, p, p′) 
Gs′s(ω,k, p′, p)

≈ i
ˆ

dω dk dp′ kXss′(ω,k, p, p′) (2π)−nδ(p− p′) δ(ω − k · vs)Fs(p)

= −
ˆ

dk
(2π)n

k imXss′(k · vs,k, p, p)Fs(p), (6.55)
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where we have approximated 
 with the usual product and substituted (6.30). Hence,

Γs ≈ −∂p · (FsFs), (6.56)

where Fs can be interpreted as the polarization drag (i.e. the average force that is imposed
on an OC by its dress) and is given by

Fs =
ˆ

dk
(2π)n

k imXss′(k · vs,k, p, p). (6.57)

Using (6.36), one also rewrite this as follows:

Fs ≈
ˆ

dk
(2π)n

k (α†
s (Ξ

−1)Aαs)(k · vs,k; p) (6.58a)

≈ −
ˆ

dk
(2π)n

k (α†
sΞ
−1ΞAΞ

−†αs)(k · vs,k; p), (6.58b)

where we have substituted (6.26) for (Ξ−1)A. With (6.24) for ΞA, this yields

Fs ≈
∑

s′

ˆ
dk
(2π)n

dp′ π δ(k · vs − k · v′s′)kk · ∂Fs′(p′)
∂p′

× α†
s (k · vs,k; p)Ξ−1(k · vs,k)αs′(k · vs,k; p′)

× α†
s′(k · vs,k; p′)Ξ−†(k · vs,k)αs(k · vs,k; p). (6.59)

The product of the last two lines equals |Xss′(k · vs,k; p, p′)|2. Hence,

Fs =
∑

s′

ˆ
dk
(2π)n

dp′ π δ(k · vs − k · v′s′) |Xss′(k · vs,k; p, p′)|2 kk · ∂Fs′(p′)
∂p′

. (6.60)

6.8. Collision operator
By combining (6.56) for Γs with (6.43) for D(μ)s , one can express Cs as

Cs = ∂

∂p
·
∑

s′

ˆ
dk
(2π)n

dp′ π δ(k · vs − k · v′s′) |Xss′(k · vs,k; p, p′)|2

× kk ·
(
∂Fs(p)
∂p

Fs′(p′)− Fs(p)
∂Fs′(p′)
∂p′

)
, (6.61)

where Xss′ is given by (6.36). One can recognize this as a generalization of the
Balescu–Lenard collision operator (Krall & Trivelpiece 1973, § 11.11) to interactions via a
general multi-component field Ψ . Specific examples can be found in § 9.
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It is readily seen that Cs conserves particles, i.e.
ˆ

dp Cs = 0, (6.62)

and vanishes in thermal equilibrium (§ 8.1). Other properties of Cs are determined by the
properties of the coupling coefficient Xss′ , which are as follows. Note that

|Xss′(ω,k; p, p′)|2 = Qss′(ω,k; p, p′)+Rss′(ω,k; p, p′)/2, (6.63)

where we introduced

Qss′(ω,k; p, p′) .= (|Xss′(ω,k; p, p′)|2 + |Xs′s(ω,k; p′, p)|2)/2, (6.64)

Rss′(ω,k; p, p′) .= |Xss′(ω,k; p, p′)|2 − |Xs′s(ω,k; p′, p)|2. (6.65)

To calculate Rss′ , note that (6.36) yields

|Xss′(ω,k; p, p′)|2 ≈ |α†
s (ω,k; p)Ξ−1(ω,k)αs′(ω,k; p′)|2,

|Xs′s(ω,k; p′, p)|2 ≈ |α†
s (ω,k; p)Ξ−†(ω,k)αs′(ω,k; p′)|2, (6.66)

whence one obtains

Rss′(ω,k; p, p′) ≈ 4 im
(
α†

s (ω,k; p)(Ξ−1)H(ω,k)αs′(ω,k; p′)
α

†
s′(ω,k; p′)(Ξ−1)A(ω,k)αs′(ω,k; p′)

)
. (6.67)

The operators (Ξ−1)H, (Ξ−1)A and α̂s (for all s) have been introduced for real fields, so
their matrix elements in the coordinate representation are real. Then, the corresponding
symbols satisfy A(−ω,−k) = A∗(ω,k), where A is any of the three symbols. This gives

Rss′(k; p, p′) .= Rss′(k · vs,k; p, p′) = −Rss′(−k; p, p′). (6.68)

Because the rest of the integrand in (6.61) is even in k, (6.68) signifies that Rss′ does not
contribute to Cs. Thus, Xss′ in (6.61) can also be replaced with Qss′ :

Cs = ∂

∂p
·
∑

s′

ˆ
dk
(2π)n

dp′ π δ(k · vs − k · v′s′)Qss′(k · vs,k; p, p′)

× kk ·
(
∂Fs(p)
∂p

Fs′(p′)− Fs(p)
∂Fs′(p′)
∂p′

)
. (6.69)

In this representation, the coupling coefficient in Cs is manifestly symmetric,

Qss′(ω,k; p, p′) = Qs′s(ω,k; p′, p), (6.70)

which readily leads to momentum and energy conservation (Appendix C):28

∑
s

ˆ
dp pCs = 0,

∑
s

ˆ
dpHsCs = 0. (6.71)

28Remember that vs is defined as the OC velocity in the above formulas (§ 5.6). If vs is treated as the particle velocity
instead, then Hs in (6.71) should be replaced with Hs. Both options are admissible within the assumed accuracy, but the
former option is preferable because it leads to other conservation laws that are exact within our model (§ 7.5).
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The collision operator Cs also satisfies the H-theorem (Appendix C.3):(
dσ
dt

)
coll

� 0, (6.72)

where the entropy density σ is defined as

σ
.= −

∑
s

ˆ
dp Fs(p) ln Fs(p), (6.73)

and (∂tFs)coll
.= Cs. Note that these properties are not restricted to any particular Hs. Also

note that if applied in proper variables (§ 3.1.2), our formula (6.69) can describe collisions
in strong background fields. This topic, including comparison with the relevant literature,
is left to future work.

6.9. Summary of § 6
Let us summarize the above general results (for examples, see § 9). We consider species s
governed by a Hamiltonian of the form

Hs = H0s + α̂†
s (p)Ψ̃ +

1
2
(L̂sΨ̃ )

†(R̂sΨ̃ ), (6.74)

where Ψ̃ is a real oscillating field (of any dimension M), which generally consists of a
macroscopic part Ψ̃ and a microscopic part Ψ̃˜. The term H0s is independent of Ψ̃ , and the
operators α̂†

s , L̂s and R̂s may be non-local in t and x and may depend on the momentum
p parametrically. The dynamics of this system averaged over the fast oscillations can be
described in terms of the OC distribution function

Fs = f s +
1
2
∂

∂p
·
(
�s
∂f s

∂p

)
(6.75)

(the index (m) is henceforth omitted for brevity), which is governed by the following
equation of the Fokker–Planck type:

∂Fs

∂t
− ∂Hs

∂x
· ∂Fs

∂p
+ ∂Hs

∂p
· ∂Fs

∂x
= ∂

∂p
·
(

Ds
∂Fs

∂p

)
+ Cs. (6.76)

Here, Hs = H0s +Δs is the OC Hamiltonian, �s is the dressing function and Δs is the
total ponderomotive energy (i.e. the part of the OC Hamiltonian that is quadratic in Ψ̃ ), so
vs(t, x, p)

.= ∂pHs is the OC velocity. Specifically,

Ds =
ˆ

dk π kkWs(t, x,k · vs,k; p), (6.77a)

�s = ∂

∂ϑ

 
dω dk kk

Ws(t, x, ω,k; p)
ω − k · vs + ϑ

∣∣∣∣
ϑ=0
, (6.77b)

Δs = 1
2
∂

∂p
·
 

dω dk k
Ws(t, x, ω,k; p)
ω − k · vs

+ 1
2

ˆ
dω dk tr

(
U℘s

)
(t, x, ω,k; p). (6.77c)

Here, Ws = α†
s Uαs is a scalar function, the average Wigner matrix U is understood as

the Fourier spectrum of the symmetrized autocorrelation matrix of the macroscopic
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oscillations:

U(t, x, ω,k) =
ˆ

dτ
2π

ds
(2π)n

Ψ̃ (t + τ/2, x+ s/2) Ψ̃ †(t − τ/2, x− s/2) eiωτ−ik·s, (6.78)

with n .= dim x. Also, the vector αs(t, x, ω,k; p) is the Weyl symbol of α̂s as defined
in (2.26), ℘s(t, x, ω,k; p) ≈ (L†

s Rs)H, Ls and Rs are the Weyl symbols of L̂s and R̂s,
respectively, and H denotes the Hermitian part. The matrix Ds is positive-semidefinite and
satisfies an H-theorem of the form (5.46). Also, Δs satisfies the ‘K–χ theorem’

Δs = −1
2
δ

δFs

 
dω dk tr(ΞHU). (6.79)

The matrix Ξ characterizes the collective plasma response to the field Ψ̃ and is given by

Ξ ≈ Ξ 0 +
∑

s

ˆ
dp
(

αs(p)α†
s (p)

ω − k · vs(p)+ i0
k · ∂Fs(p)

∂p
− ℘s(p)Fs(p)

)
. (6.80)

Here, the arguments (t, x, ω,k) are omitted for brevity, αsα
†
s is a dyadic matrix and Ξ 0

is the symbol of the Hermitian dispersion operator Ξ̂ 0 that governs the field Ψ̃ in the
absence of plasma. Specifically, Ξ̂ 0 is defined such that the field Lagrangian density
without plasma is L0 = Ψ̃ †Ξ̂ 0Ψ̃ /2.

The spectrum of microscopic fluctuations (specifically, the spectrum of the symmetrized
autocorrelation function of the microscopic field Ψ̃˜) is a positive-semidefinite matrix
function and given by

W(ω,k) = 1
(2π)n

∑
s′

ˆ
dp′ δ(ω − k · v′s′)Fs′(p′)

×Ξ−1(ω,k)(αs′α
†
s′)(ω,k; p′)Ξ−†(ω,k), (6.81)

where v′s′
.= vs′(p′). (The dependence on t and x is assumed too but not emphasized.) The

microscopic fluctuations give rise to a collision operator of the Balescu–Lenard type:

Cs = ∂

∂p
·
∑

s′

ˆ
dk
(2π)n

dp′ π δ(k · vs − k · v′s′)Qss′(k · vs,k; p, p′)

× kk ·
(
∂Fs(p)
∂p

Fs′(p′)− Fs(p)
∂Fs′(p′)
∂p′

)
, (6.82)

where the coupling coefficient Qss′(ω,k; p, p′) = Qs′s(ω,k; p′, p) is given by

Qss′(ω,k; p, p′) = (|Xss′(ω,k; p, p′)|2 + |Xs′s(ω,k; p′, p)|2)/2, (6.83)

Xss′(ω,k; p, p′) ≈ α†
s (ω,k; p)Ξ−1(ω,k)αs′(ω,k; p′). (6.84)

The operator Cs satisfies the H-theorem and conserves particles, momentum and energy
ˆ

dp Cs = 0,
∑

s

ˆ
dp pCs = 0,

∑
s

ˆ
dpHsCs = 0.
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7. Interaction with on-shell waves

Here, we discuss QL interaction of plasma with ‘on-shell’ waves, i.e. waves constrained
by dispersion relations. To motivate the assumptions that will be adopted, and also to
systematically introduce our notation, we start with briefly overviewing theory of linear
waves in dispersive media (Whitham 1974; Tracy et al. 2014), including monochromatic
waves (§ 7.1), conservative eikonal waves (§ 7.2), general eikonal waves (§ 7.3) and general
broadband waves described by the WKE (§ 7.4). After that, we derive conservation laws
for the total momentum and energy, which are exact within our model (§ 7.5). All waves
in this section are considered macroscopic, so we adopt a simplified notation Ψ̃ ≡ Ψ̃ and
the index (m) will be omitted.

7.1. Monochromatic waves
Conservative (non-dissipative) waves can be described using the least-action principle
δS = 0. Assuming the notation as in § 6.2, the action integral can be expressed as
S = ´

dx L with the Lagrangian density given by

L = 1
2
Ψ̃ †Ξ̂HΨ̃ . (7.1)

First, let us assume a homogeneous stationary medium, so ΞH(t, x, ω,k) = ΞH(ω,k).
Because we assume real fields,29 〈t1, x1|Ξ̂ |t2, x2〉 is real for all (t1, x1, t2, x2), one also has

ΞH(−ω,−k) = Ξ ∗H(ω,k) = Ξᵀ
H(ω,k), (7.2)

where the latter equality is due to Ξ †
H(ω,k) = ΞH(ω,k).

Because ΞH(ω,k) is Hermitian, it has M .= dimΞH orthonormal eigenvectors ηb:

ΞH(ω,k)ηb(ω,k) = Λb(ω,k)ηb(ω,k), η
†
b(ω,k)ηb′(ω,k) = δb,b′ . (7.3)

Here, Λb are the corresponding eigenvalues, which are real and satisfy

Λb(ω,k) = η†
b(ω,k)ΞH(ω,k)ηb(ω,k). (7.4)

Due to (7.2), one has

Λb(−ω,−k) = eigvb (ΞH(ω,k))ᵀ = eigvbΞH(ω,k) = Λb(ω,k), (7.5)

where eigvb stands for the bth eigenvalue. Using this together with (7.2), one obtains from
(7.3) that

Ξ ∗H(ω,k)ηb(−ω,−k) = Λb(ω,k)ηb(−ω,−k), (7.6)

whence
ηb(−ω,−k) = η∗b(ω,k). (7.7)

Let us consider a monochromatic wave of the form

Ψ̃ (t, x) = re(e−iωt+ik·x Ψ̆ ), (7.8)

with real frequency ω, real wavevector k and complex amplitude Ψ̆ . For such a wave, the
action integral can be expressed as S = ´

dx L, where the average Lagrangian density L

29A complex field can be accommodated by considering its real and imaginary parts as separate components.
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is given by30

L = 1
2
Ψ̃ †Ξ̂HΨ̃ = 1

4
re(Ψ̆ †ΞH(ω,k)Ψ̆ ) = 1

4
Ψ̆ †ΞH(ω,k)Ψ̆ . (7.9)

Let us decompose Ψ̆ in the basis formed by the eigenvectors ηb, that is, as

Ψ̆ =
∑

b

ηbăb
. (7.10)

Then, (7.9) becomes

L = 1
4

∑
b

Λb(ω,k) |ăb|2. (7.11)

The real and imaginary parts of the amplitudes ăb can be treated as independent variables.
This is equivalent to treating ăb∗ and ăb as independent variables, so one arrives at the
following Euler–Lagrange equations:

0 = δS[ă∗, ă]

δăb∗ = 1
4
Λb(ω,k)ă

b
, 0 = δS[ă∗, ă]

δăb = 1
4

ăb∗
Λb(ω,k). (7.12)

Hence the bth mode with a non-zero amplitude ăb satisfies the dispersion relation

0 = Λb(ω,k) = Λb(−ω,−k). (7.13)

Equation (7.13) determines a dispersion surface in the k space where the waves can have
non-zero amplitude. This surface is sometimes called a shell, so waves constrained by a
dispersion relation are called on-shell. Also note that combining (7.13) with (7.3) yields
that on-shell waves satisfy

ΞH(ω,k)ηb(ω,k) = 0, η
†
b(ω,k)ΞH(ω,k) = 0, (7.14)

which are two mutually adjoint representations of the same equation.
Below, we consider the case when (7.13) is satisfied only for one mode at a time, so

summation over b and the index b itself can be omitted. (A more general case is discussed,
for example, in Dodin et al. (2019).) Then, Ψ̆ = η(ω,k)ă,

L = 1
4
Λ(ω,k)|ă|2, (7.15)

and ω is connected with k via ω = w(k), where w(k) = −w(−k) is the function that
solves Λ(w(k),k) = 0. Also importantly, (7.14) ensures that

∂‚Λ(ω,k) = ((∂‚η†)ΞHη + η†(∂‚ΞH)η + η†ΞH(∂‚η))
∣∣
(ω,k)=(ω,k)

= (η†(∂‚ΞH)η)
∣∣
(ω,k)=(ω,k), (7.16)

where ‚ can be replaced with any variable.

30Here we use that for any oscillating a = re(eiθ ă) and b = re(eiθ b̆), one has ab = re(ă∗b̆)/2 and that Ψ̆ †ΞH(ω,k)Ψ̆
is real because ΞH(ω,k) is Hermitian.
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7.2. Conservative eikonal waves
7.2.1. Basic properties

In case of a quasimonochromatic eikonal wave and, possibly, inhomogeneous
non-stationary plasma, one can apply the same arguments as in § 7.1 except the above
equalities are now satisfied up to O(ε). For a single-mode wave, one has

Ψ̃ (t, x) = re(Ψ̃ c(t, x))+O(ε), Ψ̃ c = eiθ(t,x)η(t, x)ă(t, x), (7.17)

where the local frequency and the wavevector,

ω
.= −∂tθ, k .= ∂xθ (7.18)

are slow functions of (t, x), and so is η(t, x) .= η(t, x, ω(t, x),k(t, x)), which satisfies
(7.3). Then,

L = 1
4
Λ(t, x, ω,k) |ă(t, x)|2 +O(ε). (7.19)

Within the leading-order theory, the term O(ε) is neglected.31 Then, the least-action
principle

0 = δS[θ, ă∗, ă]

δăb∗ ≈ 1
4
Λb(ω,k)ă

b
, 0 = δS[θ, ă∗, ă]

δăb ≈ 1
4

ăb∗
Λb(ω,k) (7.20)

leads to the same (but now local) dispersion relation as for monochromatic waves,
Λ(t, x, ω,k) = 0. This shows that quasimonochromatic waves are also on-shell, and thus
they satisfy (7.16) as well. Also notice that the dispersion relation can now be understood
as a Hamilton–Jacobi equation for the eikonal phase θ :

Λ(t, x,−∂tθ, ∂xθ) = 0. (7.21)

Like in the previous section, let us introduce the function w that solves

Λ(t, x,w(t, x,k),k) = 0 (7.22)

and therefore satisfies
w(t, x,k) = −w(t, x,−k). (7.23)

Differentiating (7.22) with respect to t, x and k leads to

∂tΛ+ (∂ωΛ)∂tw = 0, (7.24a)

∂xΛ+ (∂ωΛ)∂xw = 0, (7.24b)

∂kΛ+ (∂ωΛ)∂kw = 0, (7.24c)

where the derivatives of Λ are evaluated at (t, x,w(t, x,k),k). In particular, (7.24c) gives

vg
.= ∂w
∂k
= − ∂kΛ

∂ωΛ
, (7.25)

for the group velocity vg, whose physical meaning is to be specified shortly.

31Corrections to the lowest-order dispersion relation produce the so-called spin Hall effect; see Dodin et al. (2019)
and Ruiz & Dodin (2017a) for an overview and Bliokh et al. (2015), Ruiz & Dodin (2015a), Oancea et al. (2020) and
Andersson et al. (2021) for examples. These corrections are beyond the accuracy of the model considered, so they will
be ignored.
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Because θ is now an additional dynamical variable, one also obtains an additional
Euler–Lagrange equation

0 = δθS[θ, ă∗, ă] = ∂tI + ∂x ·J , (7.26)

where I is called the action density and J is the action flux density:

I .= ∂L
∂ω
= |ă|

2

4
∂Λ

∂ω
= |ă|

2

4
η† ∂ΞH

∂ω
η, (7.27)

J i .= −∂L
∂ki
= −|ă|

2

4
∂Λ

∂ki
= −|ă|

2

4
η† ∂ΞH

∂ki
η, (7.28)

where we used (7.16) and the derivatives are evaluated on (t, x,w(t, x,k(t, x)),k(t, x)).
Using (7.25), one can also rewrite (7.28) as

J = vgI, vg(t, x)
.= vg(t, x,k(t, x)). (7.29)

(The arguments (t, x) will be omitted from now on for brevity. We will also use (k) as a
shorthand for (w(k),k) where applicable.) Then, (7.26) becomes

∂tI + ∂x · (vgI) = 0, (7.30)

which can be a understood as a continuity equation for quasiparticles (‘photons’ or, more
generally, ‘wave quanta’) with density I and fluid velocity vg (see also § 7.2.2). Thus,
if an eikonal wave satisfies the least-action principle, its total action

´
dx I (‘number of

quanta’) is an invariant. This conservation law can be attributed to the fact that the wave
Lagrangian density L depends on derivatives of θ but not on θ per se.

Also notice the following. By expanding (7.19) in ∂tθ around ∂tθ = −w(t, x, ∂xθ), which
is satisfied on any solution, one obtains

L ≈ −1
4
(∂tθ + w(t, x, ∂xθ))∂ωΛ |ă|2 = −(∂tθ + w(t, x, ∂xθ))I, (7.31)

where we used that L(t, x,−∂tθ, ∂xθ) = 0 due to (7.21). Then, one arrives at the canonical
form of the action integral (Hayes 1973)

S[I, θ ] = −
ˆ

dt dx (∂tθ + w(t, x,k))I. (7.32)

From here, δIS = 0 yields the dispersion relation in the Hamilton–Jacobi form
∂tθ + w(t, x,k) = 0, and δθS = 0 yields the action conservation (7.30).

7.2.2. Ray equations
By (7.18), one has the so-called consistency relations

∂tki + ∂iω = 0, ∂ikj = ∂jki. (7.33)

These lead to (
∂

∂t
+ vg · ∂

∂x

)
ki(t, x) = −∂w(t, x,k(t, x))

∂xi
+ vg · ∂ki(t, x)

∂x

= −
(
∂w(t, x,k)
∂xi

)
k=k(t,x)

− v j
g
∂kj(t, x)
∂xi

+ v j
g
∂ki(t, x)
∂x j

= −
(
∂w(t, x,k)
∂xi

)
k=k(t,x)

, (7.34)
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and similarly,(
∂

∂t
+ vg · ∂

∂x

)
ω(t, x) =

(
∂

∂t
+ vg · ∂

∂x

)
w(t, x,k(t, x))

=
(
∂w(t, x,k)

∂t
+ vi

g
∂w(t, x,k)
∂xi

)
k=k(t,x)

+ vi
g

(
∂

∂t
+ vg · ∂

∂x

)
ki(t, x)

=
(
∂w(t, x,k)

∂t

)
k=k(t,x)

, (7.35)

where we used (7.34). Using the convective derivative associated with the group velocity,

d/dt ≡ dt
.= ∂t + (vg · ∂x), (7.36)

one can rewrite these compactly as

dki(t, x)
dt

= −
(
∂w(t, x,k)
∂xi

)
k=k(t,x)

,
dω(t, x)

dt
=
(
∂w(t, x,k)

∂t

)
k=k(t,x)

. (7.37)

One can also represent (7.37) as ordinary differential equations for k(t) .= k(t, x(t)) and
ω(t) .= ω(t, x(t)), where x(t) are the ‘ray trajectories’ governed by

dxi(t)
dt
= vi

g(t, x(t),k(t)). (7.38)

Specifically, together with (7.38), equations (7.37) become Hamilton’s equations also
known as the ray equations:

dxi

dt
= ∂w(t, x,k)

∂ki
,

dki

dt
= −∂w(t, x,k)

∂xi ,
dω
dt
= ∂w(t, x,k)

∂t
, (7.39)

where x is the coordinate, �k is the momentum, �ω is the energy, �w is the Hamiltonian
and the constant factor � can be anything. If � is chosen to be the Planck constant, then
(7.39) can be interpreted as the motion equations of individual wave quanta, for example,
photons. Hamilton’s equations for ‘true’ particles, such as electrons and ions, are also
subsumed under (7.39) in that they can be understood as the ray equations of the particles
considered as quantum-matter waves in the semiclassical limit.

Also notably, (7.39) can be obtained by considering the point-particle limit of (7.32)
(Ruiz & Dodin 2015b). Specifically, adopting I(t, x) ∝ δ(x− x(t)) and taking the
integral in (7.32) by parts leads to a canonical action S ∝ ´

dt (k · ẋ− w(t, x,k)), whence
Hamilton’s equations follow as usual.

7.2.3. Wave momentum and energy
Using (7.30) and (7.36), one arrives at the following equality for any given field X:

∂t(XI)+ ∂x · (XIvg) = (∂tX)I + X(∂tI)+ [∂x · (Ivg)]X+ I(vg · ∂x)X

= I[∂t + (vg · ∂x)]X+ X[∂tI + ∂x · (Ivg)]

= I dtX. (7.40)

For X = ki and X = ω, (7.40) yields, respectively,

∂tPw,i + ∂x · (vgPw,i) = −I∂iw, (7.41a)

∂tEw + ∂x · (vgEw) = I∂tw, (7.41b)
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where we used (7.37) and introduced the following notation:

Pw
.= kI, Ew

.= ωI. (7.42)

When a medium is homogeneous along xi, (7.41a) yields
´

dx Pw,i = const. Likewise,
when a medium is stationary, (7.41b) yields

´
dx Ew = const. Hence, by definition, Pw

and Ew are the densities of the wave canonical momentum and energy, at least up to a
constant factor κ .32 A proof that κ = 1 can be found, for example, in Dodin & Fisch (2012).
In § 7.5, we will show this using different arguments.

7.3. Non-conservative eikonal waves
In a medium with non-zeroΞA, where waves are non-conservative, the wave properties are
defined as in the previous section but the wave action evolves differently. The variational
principle is not easy to apply in this case (however, see Dodin et al. 2017), so a different
approach will be used to derive the action equation. A more straightforward but less
intuitive approach can be found in Dodin et al. (2019) and McDonald (1988).

7.3.1. Monochromatic waves
First, consider a homogeneous stationary medium and a ‘monochromatic’ (exponentially

growing at a constant rate) wave field in the form

Ψ̃ (t, x) = re(e−iωt+ik·x Ψ̆ c), Ψ̆ c = eγ t × const, (7.43)

where the constants ω and k are, as usual, the real frequency and wavenumber, and γ is
the linear growth rate, which can have either sign. Then, (6.15) becomes

0 = Ξ(ω + iγ ,k)Ψ̆ c = ΞH(ω,k)Ψ̆ c + i(γ ∂ωΞH(ω,k)+ ΞA(ω,k))Ψ̆ c +O(ε2),
(7.44)

where we assume that Ξ is a smooth function of ω and also that both ΞA and γ are O(ε).
Like in § 7.2.1, we adopt Ψ̆ c = ηă+O(ε), where the polarization vector η is the relevant
eigenvector of ΞH. Then, by projecting (7.44) on η, one obtains

0 = Λ(ω,k)ă+ i(γ ∂ωΛ+ η†ΞAη)
∣∣
(ω,k)=(ω,k)ă+O(ε2), (7.45)

where Λ = η†ΞHη is the corresponding eigenvalue of ΞH and we used (7.16). Let us
neglect O(ε2), divide (7.45) by ă and consider the real and imaginary parts of the resulting
equation separately:

Λ(ω,k) = 0, (γ ∂ωΛ+ η†ΞAη)
∣∣
(ω,k) = 0. (7.46)

The former is the same dispersion relation for ω as for conservative waves, and the latter
yields γ = γ (k), where

γ (k) .= −η
†ΞAη

∂ωΛ
. (7.47)

Because |ă| ∝ eγ t, one can write the amplitude equation as

∂t|ă|2 = 2γ |ă|2. (7.48)

32Therefore, in a zero-dimensional wave, where
´

dx can be omitted, conservation of the total action I implies
conservation of Ew/ω, which is a well-known adiabatic invariant of a discrete harmonic oscillator with a slowly varying
frequency (Landau & Lifshitz 1976, § 49).
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One can also define the action density I as in § 7.2.1 and rewrite (7.48) in terms of that.
Because I = |ă|2 × const, one obtains

∂tI = 2γI. (7.49)

7.3.2. Non-monochromatic waves
When weak inhomogeneity and weak dissipation coexist, their effect on the action

density is additive, so (7.30) and (7.49) merge into a general equation

∂tI + ∂x(vgI) = 2γI. (7.50)

(A formal derivation of (7.50), which uses the Weyl expansion (2.41) and projection of the
field equation on the polarization vector, can be found in Dodin et al. 2019.) Then, (7.40)
is modified as follows:

∂t(XI)+ ∂x · (XIvg) = I dtX+ 2γXI, (7.51)

and the equations (7.41) for the wave momentum and energy (7.42) become

∂tPw,i + ∂x · (vgPw,i) = 2γPw,i − I∂iw, (7.52a)

∂tEw + ∂x · (vgEw) = 2γEw + I∂tw. (7.52b)

A comment is due here regarding the relation between (7.50) and the amplitude equation
(7.48) that is commonly used in the standard QLT for homogeneous plasma (for example,
see (2.21) in Drummond & Pines 1962). In a nutshell, the latter is incorrect, even when
∂x = 0. Because f is time-dependent, waves do not grow or decay exponentially. Rather,
they can be considered as geometrical-optics (WKB) waves, and unlike in § 7.3.1, the
ratio |ă|2/I generally evolves at a rate comparable to γ . The standard QLT remains
conservative only because it also incorrectly replaces (3.19) with its stationary-plasma
limit (ε = 0) and the two errors cancel each other. These issues are less of a problem for
waves in not-too-hot plasmas (e.g. Langmuir waves), because in such plasmas, changing
the distribution functions does not significantly affect the dispersion relations and thus
|ă|2/I does in fact approximately remain constant. See also the discussion in § 9.1.4.

7.4. General waves
Let us now discuss a more general case that includes broadband waves. The evolution of
such waves can be described statistically in terms of their average Wigner matrix U. This
matrix also determines the function Ws that is given by (6.37a) and enters the nonlinear
potentials (6.77). Below, we derive the general form of U in terms of the phase-space
action density J and the governing equation for J (§§ 7.4.1–7.4.3). Then, we also express
the function Ws through J (§ 7.4.4). Related calculations can also be found in McDonald
& Kaufman (1985) and Ruiz (2017).

7.4.1. Average Wigner matrix of an eikonal-wave field
Let us start with calculating the average Wigner matrix of an eikonal field Ψ̃ of the

form (7.17) (see also Appendix A.2). Using Ψ̃ = (Ψ̃ c + Ψ̃ ∗c)/2, it can be readily expressed
through the average Wigner functions of the complexified field33 Ψ̃ c and of its complex

33Field complexification is discussed, for example, in Brizard, Cook & Kaufman (1993).
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conjugate:
U ≈ (WΨ̃ c +WΨ̃ ∗c )/4 ≡ (Uc+ + Uc−)/4. (7.53)

For Ψ̃ c = ăη(ω,k)eiθ , where the arguments (t, x) are omitted for brevity, one has

Uc ≡ Uc+ ≈ (ηη†)(ω,k)|ă|2
ˆ

dτ ds
(2π)n

eiθ(t+τ/2,x+s/2)e−iθ(t−τ/2,x−s/2)eiωτ−ik·s, (7.54)

where we neglected the dependence of ă and η on (t, x) because it is weak compared with
that of e±iθ . By Taylor-expanding θ , one obtains

Uc ≈ (ηη†)(ω,k)|ă|2
ˆ

dτ ds
(2π)n

ei(ω−ω)τ−i(k−k)·s = (ηη†)(ω,k)|ă|2δ(ω − ω)δ(k− k).

For Ψ̃ ∗c = ă∗η∗(ω,k)e−iθ , which can also be written as Ψ̃ ∗c = ă∗η(−ω,−k)e−iθ due to
(7.7), the result is the same up to replacing ω→−ω and k→−k. Also notice that

δ(ω ∓ ω)δ(k∓ k) = δ(ω ∓ w(k))δ(k∓ k)

= δ(ω ∓ w(±k))δ(k∓ k)

= δ(ω − w(k))δ(k∓ k), (7.55)

so one can rewrite Uc± as follows:

Uc± = η(k)η†(k)|ă|2δ(ω − w(k))δ(k∓ k), (7.56)

where (k) ≡ (w(k),k). Thus finally,

U(ω,k) ≈ η(k)η†(k) |ă|2(δ(k− k)+ δ(k+ k))δ(ω − w(k))/4. (7.57)

7.4.2. Average Wigner matrix of a general wave
Assuming the background medium is sufficiently smooth, a general wave field can be

represented as a superposition of eikonal fields

Ψ̃ = re Ψ̃ c, Ψ̃ c =
∑

σ Ψ̃ σ,c, Ψ̃ σ,c = ăσeiθσ . (7.58)

As a quadratic functional, its average Wigner matrix U equals the sum of the average
Wigner matrices Uσ of the individual eikonal waves:

U =∑σ Uσ =
∑

σ (Uσ,c+ + Uσ,c−)/4, (7.59)

where Uσ,c+ ≡ Uσ,c and Uσ,c− are the average Wigner matrices of Ψ̃ σ,c and Ψ̃ ∗σ,c,
respectively,

Uσ,c± = η(k)η†(k)|ăσ |2δ(k∓ kσ )δ(ω − w(k)). (7.60)

Equation (7.59) can also be expressed as

U = (Uc+ + Uc−)/4, Uc± =
∑

σ Uσ,c±, (7.61)

where Uc± are the average Wigner matrices of Ψ̃ c and Ψ̃ ∗c , respectively,

Uc± = η(k)η†(k)hc±(k)δ(ω − w(k)), hc±(k)
.=∑σ |ăσ |2δ(k∓ kσ ). (7.62)
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Because hc−(k) = hc+(−k) ≡ hc(−k), the matrix U can also be written as follows:

U(ω,k) = (ηη†)(k) (h(k)+ h(−k))δ(ω − w(k)), (7.63)

where h(k) .= hc(k)/4 is given by

h(k) = 1
4

∑
σ |ăσ |2δ(k− kσ ) � 0. (7.64)

This shows that, for broadband waves comprised of eikonal waves, U has the same form
as for an eikonal wave except h(k) is not necessarily delta-shaped.

7.4.3. Phase-space action density and the WKE
The wave equation for the complexified field Ψ̃ c can be written in the invariant form as

Ξ̂ |Ψ̃ c〉 = |0〉. Multiplying it by 〈Ψ̃ c| from the right leads to

Ξ̂ Ûc = 0̂, Ûc
.= (2π)−n |Ψ̃ c〉 〈Ψ̃ c| . (7.65)

This readily yields an equation for the Wigner matrix: Ξ 
 Uc = 0. Let us integrate this
equation over ω to make the left-hand side a smooth function of (t, x,k). Let us also take
the trace of the resulting equation to put it in a scalar form

tr
´

dωΞ 
 Uc = 0. (7.66)

As usual, we assume Ξ = ΞH + iΞA with ΞA = O(ε)� ΞH = O(1) for generic (x, k).
The integrand in (7.66) can be written as Ξ 
 Uc = ΞeiL̂x/2Uc, and its expansion in the
differential operator L̂x (2.32) contains derivatives of all orders. High-order derivatives
on Uc are not negligible per se, because for on-shell waves this function is delta-shaped.
However, using integration by parts, one can reapply all derivatives with respect to ω to Ξ
and take the remaining derivatives (with respect to t, x and k) outside the integral. Then
it is seen that each power m of L̂x in the expansion of ΞeiL̂x/2Uc contributes O(εm) to the
integral. Let us neglect terms with m � 2 and use (7.62). Hence, one obtains34

0 ≈ tr
ˆ

dω
(
ΞHUc + iΞAUc + i

2
{ΞH,Uc}x

)
≈ (η†ΞHη + iη†ΞAη)hc + i

2
tr
ˆ

dω
(
∂ΞH

∂xi

∂Uc

∂ki
− ∂ΞH

∂ki

∂Uc

∂xi

)
. (7.67)

Let us also re-express this as follows, using (7.4) and (7.47):

0 ≈
(
Λ− iγ

∂Λ

∂ω

)
hc − i

2
tr
ˆ

dω
∂

∂ω

(
∂ΞH

∂t
Uc

)
+ i

2
∂

∂t
tr
ˆ

dω
∂ΞH

∂ω
Uc

+ i
2
∂

∂ki
tr
ˆ

dω
∂ΞH

∂xi
Uc − i

2
∂

∂xi
tr
ˆ

dω
∂ΞH

∂ki
Uc. (7.68)

Clearly, ˆ
dω

∂

∂ω

(
∂ΞH

∂t
Uc

)
= 0. (7.69)

To simplify the remaining terms, we proceed as follows. As a Hermitian matrix, ΞH can
be represented in terms of its eigenvalues Λb and eigenvectors ηb as ΞH = Λbηbη

†
b. For

34McDonald & Kaufman (1985) first Taylor-expand Ξ 
 Uc and then integrate over ω. Strictly speaking, that is
incorrect (because Ξ 
 Uc is not smooth), but the final result is the same.
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Uc, let us use (7.62) again, where η is one of the vectors ηb, say, η ≡ η0. (Accordingly,
Λ ≡ Λ0.) Then, for any ‚ ∈ {ω, xi, ki}, one has

tr
ˆ

dω
(
∂ΞH

∂‚
Uc

)
= ∂Λb

∂‚
|η†

bη|2hc +Λb

(
η† ∂ηb

∂‚

)
(η

†
bη)hc +Λb (η

†ηb)
(∂η†

b

∂‚
η
)

hc

= ∂Λb

∂‚
(δb,0)

2hc +Λb

(
η† ∂ηb

∂‚

)
δb,0hc +Λb δb,0

(∂η†
b

∂‚
η
)

hc

= ∂Λ
∂‚

hc +
(
η† ∂η

∂‚
+ ∂η

†

∂‚
η
)
Λhc

= ∂Λ
∂‚

hc + ∂(η
†η)

∂‚
Λhc

= ∂Λ
∂‚

hc, (7.70)

where we used η†
bη = δb,0 and, in particular, η†η = 1. Then, (7.68) can be written as

Λhc − 2iE = 0, (7.71)

where

E = 2γ
(
∂Λ

∂ω
h
)
− ∂
∂t

(
∂Λ

∂ω
h
)
− ∂

∂ki

(
∂Λ

∂xi
h
)
+ ∂

∂xi

(
∂Λ

∂ki
h
)
. (7.72)

The real part of (7.71) givesΛ = 0, which is the dispersion relation. The imaginary part
of (7.71) gives E = 0. To understand this equation, let us rewrite E as

E = 2γ J − ∂J
∂t
+ ∂

∂ki

(
∂w
∂xi

J
)
− ∂

∂xi

(
∂w
∂ki

J
)
. (7.73)

Here, we introduced

J(k) .= h(k) ∂ωΛ(k), Λ(k) .= Λ(w(k),k), (7.74)

which, according to (7.24), satisfy

J∂tw(k) = −h(∂tΛ)(k), (7.75a)

J∂xw(k) = −h(∂xΛ)(k), (7.75b)

J∂kw(k) = −h(∂kΛ)(k). (7.75c)

Note that using (7.64), one can also express J as

J =∑σ

(
1
4 |ăσ |2∂ωΛ(kσ )

)
δ(k− kσ ) =

∑
σ Iσ δ(k− kσ ), (7.76)

where Iσ are the action densities (7.27) of the individual eikonal waves that comprise the
total wave field (§ 7.4.2). In particular,

´
dk J =∑σ Iσ , which is the total action density.

Therefore, the function J can be interpreted as the phase-space action density. In terms of
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J, the equation E = 0 can be written as

∂J
∂t
+ ∂w
∂ki

∂J
∂xi
− ∂w
∂xi

∂J
∂ki
= 2γ J. (7.77)

This equation, called the WKE, serves the same role in QL wave-kinetic theory as the
Vlasov equation serves in plasma kinetic theory.35 Unlike the field equation used in
the standard QLT (Drummond & Pines 1962), (7.77) exactly conserves the action of
non-resonant waves, i.e. those with γ = 0. Also note that (7.50) for eikonal waves can
be deduced from (7.77) as a particular case by assuming the ansatz

J(t, x,k) = I(t, x)δ(k− k(t, x)) (7.78)

and integrating over k. In other words, eikonal-wave theory can be understood as the
‘cold-fluid’ limit of wave-kinetic theory.

7.4.4. Function Ws in terms of J
Here we explicitly calculate the function (6.37a) that determines the nonlinear potentials

(6.77). Using (7.63), one obtains

Ws(ω,k; p) = |α†
sη|2(k; p) (h(k)+ h(−k)) δ(ω − w(k)) � 0, (7.79)

where (k; p) ≡ (w(k),k; p). By definition of α̂s, the function 〈t1, x1 |̂αs|t2, x2〉 is real for all
(t1, x1) and (t2, x2), so αs(−ω,−k) = α∗s (ω,k) by definition of the Weyl symbol (2.26).
Together with (7.7), this gives |α†

sη|2(ω,k; p) = |α†
sη|2(−ω,−k; p), so

|α†
sη|2 ≡ |α†

sη|2(k; p) = |α†
sη|2(−k; p), (7.80a)

and similarly,
|η†℘sη|2 ≡ |η†℘sη|2(k; p) = |η†℘sη|2(−k; p). (7.80b)

This also means that Ws(ω,k; p) = Ws(−ω,−k; p). Then finally, using (7.74), one can
express this function through the phase-space action density:

Ws(ω,k; p) = |α†
sη|2(ςkJ(k)+ ς−kJ(−k)) δ(Λ(ω,k)), (7.81)

ςk
.= sgn ∂ωΛ(k) = sgn(J(k)/h(k)) = sgn J(k). (7.82)

7.5. Conservation laws
Let us rewrite (7.77) together with (6.76) in the ‘divergence’ form

∂J
∂t
+ ∂(v

i
gJ)

∂xi
− ∂

∂ki

(
∂w
∂xi

J
)
= 2γ J, (7.83)

∂Fs

∂t
+ ∂(v

i
s Fs)

∂xi
− ∂

∂pi

(
∂Hs

∂xi
Fs

)
= ∂

∂pi

(
Ds,ij

∂Fs

∂pj

)
+ Cs. (7.84)

35The term ‘WKE’ is also used for the equation that describes nonlinear interactions of waves in statistically
homogeneous media, or ‘wave–wave collisions’ (Zakharov, L’vov & Falkovich 1992). That is not what we consider here.
Inhomogeneities are essential in our formulation, and the QL WKE is linear (in J) by definition of the QL approximation.
That said, the Weyl symbol calculus that we use can facilitate derivations of wave–wave collision operators as well (Ruiz,
Glinsky & Dodin 2019).
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Using (7.62), the diffusion matrix Ds,ij can be represented as follows:

Ds,ij = 2π
ˆ

dk kikj |α†
sη|2

J(k)
∂ωΛ(k)

δ(k · vs − w(k)). (7.85)

Also, by substituting (6.24) into (7.47), one finds

γ = π
∑

s

ˆ
dp
|α†

sη|2
∂ωΛ(k)

δ(w(k)− k · vs(p))k · ∂Fs(p)
∂p

. (7.86)

Together with (7.75), these yield the following notable corollaries. First of all, ifΞ 0, |α†
sη|2

and η†℘sη are independent of x,36 one has for each l that (Appendix D.1)

∂

∂t

(∑
s

ˆ
dp plFs +

ˆ
dk klJ

)
+ ∂

∂xi

(∑
s

ˆ
dp plv

i
sFs +

ˆ
dk klv

i
gJ

)

+ ∂

∂xl

∑
s

ˆ
dpΔsFs = −

∑
s

ˆ
dp
∂H0s

∂xl
Fs. (7.87)

This can be viewed as a momentum-conservation theorem, because at ∂lH0s = 0, one has∑
s

ˆ
dx dp plFs +

ˆ
dx dk klJ = const. (7.88)

Also, the ponderomotive force on a plasma is readily found from (7.87) as the sum of the
terms quadratic in the wave amplitude (after Fs has been expressed through f s). Similarly,
if Ξ 0, |α†

sη|2 and η†℘sη are independent of t, one has (Appendix D.2)

∂

∂t

(∑
s

ˆ
dp H0sFs +

ˆ
dk wJ

)
+ ∂

∂xi

(∑
s

ˆ
dp H0sv

i
sFs +

ˆ
dk wvi

gJ

)

+ ∂

∂xi

∑
s

ˆ
dpΔsv

i
sFs =

∑
s

ˆ
dp
∂H0s

∂t
Fs. (7.89)

This can be viewed as an energy-conservation theorem, because at ∂tH0s = 0, one has∑
s

ˆ
dx dp H0sFs +

ˆ
dx dk wJ = const. (7.90)

Related equations are also discussed in Dodin & Fisch (2012) and Dewar (1977).
The individual terms in (7.87) and (7.89) can be interpreted as described in table 1. The

results of § 7.2.3 are reproduced as a particular case for the eikonal-wave ansatz (7.78).37 In
particular, note that electrostatic waves carry non-zero momentum density

´
dk kJ just like

any other waves, even though an electrostatic field of these waves carries no momentum.

36Having x-dependence in Ξ0, |α†
sη|2 or η†℘sη would signify interaction with external fields not treated

self-consistently. Such fields could exchange momentum with the wave–plasma system, so the momentum of the
latter would not be conserved. A similar argument applies to the temporal dependence of these coefficients vs energy
conservation considered below.

37There is no ambiguity in the definition of the wave momentum and energy in this case (i.e. κ = 1), because (7.88)
and (7.90) connect those with the momentum and energy of particles (OCs), which are defined unambiguously.
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Quantity Notation Interpretation´
dp pFs Ps OC momentum density´
dp H0sFs Es OC energy density´
dp (pvs +Δs1)Fs Πs OC momentum flux density´
dp (H0s +Δs)vsFs Qs OC energy flux density´
dk kJ Pw wave momentum density´
dk wJ Ew wave energy density´
dk kvgJ Πw wave momentum flux density´
dk wvgJ Qw wave energy flux density

TABLE 1. Interpretation of the individual terms in (7.87) and (7.89). The wave
energy–momentum is understood as the canonical (‘Minkowski’) energy–momentum,
which must not be confused with the kinetic (‘Abraham’) energy–momentum (Dewar 1977;
Dodin & Fisch 2012). Whether the terms with ΔsFs should be attributed to OCs or to the wave
is a matter of convention, because ΔsFs scales linearly both with Fs and with J. In contrast,
the wave energy density is defined unambiguously as Es

.= ´
dp H0sFs and does not contain

Δs. This is because
´

dpΔsFs is a part of the wave energy density Ew (Dodin & Fisch 2010a).
Similarly,

´
dp (∂vsΔs)Fs is a part of the wave momentum density (Dodin & Fisch 2012).

The momentum is stored in the particle motion in this case (§ 9.1.3), and it is pumped there
via either temporal dependence (Liu & Dodin 2015, § II.2) or spatial dependence (Ochs &
Fisch 2021b, 2022) of the wave amplitude. This shows that homogeneous-plasma models
that ignore ponderomotive effects cannot adequately describe the energy–momentum
transfer between waves and plasma even when resonant absorption per se occurs in
a homogeneous-plasma region. The OC formalism presented here provides means to
describe such processes rigorously, generally, and without cumbersome calculations.

7.6. Summary of § 7
In summary, we have considered plasma interaction with general broadband single-mode
on-shell waves (for examples, see § 9). Assuming a general response matrixΞ , these waves
have a dispersion function Λ(t, x, ω,k) and polarization η(t, x, ω,k) determined by

ΞHη = Λη, Λ = η†ΞHη, (7.91)

where the normalization η†η = 1 is assumed. Specifically for Ξ given by (6.80), one has

Λ(t, x, ω,k) = η†Ξ 0η −
∑

s

ˆ
dp η†℘s(p)η Fs(p)

+
∑

s

 
dp
|α†

sη|2(p)
ω − k · vs(p)

k · ∂Fs(p)
∂p

, (7.92)

where the arguments (t, x, ω,k) are omitted for brevity. (Some notation is summarized in
§ 6.9.) The wave frequency ω = w(t, x,k) satisfies

Λ(t, x,w(t, x,k),k) = 0 (7.93)
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and w(t, x,−k) = −w(t, x,k), where w is a real function at real arguments. The wave
local linear growth rate γ , which is assumed to be small in this section, is

γ (t, x,k) = −
(
η†ΞAη

∂ωΛ

)
(t,x,w(t,x,k),k)

, (7.94)

or explicitly,

γ (t, x,k) = π
∑

s

ˆ
dp

|α†
sη|2

∂ωΛ(t, x,w,k)
δ(w− k · vs(t, x, p))k · ∂Fs(t, x, p)

∂p
,

where w ≡ w(t, x,k) and |α†
sη|2 ≡ |α†

sη|2(t, x,w,k; p). The nonlinear potentials (6.77)
are expressed through the scalar function

Ws(t, x, ω,k; p) = |α†
sη|2(ςkJ(t, x,k)+ ς−kJ(t, x,−k)) δ(Λ(t, x, ω,k)), (7.95)

where ςk
.= sgn(∂ωΛ(t, x, ω,k)) is evaluated at ω = w(t, x,k); see also (7.82). The

function J is the phase-space action density governed by the WKE

∂J
∂t
− ∂w
∂x
· ∂J
∂k
+ ∂w
∂k
· ∂J
∂x
= 2γ J, (7.96)

where ∂kw = vg is the group velocity. Collisional dissipation is assumed small compared
with collisionless dissipation, so it is neglected in (7.96) but can be reintroduced by an
ad hoc modification of γ (§ 6.2). Unlike the field equation used in the standard QLT, (7.96)
exactly conserves the action of non-resonant waves, i.e. those with γ = 0. The WKE must
be solved together with the QL equation for the OC distribution Fs,

∂Fs

∂t
− ∂Hs

∂x
· ∂Fs

∂p
+ ∂Hs

∂p
· ∂Fs

∂x
= ∂

∂p
·
(

Ds
∂Fs

∂p

)
+ Cs, (7.97)

because Fs determines the coefficients in (7.96) and J determines the coefficients in (7.97).
When Ξ 0 and |α†

sη|2 are independent of t and x, (7.96) and (7.97) conserve the total
momentum and energy of the system; specifically,

∂t(
∑

s Ps,i + Pw,i)+ ∂j(
∑

sΠs,i
j +Πw,i

j) = −
∑

s

ˆ
dp Fs∂iH0s, (7.98)

∂t(
∑

s Es + Ew)+ ∂j(
∑

s Q j
s + Q j

w) =
∑

s

ˆ
dp Fs∂tH0s. (7.99)

Here, the notation is as in table 1, or see (7.87) and (7.89) instead.

8. Thermal equilibrium

In this section, we discuss, for completeness, the properties of plasmas in thermal
equilibrium.

8.1. Boltzmann–Gibbs distribution
As discussed in § 6.8, collisions conserve the density of each species, the total momentum
density and the total energy density, while the plasma total entropy density σ either grows
or remains constant. Let us search for equilibrium states in particular. At least one of the
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states in which σ remains constant is the one that maximizes the entropy density at fixed´
dp Fs,

∑
s

´
dp pFs and

∑
s

´
dpHsFs. This ‘state of thermal equilibrium’ can be found

as an extremizer of

σ ′
.= σ −

∑
s

λ(N )s

ˆ
dp Fs − λ(P) ·

∑
s

ˆ
dp pFs − λ(H)

∑
s

ˆ
dpHsFs (8.1)

considered as a functional of all Fs, where λ(N )s , λ(P) and λ(H) are Lagrange multipliers.
Using (6.73), one finds that extremizers of σ ′ satisfy

0 = δσ
′

δFs
= − ln Fs − 1− λ(N )s − λ(P) · p− λ(H)Hs, (8.2)

whence
Fs = consts × exp(−λ(P) · p− λ(H)Hs). (8.3)

The pre-exponential constant is determined by the given density of species s, while λ(P)

and λ(H) can be expressed through the densities of the plasma momentum and energy
stored in the whole distribution. Because

δ2σ ′

δFsδFs
= − 1

Fs
< 0,

δ2σ ′

δFsδFs′ �=s
= 0, (8.4)

the matrix δ2σ ′/δFsδFs′ is positive-definite, so the entropy is maximal (as opposed to
minimal) at the extremizer (8.3).

The distribution (8.3) is known as the Boltzmann–Gibbs distribution, with T .= 1/λ(H)
being the temperature (common for all species). Also, let us introduce a new, rescaled
Lagrange multiplier u via λ(P) = −u/T . Then,

Fs(p) = F(0)s exp
(
−Hs(p)− u · p

T

)
, (8.5)

where F(0)s is independent of p. Correspondingly,

∂Fs(p)
∂p

= −Fs(p)
vs − u

T
, (8.6)

where we used (5.44). From (8.6), one obtains

δ(k · vs − k · v′s′)k ·
(
∂Fs(p)
∂p

Fs′(p′)− Fs(p)
∂Fs′(p′)
∂p′

)
= − 1

T
δ(k · vs − k · v′s′) (k · vs − k · v′s′)Fs(p)Fs′(p′)

= 0, (8.7)

where H′s′ .= Hs′(p′). Then, (6.61) yields that the collision operator vanishes on the
Boltzmann–Gibbs distribution, and thus, expectedly, (dσ/dt)coll = 0. One can also show
that the Boltzmann–Gibbs distribution is the only distribution (strictly speaking, a class
of distributions parameterized by T and u) for which the entropy density is conserved
(Appendix E).
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The property (8.6) of the thermal-equilibrium state also leads to other notable results
that we derive below. In doing so, we will assume the reference frame where u = 0, so the
Boltzmann–Gibbs distribution has a better known form

Fs(p) = F(0)s exp
(
−Hs(p)

T

)
,

∂Fs(p)
∂p

= −Fs(p)
vs

T
. (8.8)

(For Hs isotropic in p, this is the frame where the plasma total momentum density∑
s

´
dp pFs is zero.) The generalizations to arbitrary u are straightforward.

8.2. Fluctuation–dissipation theorem
Let us describe microscopic fluctuations in equilibrium plasmas in terms of
S(ω,k) .= (2π)n W(ω,k), i.e.

S(ω,k) .=
ˆ

dτds Ψ̃˜(t + τ/2, x+ s/2)Ψ̃˜†(t − τ/2, x− s/2) eiωτ−ik·s, (8.9)

which can also be represented in terms of the Fourier image
◦
Ψ (ω,k) of the microscopic

field Ψ̃˜(t, x):
S(ω,k) =

◦
Ψ (ω,k)

◦
Ψ †(ω,k)

T Vn
. (8.10)

For statistically homogeneous fields that persist on time T →∞ within volume
Vn →∞, the Fourier transform is formally divergent; hence the appearance of the factors
T and Vn in (8.10).38 Also, as seen from (6.32), any quadratic function of the microscopic
field can be expressed through S via

(̂Lψ)(̂Rψ)† ≈
ˆ

dω
2π

dk
(2π)n

(LSR†)(ω,k), (8.11)

where L̂ and R̂ are any linear operators and L and R are their symbols.
From (6.31), one finds that, in general,

S(ω,k) = 2π
∑

s′

ˆ
dp′ δ(ω − k · v′s′)Fs′(p′)Ξ−1(ω,k)(αs′α

†
s′)(ω,k; p′)Ξ−†(ω,k).

(8.12)
For a thermal distribution in particular, which satisfies (8.8), one can rewrite (6.24) as
follows:

ΞA(ω,k) ≈ π
T

∑
s

ˆ
dpαs(ω,k; p)α†

s (ω,k; p)δ(ω − k · vs) (k · vs)Fs(p)

= πω
T

∑
s

ˆ
dpαs(ω,k; p)α†

s (ω,k; p)δ(ω − k · vs)Fs(p). (8.13)

By comparing this with (8.12), one also finds that

S(ω,k) = 2T
ω
(Ξ−1ΞAΞ

−†)(ω,k). (8.14)

38To make (8.10) look more physical (local), one can absorb the global factors T and Vn in the definition of the
Fourier transform; cf. § 9.1.5.
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Due to (6.26), this leads to the fluctuation–dissipation theorem in the following form:

S(ω,k) = −2T
ω
(Ξ−1)A(ω,k). (8.15)

For examples of Ξ for specific systems, see § 9.

8.3. Kirchhoff’s law
Consider the power deposition via polarization drag

P =
∑

s

ˆ
dp (vs · Fs)Fs(p). (8.16)

Using (6.58a) for Fs, (8.13) for ΞA and (8.15) for S, this can also be expressed as follows:

P ≈
∑

s

ˆ
dk
(2π)n

dp (k · vs) (α
†
s (Ξ

−1)Aαs)(k · vs,k; p)Fs(p)

=
∑

s

ˆ
dω
2π

dk
(2π)n

dp 2πω δ(ω − k · vs)(α
†
s (Ξ

−1)Aαs)(ω,k; p)Fs(p)

= 2T
ˆ

dω
2π

dk
(2π)n

tr
(
(Ξ−1)A

πω
T

∑
s

ˆ
dp δ(ω − k · vs)(αsα

†
s )(ω,k; p)Fs(p)

)
= −

ˆ
dω
2π

dk
(2π)n

ω tr(SΞA)(ω,k). (8.17)

Thus, the spectral density of the power deposition via polarization drag is given by

Pω,k = −ω tr(SΞA), (8.18)

which is a restatement of Kirchhoff’s law (Krall & Trivelpiece 1973, § 11.4). For examples
of Ξ for specific systems, see § 9.

8.4. Equipartition theorem
As flows from § 7.5, the energy of on-shell waves of a field Ψ̃ in a homogeneous
n-dimensional plasma of a given volume Vn can be written as

VnEw =
ˆ

dk Vnw(k)J(k)

= (2π)n
ˆ

Vndk
(2π)n

ˆ ∞
0

dωω ∂ωΛ(ω,k) h(k) δ(ω − w(k))

= (2π)n
∑

k

ˆ ∞
0

dωω ∂ωΛ(ω,k) (η†Uη)(ω,k). (8.19)

To apply this to microscopic fluctuations, one can replace U with W and substitute
W = (2π)−(n+1)S. Then, the total energy of a mode with given wavevector k and
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polarization η can be expressed as

Ek,η = 1
2π

ˆ ∞
0

dωω (∂ωΛ) η†Sη, (8.20)

where the arguments (ω,k) are omitted for brevity. For thermal equilibrium, one can
substitute (8.15) for S; then,

Ek,η = −T
π

im
ˆ ∞

0
dω (∂ωΛ) η†Ξ−1η. (8.21)

The integrand peaks at ω = w(k), where the mode eigenvalueΛ is small. Due to damping,
the actual zero of Λ is slightly below the real axis in the complex-frequency space. Then,
at infinitesimally small damping, η†Ξ−1η can be approximated near ω = w(k) as

η†Ξ−1η ≈ 1
Λ
≈ 1
∂ωΛ(ω,k)

(
pv

1
ω − w(k)

− iπδ(ω − w(k))
)
. (8.22)

This leads to the well-known equipartition theorem

Ek = T. (8.23)

Note that, according to (8.23), the sum VnEw =
∑

k,η Ek,η is divergent. This indicates that
not all modes can be classical and on-shell (weakly damped) simultaneously.

8.5. Summary of § 8
In thermal equilibrium, when all species have Boltzmann–Gibbs distributions with
common temperature T , the collision operator vanishes, the entropy is conserved and the
spectrum of microscopic fluctuations (8.9) satisfies the fluctuation–dissipation theorem

S(ω,k) = −2T
ω
(Ξ−1)A(ω,k), (8.24)

where Ξ is the dispersion matrix (6.80) and A denotes the anti-Hermitian part (or the
imaginary part in case of scalar fields). From here, it is shown that the spectral density
of the power deposition via polarization drag is given by Pω,k = −ω tr(SΞA), which is
a restatement of Kirchhoff’s law. For on-shell waves, (8.24) reduces to the equipartition
theorem, which says that the energy per mode equals T . Applications to specific systems
are discussed in § 9.

9. Examples

In this section, we show how to apply our general formulation to non-relativistic
electrostatic interactions (§ 9.1), relativistic electromagnetic interactions (§ 9.2),
Newtonian gravity (§ 9.3) and relativistic gravity, including gravitational waves (§ 9.4).

9.1. Non-relativistic electrostatic interactions
9.1.1. Main equations

Let us show how our general formulation reproduces (and generalizes) the well-known
results for electrostatic turbulence in non-magnetized non-relativistic plasma. In this case,

Hs = p2

2ms
+ esϕ + esϕ̃, (9.1)

where es is the electric charge, ϕ is the electrostatic potential and ϕ and ϕ̃ are its average
and oscillating parts, respectively. Then, H0s = Hs = p2/(2ms)+ esϕ, H̃s = esϕ̃, α̂s = es
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and L̂s = R̂s = 0̂, so ℘s = 0. The matrix (6.78) is a scalar (Wigner function) given by

U(t, x, ω,k) =
ˆ

dτ
2π

ds
(2π)n

ϕ̃(t + τ/2, x+ s/2) ϕ̃(t − τ/2, x− s/2) eiωτ−ik·s. (9.2)

(Underlining denotes the macroscopic part, n .= dim x, and the arguments (t, x) will be
omitted from now on.) Correspondingly,

Ds ≈ e2
s

ˆ
dk π kkU(k · vs,k), (9.3)

�s = e2
s
∂

∂ϑ

 
dω dk

kkU(ω,k)
ω − k · vs + ϑ

∣∣∣∣
ϑ=0
, (9.4)

Δs = Φs = e2
s

2
∂

∂p
·
 

dω dk
kU(ω,k)
ω − k · vs

, (9.5)

and also

Hs = p2

2ms
+ esϕ +Δs, vs = p

ms
+ ∂Δs

∂p
. (9.6)

The Lagrangian density of a free electrostatic field is

L0 = 1
8π
δij(∂iϕ̃)(∂jϕ̃) = ∂

∂xi

(
1

8π
δijϕ̃(∂jϕ̃)

)
+ 1

2
ϕ̃

(
−δ

ij∂i∂j

4π

)
ϕ̃. (9.7)

The first term on the right-hand side does not contribute to the field action S0 and thus
can be ignored. The second term is of the form (6.1) with M = 1, g = 1 (§ 2.1.2) and
Ξ̂ 0 = k̂2/(4π), so Ξ 0(ω,k) = k2/(4π), where k2 ≡ k2 ≡ δijkikj. Then, (6.20) gives

Ξ(ω,k) = Ξ(ω,k) = k2ε‖(ω,k)
4π

, (9.8)

where the arguments t and x are omitted for brevity and ε‖ is the parallel permittivity,

ε‖(ω,k) = 1+
∑

s

4πe2
s

k2

ˆ
dp

k
ω − k · vs + i0

· ∂Fs

∂p
. (9.9)

9.1.2. Collisions and fluctuations
By (8.12), the spectrum of microscopic oscillations of ϕ̃ is a scalar given by

S(ω,k) = 2π
∑

s

(
4πes

k2|ε‖(ω,k)|
)2 ˆ

dp δ(ω − k · vs)Fs(p), (9.10)

where we substituted n = 3 for three-dimensional plasma. For thermal equilibrium, (8.15)
leads to the well-known formula (Lifshitz & Pitaevskii 1981, § 51)

S(ω,k) = −2T
ω

im
(

1
Ξ(ω,k)

)
= −8πT

ωk2
im
(

1
ε‖(ω,k)

)
= 8πT
ωk2

im ε‖(ω,k)
|ε‖(ω,k)|2 . (9.11)

The spectrum Sρ of charge-density fluctuations is found using Poisson’s equation
ρ̃˜= k̂2ϕ̃˜/4π, whence Sρ ≈ (k2/4π)2S. Fluctuations of other fields are found similarly.
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Also, (6.36) leads to

|Xss′(ω,k; p, p′)|2 =
(

4πeses′

k2|ε‖(ω,k)|
)2

. (9.12)

Then, (6.61) yields the standard Balescu–Lenard collision operator

Cs = ∂

∂p
·
∑

s′

ˆ
dk
(2π)3

dp′
πkk

|ε‖(k · vs,k)|2
(

4πeses′

k2

)2

δ(k · vs − k · v′s′)

·
(
∂Fs(p)
∂p

Fs′(p′)− Fs(p)
∂Fs′(p′)
∂p′

)
. (9.13)

(As a reminder, the distribution functions are normalized such that
´

dp Fs is the local
average density of species s (5.39).)

9.1.3. On-shell waves
For on-shell waves, (7.63) gives U(ω,k) = (h(k)+ h(−k))δ(ω − w(k)), where w(k) is

determined by the dispersion relation

ε‖H(w(k),k) = 0, (9.14)

and ε‖H ≡ re ε‖ is given by

ε‖H(ω,k) = 1+
∑

s

4πe2
s

k2

 
dp

k
ω − k · vs

· ∂Fs

∂p
. (9.15)

The phase-space density of the wave action, defined in (7.74), is

J(k) = h(k)
∂ΞH(k)
∂ω

= h(k)
k2

4π
∂ε‖H(w(k),k)

∂ω
, (9.16)

and the dressing function (9.4) is given by

�s = e2
s
∂

∂ϑ

 
dk (h(k)+ h(−k))

kk
w(k)− k · vs + ϑ

∣∣∣∣
ϑ=0

= 2e2
s
∂

∂ϑ

 
dk h(k)

kk
w(k)− k · vs + ϑ

∣∣∣∣
ϑ=0
. (9.17)

Using these, one obtains (Appendix F.1.1)∑
s

ˆ
dp pFs +

ˆ
dk kJ =

∑
s

ˆ
dp pf s, (9.18)

so the conserved quantity (7.88) is the average momentum of the plasma (while the
electrostatic field carries no momentum, naturally). Also (Appendix F.1.2),∑

s

ˆ
dp H0sFs +

ˆ
dk wJ =

∑
s

ˆ
dp H0sf s +

1
8π

Ẽ†Ẽ, (9.19)

so, expectedly, the conserved quantity (7.90) is the average particle energy plus the energy
of the electrostatic field. In combination with our equations for Fs and J (§ 7.6), these
results can be considered as a generalization and concise restatement of the OC QLT by
Dewar (1973), which is rigorously reproduced from our general formulation as a particular
case.
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9.1.4. Eikonal waves
As a particular case, let us consider an eikonal wave

ϕ̃ ≈ re(eiθ ϕ̆), ω
.= −∂tθ, k .= ∂xθ, (9.20)

which may or may not be on-shell. As seen from § 7.4.1,

U ≈ |ϕ̆|
2

4

∑
±
δ(ω ± ω) δ(k± k). (9.21)

For non-resonant particles, the dressing function is well defined is found as follows:

�s ≈ −
ˆ

dω dk
e2

s kk|ϕ̆|2
4(ω − k · vs)2

∑
±
δ(ω ± ω) δ(k± k)

= − e2
s k k|ϕ̆|2

2(ω − k · vs)2
. (9.22)

Similarly, the ponderomotive energy for non-resonant particles is

Δs ≈ e2
s |ϕ̆|2
8ms

∂

∂vs
·
ˆ

dω dk
k

ω − k · vs

∑
±
δ(ω ± ω) δ(k± k)

= e2
s |ϕ̆|2
8ms

ˆ
dω dk

k2

(ω − k · vs)2

∑
±
δ(ω ± ω) δ(k± k)

= e2
s k

2|ϕ̆|2
4ms(ω − k · vs)2

, (9.23)

in agreement with Dewar (1972) and Cary & Kaufman (1977). One can also express these
functions in terms of the electric-field envelope Ĕ ≈ −ikϕ̆:

�s ≈ − e2
s ĔĔ†

2(ω − k · vs)2
, Δs ≈ e2

s |Ĕ|2
4ms(ω − k · vs)2

. (9.24)

For on-shell in particular, one can use (9.16) together with h(k) = 1
4 |ϕ̆|2δ(k− k) (cf.

(7.64)) to obtain the well-known expression for the wave action density I .= ´
dk J:

I = |Ĕ|
2

16π
∂ε‖H(ω,k)
∂ω

∣∣∣
ω=w(k)

. (9.25)

For not-too-hot plasma, one has ε‖H(ω,k) ≈ 1− ω2
p/ω

2, where ωp
.=∑s 4πNse2

s/ms is
the plasma frequency. The corresponding waves are Langmuir waves. Their dispersion
relation is w(k) ≈ ±ωp, so I ≈ ±|Ĕ|2/(8πωp) (and accordingly, the wave energy density
is Ew = wI � 0 for either sign). Remember, though, that this expression is only
approximate. Using it instead of (9.25) can result in violation of the exact conservation
laws of QLT. Conservation of the Langmuir-wave action in non-stationary plasmas beyond
the cold-plasma approximation is also discussed in Dodin, Geyko & Fisch (2009), Dodin
& Fisch (2010b) and Schmit, Dodin & Fisch (2010).
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9.1.5. Homogeneous plasma
In homogeneous n-dimensional plasma of a given volume Vn, the Wigner function (9.2)

has the form U = U(t,k)δ(ω − w(t,k)). The function U is readily found using (5.47):

U(t,k) = 1
Vn

ˆ
dx dωU = 1

Vn
| ◦ϕ̃(t,k)|2 = 1

Vn
| ◦ϕ̃(t,k)|2. (9.26)

Then,

Ds ≈ πe2
s

Vn

ˆ
dk kk | ◦ϕ̃(t, k)|2 δ(w(t,k)− k · vs). (9.27)

This coincides with the well-known formula for the QL-diffusion coefficient in
homogeneous electrostatic plasma.39 The functions �s and Δs are also important
in homogeneous turbulence in that they ensure the proper energy–momentum
conservation; for example, see Stix (1992, § 16.3) and Liu & Dodin (2015, § II.2).
These functions can be expressed through

◦
ϕ̃ too. However, they have a simpler

representation in terms of the Wigner function U, as in (9.4) and (9.5), respectively.
This is because U is a local property of the field, which makes it more
fundamental than the amplitudes of global Fourier harmonics commonly used in the
literature.

9.2. Relativistic electromagnetic interactions
9.2.1. Main equations

Let us extend the above results to relativistic electromagnetic interactions. In this case,

Hs =
√

m2
s c4 + (pc− esA)2 + esϕ, (9.28)

where c is the speed of light and A is the vector potential. Let us adopt the Weyl gauge
for the oscillating part of the electromagnetic field (ϕ̃ = 0) and Taylor-expand Hs to the

second order in Ã. This leads to

Hs ≈ H0s − esβ
†
s Ã+ e2

s

2c2
Ã†μ−1

s Ã, (9.29)

H0s =
√

m2
s c4 + (pc− esA)2 + esϕ (9.30)

(although plasma is assumed non-magnetized, a weak average magnetic field B = ∇ × A
is allowed, so A can be order-one and thus generally must be retained), where

βs =
1

mscγs

(
p− es

c
A
)
, μ−1

s =
1− βsβ

†
s

msγs
, (9.31)

and γs
.= (1− β2

s )
−1/2. In the equations presented below, βs = vs/c (where vs is the OC

velocity) is a sufficiently accurate approximation. Also,μs ≡ (∂2
ppH0s)

−1 can be interpreted
as the relativistic-mass tensor.

39See, for example, (16.17) in Stix (1992). The extra mass factor appears there because QL diffusion is considered in
the velocity space instead of the momentum space.
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Let us choose the field Ψ̃ of our general theory to be the oscillating electric field
Ẽ = iω̂Ã/c; then (cf. (6.2)),

α̂s = iesvsω̂
−1, L̂s = e2

s ω̂
−1, R̂s = μ−1

s ω̂
−1. (9.32)

(Other ways to identify L̂s and R̂s are also possible and lead to the same results.) Then,

αs = iesvs

ω
, ℘s =

e2
s

ω2
μ−1

s . (9.33)

The average Wigner matrix of Ẽ is

U(t, x, ω,k) =
ˆ

dτ
2π

ds
(2π)3

Ẽ(t + τ/2, x+ s/2) Ẽ†(t − τ/2, x− s/2) eiωτ−ik·s (9.34)

(the arguments t and x are henceforth omitted), and the nonlinear potentials are

Ds = πe2
s

ˆ
dk kk

v†
s U(k · vs,k)vs

(k · vs)2
, (9.35)

�s = e2
s
∂

∂ϑ

 
dω dk

kk
ω2

(v†
s Uvs)

ω − k · vs + ϑ
∣∣∣∣
ϑ=0
, (9.36)

Δs = e2
s

2
∂

∂p
·
 

dω dk
k
ω2

(v†
s Uvs)

ω − k · vs
+ e2

s

2

ˆ
dω dk

tr(Uμ−1
s )

ω2
. (9.37)

When plasma is non-relativistic and the field is electrostatic (so U = kk†Uϕ , where Uϕ
is scalar), (9.35) gives the same Ds as (9.3) and (9.37) gives the same Δs as (9.5). For
�s, the equivalence between (9.36) and (9.4) should not be expected because �s is a part
of a distribution function, which is not gauge-invariant. (Canonical momenta in the Weyl
gauge are different from those in the electrostatic gauge.) But it is precisely the dressing
function (9.36) that leads to the correct expressions for the momentum and energy stored
in the OC distribution (§ 9.2.3).

The Lagrangian density of a free electromagnetic field is

L0 = Ẽ†Ẽ − B̃†B̃
8π

. (9.38)

From Faraday’s law, one has B̃ = ω̂−1c(̂k× E).40 Then, −B̃†B̃/c2 can be represented as
follows (up to a divergence, which is insignificant):

(Ẽ × ω̂−1k̂) · (ω̂−1k̂× Ẽ) = Ẽ · ω̂−2(̂k× (̂k× Ẽ))

= Ẽ†ω̂−2(̂k(̂k · Ẽ)− Ẽk̂2)

= Ẽ†ω̂−2(k̂ k̂† − 1k̂
2
)Ẽ. (9.39)

Then, the vacuum dispersion operator can be written as (cf. (6.1))

Ξ̂ 0(ω,k) = 1
4π
(1+ c2ω̂−2(k̂ k̂† − 1k̂

2
)). (9.40)

40Here, the oscillating field Ψ̃ = Ẽ has the same dimension as x, so the standard vector notation (including the dot
product and the cross product) is naturally extended to Ψ̃ .
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The total dispersion matrix is readily found to be

Ξ(ω,k) = 1
4π

(
ε(ω,k)+ c2

ω2
(kk† − 1k2)

)
, (9.41)

where ε (not to be confused with the small parameter ε that we introduced earlier) is the
dielectric tensor

ε(ω,k) = 1− wp

ω2
+
∑

s

4πe2
s

ω2

ˆ
dp

vsv
†
s

ω − k · vs + i0
k · ∂Fs

∂p
. (9.42)

Here, wp is the squared relativistic plasma frequency, which is a matrix, because the
‘masses’ μs are matrices:

wp
.=
∑

s

4πe2
s

ˆ
dp Fsμ

−1
s . (9.43)

9.2.2. Collisions and fluctuations
By (8.12), the spectrum of microscopic oscillations of Ẽ is a matrix given by

S(ω,k) = 2π
∑

s

(
4πes

ω

)2 ˆ
dp δ(ω − k · vs)Fs(p)ε−1(ω,k) vsv

†
s ε
−†(ω,k). (9.44)

In the electrostatic limit, one can replace ε−1 with ε−1
‖ kk†/k2, where ε‖ is the relativistic

generalization of (9.9); then (9.44) leads to (9.10) as a particular case. For thermal
equilibrium, one can also use (8.15) and the following form of ε−1 for isotropic plasma:

ε−1 = 1
ε⊥

(
1− kk†

k2

)
+ 1
ε‖

kk†

k2
, (9.45)

where ε⊥ is the (scalar) transverse permittivity. Also, (6.36) leads to

|Xss′(ω,k; p, p′)|2 ≈
(

4πeses′

ω2

)2

|v†
sε
−1(ω,k)v′s′ |2. (9.46)

Then the collision operator (6.61) is obtained in the form

Cs = ∂

∂p
·
∑

s′
2e2

s e2
s′

ˆ
dk
(2π)3

dp′
|v†

sε
−1(k · vs,k)v′s′ |2
(k · vs)4

δ(k · vs − k · v′s′)

× kk ·
(
∂Fs(p)
∂p

Fs′(p′)− Fs(p)
∂Fs′(p′)
∂p′

)
, (9.47)

which is in agreement with (Silin 1961; Hizanidis, Molvig & Swartz 1983). Replacing ε−1

with ε−1
‖ kk†/k2 leads to the standard Balescu–Lenard operator (9.13) as a particular case.

https://doi.org/10.1017/S0022377822000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000502


66 I.Y. Dodin

9.2.3. On-shell waves
Electromagnetic on-shell waves satisfy(

εH(w(k),k)+ c2

w(k)2
(kk† − 1k2)

)
Ĕ = 0, (9.48)

where Ĕ is the complex envelope vector parallel to the polarization vector η; also,

εH(ω,k) = 1− wp

ω2
+
∑

s

4πe2
s

ω2

 
dp

vsv
†
s

ω − k · vs
k · ∂Fs

∂p
. (9.49)

This yields (see (9.39))

Ĕ†εH(w(k),k)Ĕ = − c2

w(k)2
Ĕ†(kk† − 1k2)Ĕ = B̆†B̆. (9.50)

Then, the phase-space density of the wave action (7.74) can be cast in the form

J(k) = h(k)η† ∂ΞH(ω,k)
∂ω

η

∣∣∣
ω=w(k)

= h(k)
4πω2

η† ∂(ω
2εH(ω,k))
∂ω

η

∣∣∣
ω=w(k)

(9.51)

(cf. Dodin et al. 2019), and the dressing function (9.36) is given by

�s = e2
s
∂

∂ϑ

 
dk (h(k)+ h(−k))

kk
w2(k)

(v†
sηη

†vs)

w(k)− k · vs + ϑ
∣∣∣∣
ϑ=0

= 2e2
s
∂

∂ϑ

 
dk h(k)

kk
w2(k)

(η†vsv
†
sη)

w(k)− k · vs + ϑ
∣∣∣∣
ϑ=0
. (9.52)

Using these, one obtains (Appendix F.2.1)

∑
s

ˆ
dp pFs +

ˆ
dk kJ = P (kin) + Ẽ × B̃

4πc
, (9.53)

where P (kin) is the average density of the plasma kinetic (up to A) momentum,

P (kin) .=
∑

s

ˆ
dp (p− esÃ/c)fs =

∑
s

ˆ
dp p f (kin)

s , (9.54)

the functions f (kin)
s (p) .= fs(p+ esÃ/c) are the distributions of kinetic (up to A) momenta,

and the second term in (9.53) is the well-known average momentum of electromagnetic
field. Similarly (Appendix F.2.2),∑

s

ˆ
dp H0sFs +

ˆ
dk wJ = K(kin) + 1

8π
(
Ẽ†Ẽ + B̃†B̃

)
, (9.55)

where K(kin) is given by

K(kin) .=
∑

s

ˆ
dp H0s f (kin)

s . (9.56)

In other words, the total momentum and energy of the system in the OC–wave
representation are the same as those in the original particle–field variables.
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9.2.4. Eikonal waves
As a particular case, let us consider an eikonal wave

Ẽ ≈ re(eiθ Ĕ), ω
.= −∂tθ, k .= ∂xθ, (9.57)

which may or may not be on-shell. Then, (9.36) and (9.37) lead to (cf. § 9.1.4)

�s = −k k
ω2

e2
s |v†

s Ĕ|2
2(ω − k · vs)2

, (9.58)

Δs = e2
s Ĕ†μ−1

s Ĕ
4ω2 + e2

s k
4ω2 ·

∂

∂p

( |v†
s Ĕ|2

ω − k · vs

)
. (9.59)

For on-shell waves in particular, one also obtains the action density in the form

I = 1
16πω2

Ĕ† ∂(ω
2εH(ω,k))
∂ω

Ĕ
∣∣∣
ω=w(k)

= 1
16πω

(
Ĕ† ∂(ωεH(ω,k))

∂ω
Ĕ + B̆†B̆

) ∣∣∣
ω=w(k)

, (9.60)

where we used (9.50).

9.3. Newtonian gravity
For Newtonian interactions governed by a gravitostatic potential ϕg, one has

Hs = p2

2ms
+ msϕg + msϕ̃g, L0 = −(∇ϕ̃g)

2

8πG
, (9.61)

where G is the gravitational constant. This system is identical to that considered in § 9.1
for non-relativistic electrostatic interactions up to coefficients. Specifically, es are replaced
with ms, a factor −G−1 appears in Ξ 0, and the dispersion matrix becomes

Ξ(ω,k) = Ξ(ω,k) = −k2εg(ω,k)
4πG

. (9.62)

Thus, ε‖ is replaced with −εg/G, where εg is the gravitostatic permittivity given by

εg(ω,k) = 1−
∑

s

4πGm2
s

k2

ˆ
dp

k
ω − k · vs + i0

· ∂Fs

∂p
. (9.63)

This readily yields, for example, the kinetic theory of the Jeans instability (Trigger
et al. 2004), whose dispersion relation is given by εg(ω,k) = 0 (modulo the usual analytic
continuation of the permittivity to modes with imω < 0).

9.4. Relativistic gravity
9.4.1. Main equations

The dynamics of a relativistic neutral particle with mass m in a spacetime metric gαβ
with signature (−+++) is governed by a covariant Hamiltonian (see, for example, Garg
& Dodin 2020)

H(x, p) = 1
2m

(
m2 + gαβ(x)pαpβ

) ≡ H(g, p). (9.64)

Here, x ≡ (x0, x), and x0 = t, as usual. Also, p ≡ ( p0, p) is the index-free notation for
the four-momentum pα, gαβ is the inverse metric, g is the index-free notation for gαβ , the
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units are such that c = 1 and the species index is omitted.41 The corresponding Hamilton’s
equations, with τ the proper time, are

dxα

dτ
= ∂H

∂pα
,

dpα
dτ
= − ∂H

∂xα
. (9.65)

This dynamics is constrained to the shell p0 = P0(t, x, p), where P0 is the (negative)
solution of

H(g,P0(t, x, p), p) = 0. (9.66)

This means that the particle distribution in the (x, p) space is delta-shaped and thus does
not satisfy (3.35). Hence, we will consider particles in the six-dimensional space (x, p)
instead. The corresponding dynamics is governed by the Hamiltonian

H = −P0(t, x, p). (9.67)

This is seen from the fact that

∂H
∂‚
= −∂P0

∂‚
= ∂H/∂‚
∂H/∂p0

, (9.68)

where ‚ ∈ {t, x, p}, so Hamilton’s equations obtained from (9.67) are equivalent to (9.65):

dxα

dt
= ∂H
∂pα
= ∂H/∂pα
∂H/∂p0

,
dpα
dt
= − ∂H

∂xα
= ∂H/∂xα

∂H/∂p0
. (9.69)

Let us decompose the metric into the average part and oscillations, gαβ = gαβ + g̃αβ ,
and approximate the inverse metric to the second order in g̃:

gαβ ≈ gαβ − g̃αβ + g̃αγ gγ δ̃g
δβ, (9.70)

where the indices of g̃ are manipulated using the background metric gαβ . This gives

H = 1
2m

(
m2 + gαβpαpβ − g̃αβpαpβ + g̃αβgβγ g̃γ δpαpδ

)
. (9.71)

The Hamiltonian (9.67) is expanded in g̃ as follows:

H(g, p) ≈ −P0 − ∂P0

∂ g̃αβ
g̃αβ − 1

2
∂2P0

∂ g̃αβ∂ g̃γ δ
g̃αβ g̃γ δ, (9.72)

where P0 and the derivatives on the right-hand side are evaluated on (g, p). To calculate
these derivatives, let us differentiate (9.66) and use (9.71) for H. This gives

0 = ∂H

∂ g̃αβ
+ ∂H

∂p0

∂P0

∂ g̃αβ
= 1

2m

(
−pαpβ + 2P0 ∂P0

∂ g̃αβ

)
, (9.73)

where the derivatives with respect to the oscillating metric are taken at fixed pα and at
g̃→ 0, and P0 ≡ P0(g, p) = g0αpα; thus,

∂P0

∂ g̃αβ
= pαpβ

2P0
. (9.74)

41This section uses notation different from that used in the rest of the paper. In particular, the Greek indices span
from 0 to 3, and the standard rules of index manipulations apply.
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Similarly, differentiating (9.66) twice gives

0 = ∂2H

∂ g̃αβ∂ g̃γ δ
+ ∂H

∂p0

∂2P0

∂ g̃αβ∂ g̃γ δ
+ ∂P0

∂ g̃αβ
∂

∂p0

∂H

∂ g̃γ δ
+ ∂

∂p0

(
∂H

∂ g̃αβ
+ ∂H

∂p0

∂P0

∂ g̃αβ

)
∂P0

∂gγ δ

= ∂2H

∂ g̃αβ∂ g̃γ δ
+ ∂H

∂p0

∂2P0

∂ g̃αβ∂ g̃γ δ
+ ∂P0

∂ g̃αβ
∂

∂p0

∂H

∂ g̃γ δ
+ ∂P0

∂ g̃γ δ
∂

∂p0

∂H

∂ g̃αβ
+ ∂2H

∂p0∂p0

∂P0

∂ g̃αβ
∂P0

∂ g̃γ δ

= 1
2m

(
gβγ pαpδ + gδαpγ pβ + 2P0 ∂2P0

∂ g̃αβ∂ g̃γ δ
− 1

2P0

∂( pαpβpγ pδ)
∂p0

+ g00 pαpβpγ pδ
2(P0)2

)
,

whence

∂2P0

∂ g̃αβ∂ g̃γ δ
= − 1

2P0
(gβγ pαpδ + gδαpγ pβ)+ 1

4(P0)2

∂( pαpβpγ pδ)
∂p0

− g00 pαpβpγ pδ
4(P0)3

.

Then, (9.72) yields

H ≈ H0 + ααβ g̃αβ + 1
2

g̃αβ℘αβγ δ̃gγ δ, (9.75)

where we introduced H0 = −P0, ααβ = pαpβ/(2P0) and

℘αβγ δ =
δβγ pαpδ + δαδ pβpγ

2P0
− 1

4(P0)2

∂( pαpβpγ pδ)
∂p0

+ g00 pαpβpγ pδ
4(P0)3

. (9.76)

9.4.2. Nonlinear potentials
Let us treat g̃ as a 16-dimensional vector (Garg & Dodin 2021b), so ααβ serves as α† and

℘αβγ δ serves as ℘. (Because these operators happen to be local in the x representation,
here we do not distinguish them from their symbols.) Let us also introduce

E
.= pαpβpγ pδUαβγ δ (9.77)

and notice that vi ≈ ẋi = pi/p0 (see (9.69)), so ω − k · v = −kρpρ/P0 and δ(ω − k · v) =
P0δ(kρpρ). Then, one finds from (6.77) that (Appendix B.8)

D = π
4P0

ˆ
dk kkE δ(kρpρ), (9.78)

� = 1
4P0

∂

∂ϑ

 
dk

kkE

ϑP0 − kρpρ

∣∣∣∣
ϑ=0

, (9.79)

Δ = pαpβ
2P0

ˆ
dk Uαγ

γβ − 1
8P0

∂

∂pλ

 
dk

kλE
kρpρ

. (9.80)

Equation (9.80) (where one takes p0 = P0 after the differentiation) is in agreement with
the result that was obtained for quasimonochromatic waves in Garg & Dodin (2020). The
derivation of the dispersion matrix Ξ for relativistic gravitational interactions in matter
is cumbersome, so it is not presented here, but see Garg & Dodin (2022). The collision
integral and fluctuations for relativistic gravitational interactions are straightforward to
obtain from the general formulas presented in §§ 6.9 and 8. This can be used to describe
QL interactions of gravitational waves, including not only the usual vacuum modes42 but
also waves coupled with matter, for example, the relativistic Jeans mode.

42Vacuum gravitational waves satisfy ω2 = |k|2. Hence, satisfying the resonance condition kρpρ = 0 requires
|k · v| = |k|, which requires particle speeds not smaller than the speed of light (remember that the speed of light is
equal to one in our units). For massive particles, this cannot be satisfied, so D vanishes for vacuum gravitational waves.
However, such waves can still produce adiabatic ponderomotive effects determined by Δ (Garg & Dodin 2020).

https://doi.org/10.1017/S0022377822000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000502


70 I.Y. Dodin

Also notice that the OC Hamiltonian H = H0 +Δ can be put in a covariant form as
follows. Like in the original system (§ 9.4.1), H determines the ponderomotively modified
shell p0 = P0(t, x, p) via H = −P0. On one hand, the covariant OC Hamiltonian H′
vanishes on this shell,43 so it can be Taylor-expanded as follows:

H′ ≈ ( p0 − P0)
∂H
∂p0

∣∣∣∣
p=P0

≈ ( p0 − P0 +Δ)λ, λ
.= ∂H

∂p0

∣∣∣∣
p=P0

. (9.81)

On the other hand, it can also be represented as H′ = H(g, p)+Δ′ (here Δ′ is the
ponderomotive term yet to be found) and Taylor-expanded around the unperturbed shell
p0 = P0(t, x, p) as

H′ ≈ Δ′ + ( p0 − P0)λ = ( p0 − P0 +Δ′/λ)λ. (9.82)

By comparing (9.81) with (9.82), one finds that Δ′ = λΔ. Because λ = P0/m, this leads
to the following covariant Hamiltonian for OCs:

H′ = 1
2m

(
m2 + gαβeffpαpβ − 1

4
∂

∂pλ

 
dk

kλE
kρpρ

)
, (9.83)

gαβeff
.= gαβ +

ˆ
dk Uαγ

γβ. (9.84)

9.4.3. Gauge invariance
As shown in Garg & Dodin (2021a, b) adiabatic QL interactions via gravitational waves

(i.e. those determined by � and Δ) can be formulated in a form invariant with respect to
gauge transformations

g̃αβ → g̃′αβ = g̃αβ + ∇(αξ̃ β), (9.85)

where ∇ is the covariant derivative associated with the background metric g, ξ̃ μ is an
arbitrary vector field and ψ(αηβ) ≡ (ψαηβ + ψβηα)/2. Let us show that this also extends
to resonant interactions. Recall that within the assumed accuracy the nonlinear potentials
are supposed to be calculated only to the zeroth order in the geometrical-optics parameter.
Then, the modification of the average Wigner matrix of the metric oscillations under the
transformation (9.85) can be written as

U′αβγ δ − Uαβγ δ = symbx

(
îk(α |̃ξβ)〉 〈̃gγ δ| − i|̃gαβ〉 〈̃ξ (γ | k̂δ) + k̂(α |̃ξβ)〉 〈̃ξ (γ | k̂δ)

)
= ik(αWβ)γ δ − ik(δWγ )αβ∗ + k(αWβ)(γ

ξ̃
kδ), (9.86)

where Wβγ δ .= symbx |̃ξβ〉 〈̃gγ δ| and Wβγ

ξ̃
is the average Wigner matrix of ξ̃ α. The

corresponding change of E is

E′ − E = (kρpρ)
(

ipβpγ pδWβγ δ − ipαpβpγWγ αβ∗ + kλpλpβpγWβγ

ξ̃

)
≡ (kρpρ)A.

Then, the difference in the diffusion coefficients (9.78) is

D′ − D = π
4P0

ˆ
dk kk δ(kρpρ) (kρpρ)A = 0, (9.87)

because δ(kρpρ) (kρpρ) = 0. In particular, this rules out QL diffusion via ‘coordinate
waves’.

43The covariant Hamiltonian is the dispersion function of particles as quantum waves in the semiclassical limit (Garg
& Dodin 2020).
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9.4.4. Lorenz gauge and effective metric
Let us consider gravitational waves in the Lorenz gauge, ∇αg̃αβ = 0. In this case,

kαUαβγ δ = kβUαβγ δ = kγUαβγ δ = kδUαβγ δ = 0, (9.88)

and thus kλ∂E/∂pλ = 0. Then,

∂

∂pλ

 
dk

kλE
kρpρ

= ∂

∂ϑ

 
dk

(kλkλ)E
kρpρ + ϑ

∣∣∣∣
ϑ=0

. (9.89)

This simplifies the expression (9.80) forΔ and (9.83) for H′. Furthermore, if the waves are
not significantly affected by matter, so the vacuum dispersion kλkλ = 0 can be assumed,
the term (9.89) vanishes completely. Then, (9.83) becomes

H′ = 1
2m

(
m2 + gαβeffpαpβ

)
(9.90)

and QL diffusion disappears, because particles cannot resonate with waves. This shows
that the only average QL effect of vacuum gravitational waves on particles is the
modification of the spacetime metric by

´
dk Uαγ γ β = O(ε2). For quasimonochromatic

waves, this effect is discussed in further detail in Garg & Dodin (2020).

10. Summary

In summary, we have presented QLT for classical plasma interacting with
inhomogeneous turbulence in the presence of background fields. Because we use the
Weyl symbol calculus, global-mode decomposition is not invoked, so our formulation
is local and avoids the usual issues with complex-frequency modes. Also, the particle
Hamiltonian is kept general, so the results are equally applicable to relativistic,
electromagnetic, and even non-electromagnetic (for example, gravitational) interactions.
Because our approach is not bounded by the limitations of variational analysis
either, effects caused by collisional and collisionless dissipation are also included
naturally.

Our main results are summarized in §§ 5.6, 6.9, 7.6 and 8.5 and are as follows. Starting
from the Klimontovich equation, we derive a Fokker–Planck model for the dressed
OC distribution. This model captures QL diffusion, interaction with the background
fields and ponderomotive effects simultaneously. The local diffusion coefficient is
manifestly positive-semidefinite. Waves are allowed to be off-shell (not constrained by
a dispersion relation), and a collision integral of the Balescu–Lenard type emerges in
a form that is not restricted to any particular Hamiltonian. This operator conserves
particles, momentum and energy, and it also satisfies the H-theorem, as usual. As a
spin-off, a general expression for the spectrum (average Wigner matrix) of microscopic
fluctuations of the interaction field is derived. For on-shell waves, which satisfy a QL
WKE, our theory conserves the momentum and energy of the wave–plasma system.
Dewar’s OC QLT of electrostatic turbulence (Dewar 1973) is proven formally as a
particular case and given a concise formulation. Also discussed as examples are relativistic
electromagnetic and gravitational interactions, and QLT for gravitational waves is
proposed.

Aside from having the aesthetic appeal of a rigorous local theory, our formulation can
help, for example, better understand and model QL plasma heating and current drive.
First of all, it systematically accounts for the wave-driven evolution of the non-resonant
particle distribution and for the ponderomotive effects caused by plasma inhomogeneity
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in both time and space. As discussed above (§ 7.5), this is generally important for
adequately calculating the energy–momentum transfer between waves and plasma even
when resonant absorption per se occurs in a homogeneous-plasma region. Second, our
formulation provides general formulas that equally hold in any canonical variables and
for any Hamiltonians that satisfy our basic assumptions (§ 3.1). Therefore, our results can
be applied to various plasma models immediately. This eliminates the need for ad hoc
calculations, which can be especially cumbersome beyond the homogeneous-plasma
approximation. Discussing specific models of applied interest, however exciting, is beyond
the scope of this paper and is left to future work.
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Appendix A. Average Wigner matrices
A.1. Positive-semidefinitness

As known from Cartwright (1976), the average Wigner function of any scalar field on
the real axis is non-negative if the averaging is done over a sufficiently large phase-space
volume. Here, we extend this theorem to average Wigner matrices of vector fields in a
multi-dimensional space, ψ(x), and show that such matrices are positive-semidefinite.

For any given function h(z) ≡ h(x, k), we define its local phase-space average as the
following convolution integral:44

h(z) .=
ˆ

dz′ G(z − z′) h(z′) ≡
ˆ

dx′ dk′ G(x− x′, k− k′) h(x′, k′) (A1)

with a Gaussian window function

G(x, k) .= 1
(2πσxσk)n

exp
(
− |x|

2

2σ 2
x

− |k|
2

2σ 2
k

)
(A2)

and positive constants σx and σk yet to be specified. Unlike in § 2.1.1, the following notation
will be assumed for the ‘scalar product’ for variables with upper, lower and mixed indices:

x′ · x′′ .= δijx
′ix′′ j, k′ · k′′ .= δijk′ik

′′
j , k · x .= kix

i. (A3)

(The Latin indices in this appendix range from 0 to n, δij and δij are unit matrices, and
summation over repeating indices is assumed.) In particular, note that |x|2 .= x · x � 0 and
must not be confused with the squared spacetime interval, which can have either sign.
Likewise, |k|2 .= k · k � 0 must not be confused with kik

i = −ω2 + k2.

44This ensures that ∂zh = ∂zh, as readily seen from (A1) using integration by parts.
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The average Wigner matrix of any given vector field ψ is given by

Wψ(x, k) = 1
(2π)n

1
(2πσxσk)n

ˆ
ds dx′ dk′ ψ(x′ + s/2)ψ†(x′ − s/2)

× exp
(
−|x− x′|2

2σ 2
x

− |k− k′|2
2σ 2

k

− ik′ · s
)
. (A4)

The integral over k′ can be readily taken:
ˆ

dk′ exp
(
−|k− k′|2

2σ 2
k

− ik′ · s
)
= (2π)n/2σ n

k exp
(
−σ

2
k |s|2
2
− ik · s

)
. (A5)

Then, using the variables x1,2
.= x′ ± s/2, one can rewrite (A4) as follows:

Wψ(x, k) = 1
(2π)3n/2σ n

x

ˆ
dx1 dx2 ψ(x1)ψ

†(x2) e−φ, (A6)

φ = |x− (x1 + x2)/2|2
2σ 2

x

+ σ
2
k |x1 − x2|2

2
+ ik · (x1 − x2). (A7)

The function φ can also be expressed as φ = |x|2/(2σ 2
x )+ φ(x1)+ φ∗(x2)− λx1 · x2,

where

φ(y)
.= |y|

2

2

(
1

4σ 2
x

+ σ 2
k

)
− x · y

2σ 2
x

+ ik · y (A8)

and λ .= σ 2
k − (4σ 2

x )
−1. Then, using ξ(y) .= ψ(y)e−φ(y), one obtains from (A6) that

Wψ(x, k) = e−|x|2/(2σ 2
x )

(2π)3n/2σ n
x

ˆ
dx1 dx2 ξ(x1)ξ

†
(x2) eλx1·x2 . (A9)

By Taylor-expanding eλx1·x2 , one obtains

Wψ(x, k) = e−|x|2/(2σ 2
x )

(2π)3n/2σ n
x

∞∑
m=0

λm

m!
Jm, (A10)

where Jm
.= ´

dx1 dx2 (x1 · x2)
mξ(x1)ξ

†
(x2). Note that

(x1 · x2)
m =

∑
μ(m)

n∏
i=1

(xi
1xi

2)
mi, (A11)

where the summation is performed over all combinations μ(m) ≡ {m1,m2, . . . ,mn} of
integers mi � 0 such that

∑
i mi = m. Thus,

Jm =
∑
μ(m)

J μJ †
μ, J μ =

ˆ
dy ξ(y)

n∏
i=1

(yi)mi . (A12)

Because each Jm is positive-semidefinite, the Wigner matrix Wψ is positive-semidefinite
when λ � 0, or equivalently, when σxσk > 1/2. This condition is assumed to be satisfied
for the phase-space averaging of Wψ used in the main text. Loosely, this means that the
averaging is done over the phase-space volume ΔxΔk ∼ (σxσk)

n � 1.
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A.2. Invariant limit for eikonal fields
For eikonal fields (7.17), one has

ψ(x+ s/2)ψ†(x− s/2) ≈ (A(x) eik(x)·s + c.c.
)+ (B(x) e2iθ(x) + c.c.

)
. (A13)

Here, A .= ηη†|ă|2/4, B .= ηηᵀă2
/4, ‘c.c.’ stands for complex conjugate, we used the

linear approximation θ(x± s/2) ≈ θ(x)± k(x) · s/2, with k ≡ (−ω,k). Then,

Wψ(x, k) ≈ A(x) δ(k− k(x))+ A∗(x) δ(k+ k(x))+ 2 re
(
B(x)e2iθ(x)δ(k)

)
. (A14)

Let us adopt σx � lc, where lc is the least characteristic scale of ă, η and k. Then,

Wψ(x, k) ≈ A(x)Gk(k− k)+ A∗(x)Gk(k+ k)+ 2 re
(
B(x)Gk(k)ζe2iθ(x)). (A15)

Here, Gk(k) are normalized Gaussians that can be replaced with delta functions if σk is
small compared with any scale of interest in the k space:

Gk(k)
.= 1

(
√

2πσk)n
exp

(
− |k|

2

2σ 2
k

)
→ δ(k). (A16)

Also, the function

ζ ≈ 1

(
√

2πσx)n

ˆ
dx′ exp

(
−|x

′ − x|2
2σ 2

x

+ 2ik(x) · (x′ − x)

)
= e−2|k(x)|2σ 2

x (A17)

can be made exponentially small by adopting σx � |k|−1.45 In this limit, the average
Wigner matrix of an eikonal field is independent of σx and σk:

Wψ(x, k) ≈ A(x) δ(k− k(x))+ A∗(x) δ(k+ k(x)). (A18)

This Wψ is also Hermitian and positive-semidefinite (in agreement with the general theory
from § A.1), because so are A and A∗. The same properties pertain to the Wigner matrix of
an ensemble of randomly phased eikonal fields, because it equals the sum of the Wigner
matrices of the individual components (see also § 7.4).

Appendix B. Auxiliary proofs
B.1. Proof of (2.53)

Like in the case of (2.45), one finds that

(̂Lψ(x))i(̂Rψ(x))∗j = 〈x|̂L i
i′ |ψ i′ 〉 〈ψ j′ |(̂R j

j′)
†|x〉

= (2π)n 〈x|̂L i
i′Ŵ

i′j′

ψ (̂R
†
)j′

j|x〉
= (2π)n 〈x|(L̂ Ŵψ R̂†)ij|x〉
= ´

dk
(
L(x, k) 
Wψ(x, k) 
 R†(x, k)

)ij
. (B1)

This proves (2.53a). At ε → 0, when 
 becomes the usual product, (B1) gives

(̂Lψ)(̂Rψ)† = ´
dk LWψR†, (B2)

and in particular, taking the trace of (B2) yields

(̂Rψ)†(̂Lψ) = tr
(
(̂Lψ)(̂Rψ)†

) = ´
dk tr(LWψR†) = ´

dk tr(WψQ). (B3)

Here, Q
.= R†L, and we used that tr(AB) = tr(BA) for any matrices A and B.

45Even though σx has been assumed small compared with lc, the smallness of the geometrical-optics parameter
ε
.= (|k|lc)−1 � 1 allows choosing σx in the interval |k|−1 � σx � lc.
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For real fields, one can also replace the integrand with

tr
(
W∗ψQ∗

) = tr
(
Q†W†

ψ

) = tr
(
Q†Wψ

) = tr
(
WψQ†), (B4)

where we used tr Aᵀ = tr A, (AB)ᵀ = BᵀAᵀ, W†
ψ = Wψ and, again, tr(AB) = tr(BA),

respectively. In summary then,

(̂Rψ)†(̂Lψ) = ´
dk tr(WψQ) = ´

dk tr
(
WψQ†

)
, (B5)

so the anti-Hermitian part of Q does not contribute to the integrals. Thus,

(̂Rψ)†(̂Lψ) = ´
dk tr(Wψ(R†L)H). (B6)

Because L̂ and R̂ are arbitrary, they can as well be swapped; then one obtains (2.53c).

B.2. Proof of (4.28)
Suppose the dominant term in μ in (4.16) has the form μhτ

h, where h is a natural number
and μh = O(ε2). (Here, h is a power index, so no summation over h is assumed.) Let us
Taylor-expand J [A,G] in μh:

J [A,G]− J [A,G0]−O(ε2)

≈ μh ·
∂

∂μh

(ˆ
dK A(X ,K) lim

ν→0+

ˆ ∞
0

dτ e−ντ+iΩτ+iK ·μhτ
h

)
μh=0

≈ μh ·
ˆ

dK A(X ,K) lim
ν→0+

∂

∂μh

(ˆ ∞
0

dτ e−ντ+iΩτ+iK ·μhτ
h

)
μh=0

≈ iμh ·
ˆ

dK KA(X ,K) lim
ν→0+

ˆ ∞
0

dτ τ he−ντ+iΩτ

≈ i1−hμh ·
ˆ

dK KA(X ,K)
dhG0(Ω(X ,K))

dΩh

≈ i1−hμh ·
ðh

∂Ωh

ˆ
dK KA(X ,K)G0(Ω(X ,K)). (B7)

Provided that A is sufficiently smooth and well behaved, the overall coefficient here
is O(1), so J [A,G]− J [A,G0] = O(μh)+O(ε2). Because μh = O(ε2), this proves
(4.28).

B.3. Proof of (5.4)
Here, we show that

symbx(û
αĜ û β)

= 1
(2π)N

ˆ
dS e−iK ·S 〈X + S/2|û αĜ û β |X − S/2〉
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= 1
(2π)N

ˆ
dX ′ dK ′′ dK ′ dS dS′Wαβ

u (X
′,K ′)G(X ′,K ′′) e−iK ·S+i(K ′+K ′′)·S′

× δ(X + S/2− X ′ − S′/2)δ(X − S/2− X ′ + S′/2)

= 1
(2π)N

ˆ
dX ′ dK ′ dK ′′ dS dS′Wαβ

u (X
′,K ′)G(X ′,K ′′) e−iK ·S+i(K ′+K ′′)·S′

× δ(S − S′)δ(X − S/2− X ′ + S′/2)

= 1
(2π)N

ˆ
dX ′ dK ′ dK ′′ dS Wαβ

u (X
′,K ′)G(X ′,K ′′) ei(K ′+K ′′−K)·Sδ(X − X ′)

= 1
(2π)N

ˆ
dK ′ dK ′′ dS Wαβ

u (X ,K
′)G(X ,K ′′) ei(K ′+K ′′−K)·S

=
ˆ

dK ′Wαβ
u (X ,K

′)G(X ,K − K ′). (B8)

B.4. Proof of (5.10)
Using (4.19), (4.20) and (2.84) in application to Wαβ

u , one finds that

Dαβ

0 (X )
.=
ˆ

dK W
αβ

u (X ,K)G
∗(X ,K)

=
ˆ

dK W
αβ

u (X ,−K)G∗(X ,−K)

=
ˆ

dK W
αβ

u (X ,−K)G(X ,K)

=
ˆ

dK W
αβ∗
u (X ,K)G(X ,K)

= (Dαβ

0 (X ))
∗, (B9)

and also

�αβc(X ) .= −
ˆ

dK W
αβ

u (X ,K)(G
|c(X ,K))∗

=
ˆ

dK W
αβ

u (X ,K)G
|c(X ,−K)

=
ˆ

dK W
αβ

u (X ,−K)G|c(X ,K)

=
ˆ

dK (W
αβ

u (X ,K))
∗G|c(X ,K)

= −(�αβc(X ))∗. (B10)

B.5. Proof of (5.20)
Let us estimate

L(1)f .= ∂

∂zα

(
JαμJβνP (1)

μν

∂f
∂zβ

)
, (B11)
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where P (1)
μν has the form

P (1)
μν

.=
ˆ

dK qν
∂W(X ,K)
∂zμ

G(Ω(X ,K)). (B12)

First, notice that

P (1)
μν =

∂

∂zμ

ˆ
dK qνWG−

ˆ
dK qνW

∂G
∂zμ

= ∂

∂zμ

ˆ
dK qνWG+ ∂v

λ

∂zμ

ˆ
dK qνqλWG′

= ∂

∂zμ

ˆ
dK qνWG+ ∂v

λ

∂zμ
ð

∂Ω

ˆ
dK qνqλWG

≡ ∂Q
(1)
ν

∂zμ
+ ∂v

λ

∂zμ
R(1)
λν . (B13)

Because Q(1)
ν and R(1)

λν are O(ε2), one has P (1)
μν ∼ κμε2, where κμ is the characteristic

inverse scale along the μth phase-space axis. Thus,

L(1)f ∼ (Jαμκακμ)Jβνκβε2f = O(εε2), (B14)

where we used (see (2.69) and (3.2))

Jαμκακμ ∼ κxκp = O(ε). (B15)

The first part of (5.20) is obtained by considering imL(1)f and using (B14).
Let us also estimate

L(2)f .= ∂

∂zα

(
JαμJβνP (2)

μν

∂f
∂zβ

)
, (B16)

where P (2)
μν has the form

P (2)
μν

.=
ˆ

dK
∂2W
∂zμ∂zν

G(Ω(X ,K)). (B17)

First, note that

P (2)
μν =

ˆ
dK

∂2W
∂zμ∂zν

G

= ∂

∂zμ

ˆ
dK
∂W
∂zν

G−
ˆ

dK
∂W
∂zν

∂G
∂zμ

= ∂2

∂zμ∂zν

ˆ
dK WG− ∂

∂zμ

ˆ
dK W

∂G
∂zν
− ∂

∂zν

ˆ
dK W

∂G
∂zμ
+
ˆ

dK W
∂2G
∂zμ∂zν
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= ∂2

∂zμ∂zν

ˆ
dK W G− ∂

∂zμ

ˆ
dK W G′

(
−qλ

∂vλ

∂zν

)
− ∂

∂zν

ˆ
dK W G′

(
−qλ

∂vλ

∂zμ

)
+
ˆ

dK W
∂2G
∂zμ∂zν

= ∂2

∂zμ∂zν

ˆ
dK WG+ ∂

∂zμ

(
∂vλ

∂zν
ð

∂Ω

ˆ
dK qλWG

)
+ ∂

∂zν

(
∂vλ

∂zμ
ð

∂Ω

ˆ
dK qλWG

)
+
ˆ

dK W
∂2G
∂zμ∂zν

. (B18)

Next, note that

ˆ
dK W

∂2G
∂zμ∂zν

=
ˆ

dK W
∂

∂zμ

(
−qλG′

∂vλ

∂zν

)
= −∂v

λ

∂zν

ˆ
dK qλW

∂G′

∂zμ
− ∂2vλ

∂zμ∂zν

ˆ
dK qλWG′

= ∂v
λ

∂zν
∂vδ

∂zμ

ˆ
dK qλqδWG′′ − ∂2vλ

∂zμ∂zν

ˆ
dK qλWG′

= ∂v
λ

∂zν
∂vδ

∂zμ
ð2

∂Ω2

ˆ
dK qλqδWG− ∂2vλ

∂zμ∂zν
ð

∂Ω

ˆ
dK qλWG. (B19)

Assuming the notation

S (2) .=
ˆ

dK WG = O (
ε2) ,

Q(2)
λ

.= ð

∂Ω

ˆ
dK qλWG = O (

ε2) ,
R(2)
λδ

.= ð2

∂Ω2

ˆ
dK qλqδWG = O (

ε2) , (B20)

one can then rewrite P (2)
μν as follows:

P (2)
μν =

∂2S (2)
∂zμ∂zν

+ ∂

∂zμ

(
∂vλ

∂zν
Q(2)
λ

)
+ ∂

∂zν

(
∂vλ

∂zμ
Q(2)
λ

)
− ∂2vλ

∂zμ∂zν
Q(2)
λ +

∂vλ

∂zν
∂vδ

∂zμ
R(2)
λδ

= ∂2S (2)
∂zμ∂zν

+ ∂2vλ

∂zμ∂zν
Q(2)
λ +

∂vλ

∂zν
∂Q(2)

λ

∂zμ
+ ∂v

λ

∂zμ
∂Q(2)

λ

∂zν
+ ∂2vλ

∂zμ∂zν
Q(2)
λ +

∂vλ

∂zν
∂vδ

∂zμ
R(2)
λδ .

Each term on the right-hand side of this equation scales as ε2κμκν , so

L(2)f ∼ (Jαμκακμ)(Jβνκβκν)ε2f ∼ ε2ε2f , (B21)

where we again used (B15). The second part of (5.20) is obtained by considering reL(2)f
and using (B21).
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B.6. Proof of (5.25)
Using (5.23) and assuming the notation dt

.= ∂t + vγ ∂γ , one finds that

∂α(D̂αβ∂β f )− ∂α((Dαβ + �αβ)∂β f )

=−∂α
(
�αβdt∂β f + 1

2
(dt�

αβ)∂β f
)

=−∂α
(

1
2
�αβdt∂β f + 1

2
dt(�

αβ∂β f )
)

=−∂α
(

1
2
�αβ∂βdtf − 1

2
�αβ(∂βv

γ )∂γ f
)
− ∂α

(
1
2

dt(�
αβ∂β f )

)
=−∂α

(
1
2
�αβ∂βdtf

)
+ ∂α

(
1
2
�αβ(∂βv

γ )∂γ f
)

−dt

(
1
2
∂α(�

αβ∂β f )
)
− (∂αvγ )∂γ

(
1
2
�αβ∂β f

)
. (B22)

Because �αβ = O(ε2) and dtf = O(ε2), the first term on the right-hand side of (B22) is
negligible. Also note that due to (3.15), the factor ∂αvγ in the last term on the right-hand
side of (B22) commutes with ∂γ . Hence, one obtains

∂α(D̂αβ∂β f )− ∂α(Dαβ∂β f )+ dt

(
1
2
∂α(�

αβ∂β f )
)

= ∂α
(
�αβ∂β f + 1

2
�αβ

(
∂βv

γ
)
∂γ f
)
− ∂γ

(
1
2
�αβ(∂αv

γ )∂β f
)

= ∂α
(
�αβ∂β f + 1

2

(
�αγ (∂γ v

β)−�γβ(∂γ vα)
)
∂β f
)

≡ ∂α(Uαβ∂β f ). (B23)

Next, notice that

�αβ = −1
2

JαμJβν
 

dK

(
qν
∂W
∂zμ
− qμ

∂W
∂zν

)
1
Ω

= −1
2

JαμJβν
 

dK
qν
Ω

∂W
∂zμ
+ 1

2
JαμJνβ

 
dK

qμ
Ω

∂W
∂zν

= −1
2

JαμJβν
(
∂

∂zμ

 
dK

qνW
Ω
−
 

dK qνW
∂

∂zμ
1
Ω

− ∂

∂zν

 
dK

qμW
Ω
+
 

dK qμW
∂

∂zν
1
Ω

)
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= −1
2

JαμJβν
(
∂

∂zμ

 
dK

qνW
Ω
+ ∂v

λ

∂zμ
ð

∂Ω

 
dK

qλqνW
Ω

− ∂

∂zν

 
dK

qμW
Ω
− ∂v

λ

∂zν
ð

∂Ω

 
dK

qλqμW
Ω

)
. (B24)

Assuming the notation

Qμ
.= 1

2

 
dK

qμW
Ω
, Rμν

.= 1
2

ð

∂Ω

 
dK

qμqνW
Ω

, (B25)

one can rewrite (B24) compactly as follows:

�αβ = JαμJβν(∂νQμ − ∂μQν)+ JαμJβν((∂νvλ)Rλμ − (∂μvλ)Rλν). (B26)

Notice also that �αβ = 2JαμJβνRμν . Hence, for Uαβ introduced in (B23), one has

Uαβ − JαμJβν(∂νQμ − ∂μQν)

= �αβ − JαμJβν(∂νQμ − ∂μQν)− (�γβ(∂γ vα)−�αγ (∂γ vβ))/2
= JαμJβν((∂νvλ)Rλμ − (∂μvλ)Rλν)+ JαμJγ ν(∂γ vβ)Rμν − JγμJβν(∂γ vα)Rμν

= JαμJβν(∂νvλ)Rλμ − JαμJβν(∂μvλ)Rλν + JαμJγ ν(∂γ vβ)Rμν − JγμJβν(∂γ vα)Rμν

= JαμJβλ(∂λvν)Rμν − JαλJβν(∂λvμ)Rμν + JαμJγ ν(∂γ vβ)Rμν − JγμJβν(∂γ vα)Rμν

= (JαμJβλJνγ − JαλJβνJμγ + JαμJγ νJβλ − JγμJβνJαλ)(∂2
γ λH)Rμν

= (JαμJβλJνγ − JαλJβνJμγ − JαμJγ νJλβ + Jμγ JβνJαλ)(∂2
γ λH)Rμν

= 0, (B27)

where we used (3.8) for vα and the anti-symmetry of Jαβ . Therefore,

Uαβ = JαμJβν(∂νQμ − ∂μQν) = (JαμJβν − JανJβμ)∂νQμ = −Uβα, (B28)

and accordingly,

∂αUαβ = (JαμJβν − JανJβμ)∂2
ναQμ = JαμJβν∂2

ναQμ

= JνμJβα∂2
ναQμ = Jβα∂α(Jνμ∂νQμ) = −Jαβ∂α(Jμν∂μQν) ≡ Jαβ∂αΦ. (B29)

Here, Φ .= −Jμν∂μQν , which is equivalent to (5.24). From (B29) and the fact that
Uαβ∂αβ = 0 due to the anti-symmetry of Uαβ , one has

∂α(Uαβ∂β f ) = Jαβ(∂αΦ)(∂β f ) = {Φ, f }. (B30)

Hence, (B23) leads to (5.25).

https://doi.org/10.1017/S0022377822000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000502


Quasilinear theory 81

B.7. Proof of (6.30)
The correlation function

Css′(t, x, τ, s; p, p′) .= gs(t + τ/2, x+ s/2, p)gs′(t − τ/2, x− s/2, p′) (B31)

can be readily expressed as

Css′ =
(
δss′
∑
σs=σ ′s′
+
∑
σs �=σ ′s′

)
〈δ(x+ s/2− xσs(t + τ/2))δ(p− pσs

(t + τ/2))

× δ(x− s/2− xσ ′s′ (t − τ/2))δ(p′ − pσ ′s′ (t − τ/2))〉 − Cf.

Here, 〈. . .〉 is another (in addition to overbar) notation for averaging used in this appendix,
the dependence of fs on (t, x) is neglected and ‘σs �= σ ′s′’ denotes that excluded are the
terms that have s′ = s and σs = σ ′s′ simultaneously. Aside from this, the summations over
σs are taken over all Ns � 1 particles of type s, and the summations over σs′ are taken over
all Ns′ � 1 particles of type s′. Also,

Cf
.= 〈fs(t + τ/2, x+ s/2, p)fs′(t − τ/2, x− s/2, p′)〉 . (B32)

To the leading order, pair correlations can be neglected. Then,∑
σs �=σ ′s′
〈. . .〉 =

∑
σs �=σ ′s′
〈δ(x+ s/2− xσs(t + τ/2))δ(p− pσs

(t + τ/2))〉︸ ︷︷ ︸
fs(t+τ/2,x+s/2,p)/Ns

× 〈δ(x− s/2− xσ ′s′ (t − τ/2))δ(p′ − pσ ′s′ (t − τ/2))〉︸ ︷︷ ︸
fs′ (t−τ/2,x−s/2,p′)/Ns′

= Cf

NsNs′

∑
σs,σ

′
s′

(1− δss′δσsσ
′
s′
) = (1− N−1

s δss′)Cf ≈ Cf. (B33)

Let us also use pσs
(t + τ/2) ≈ pσs

(t). Then,

Css′ ≈ δss′δ(p− p′)
Ns∑
σ=1

〈δ(x+ s/2− xσ (t + τ/2))

× δ(x− s/2− xσ (t − τ/2))δ(p− pσ (t))〉. (B34)

Next, notice that

〈δ(x+ s/2− xσ (t + τ/2))δ(x− s/2− xσ (t − τ/2))δ(p− pσ (t))〉
= 〈δ(s+ xσ (t − τ/2)− xσ (t + τ/2))δ(x− s/2− xσ (t − τ/2))δ(p− pσ (t))〉
= 〈δ(s+ xσ (t − τ/2)− xσ (t + τ/2))δ(x− (xσ (t + τ/2)+ xσ (t − τ/2))/2)δ(p− pσ (t))〉
≈ 〈δ(s− vs(t, xσ , pσ )τ )δ(x− xσ (t))δ(p− pσ (t))〉
≈ δ(s− vs(t, x, p)τ ) 〈δ(x− xσ (t))δ(p− pσ (t))〉
= δ(s− vs(t, x, p)τ )fs(t, x, p)/Ns. (B35)

Hence,
Css′ = δss′δ(p− p′)δ(s− vs(t, x, p)τ )Fs(t, x, p), (B36)
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where we used fs ≈ Fs. Therefore,

Gss′(t, x, ω,k; p, p′) =
ˆ

dτ
2π

ds
(2π)n

eiωτ−ik·s Css′(t, x, τ, s; p, p′)

≈ 1
(2π)n

δss′δ(p− p′)Fs(t, x, p). (B37)

B.8. Proof of (9.80)
Using the symmetry Uαβγ δ = Uβαγ δ = Uβαδγ , one readily obtains from (6.47) that

Δ = 1
2P0

ˆ
dk gβγ pαpδUαβγ δ + 1

8

 
dkJ , (B38)

J = − ∂
′

∂p
·
(

kE

P0*

)
− 1
(P0)2

∂E

∂p0
+ g00E

(P0)3
, (B39)

where * .= kρpρ = P0(k · v − ω) and the prime in ∂ ′ denotes that p0 is considered as a
function of p at differentiation. One can also write this as follows:

J = k
*
·
(
∂ ′P0

∂p

)
E

(P0)2
− 1

P0

∂ ′

∂p
·
(

kE

*

)
− 1
(P0)2

∂E

∂p0
+ g00E

(P0)3
. (B40)

As shown in Garg & Dodin (2020, Appendix B), the following equality is satisfied:

k
*
·
(
∂ ′P0

∂p

)
= 1
*

∂*

∂p0
− g00

P0
. (B41)

Also notice that

∂ ′

∂p
·
(

kE

*

)
= ∂

∂p
·
(

kE

*

)
+ ∂P0

∂p
· ∂
∂p0

(
kE

*

)
= ∂

∂p
·
(

kE

*

)
− k · v ∂

∂p0

(
E

*

)
, (B42)

where we used Hamilton’s equation ∂pP0 = −∂pH = −v. Therefore,

J = 1
*

∂*

∂p0

E

(P0)2
− 1

P0

∂

∂p
·
(

kE

*

)
+ k · v

P0

∂

∂p0

(
E

*

)
− 1
(P0)2

∂E

∂p0
. (B43)

The first and the last terms can be merged; then, one obtains

J = − 1
P0

∂

∂p
·
(

kE

*

)
+ k · v

P0

∂

∂p0

(
E

*

)
− *

(P0)2

∂

∂p0

(
E

*

)
= − 1

P0

∂

∂p
·
(

kE

*

)
+ ω

P0

∂

∂p0

(
E

*

)
= − 1

P0

∂

∂pλ

(
kλE
*

)
. (B44)

In combination with (B38), this leads to (9.80).
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Appendix C. Properties of the collision operator

Here, we prove the properties of the collision operator discussed in § 6.8. To shorten the
calculations, we introduce two auxiliary functions,

Zss′(k; p, p′) .= π δ(k · vs − k · v′s′)Qss′(k · vs,k; p, p′),

Fss′(p, p′)
.= ∂Fs(p)

∂pj
Fs′(p′)− Fs(p)

∂Fs′(p′)
∂p′j

, (C1)

which have the following properties:

Zss′(k; p, p′) = Zs′s(k; p′, p), Fss′(p, p′) = −Fs′s(p′, p). (C2)

C.1. Momentum conservation
Momentum conservation is proven as follows. Using integration by parts, one obtains

∑
s

ˆ
dp plCs

=
∑
s,s′

ˆ
dp pl

∂

∂pi

ˆ
dk
(2π)n

dp′ kikj Zss′(k; p, p′)Fss′(p, p′)

= −
∑
s,s′

ˆ
dk
(2π)n

dp dp′ klkj Zss′(k; p, p′)Fss′(p, p′). (C3)

Now we swap the dummy variables s↔ s′ and p↔ p′ and then apply (C2):

∑
s

ˆ
dp plCs

= −
∑
s′,s

ˆ
dk
(2π)n

dp′ dp klkj Zs′s(k; p′, p)Fs′s(p′, p)

=
∑
s′,s

ˆ
dk
(2π)n

dp′ dp klkj Zss′(k; p, p′)Fss′(p, p′). (C4)

The expression on the right-hand side of (C4) is minus that in (C3). Hence, both are zero,
which proves that

∑
s

´
dp plCs = 0.

C.2. Energy conservation
Energy conservation is proven similarly, using that vi

s = ∂Hs/∂pi and the fact that k · vs
and k · v′s′ are interchangeable due to the presence of δ(k · vs − k · v′s′) in Zss′ :∑

s

ˆ
dpHsCs

=
∑
s,s′

ˆ
dpHs

∂

∂pi

ˆ
dk
(2π)n

dp′ kikj Zss′(k; p, p′)Fss′(p, p′)
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= −
∑
s,s′

ˆ
dk
(2π)n

dp dp′ (k · vs)kj Zss′(k; p, p′)Fss′(p, p′)

= −
∑
s′,s

ˆ
dk
(2π)n

dp′ dp (k · v′s′)kj Zs′s(k; p′, p)Fs′s(p′, p)

=
∑
s′,s

ˆ
dk
(2π)n

dp′ dp (k · vs)kj Zss′(k; p, p′)Fss′(p, p′). (C5)

Like in the previous case, the third and the fifth lines are minus each other, whence∑
s

´
dpHsCs = 0.

C.3. H-theorem
From (6.72) and (6.73), one has(

dσ
dt

)
coll
= −

∑
s

ˆ
dp (1+ ln Fs(p))Cs = −

∑
s

ˆ
dp ln Fs(p)Cs, (C6)

where we used particle conservation,
´

dp Cs = 0. Then,(
dσ
dt

)
coll
= −

∑
ss′

ˆ
dp ln Fs(p)

∂

∂pi

ˆ
dk
(2π)n

dp′ kikjZss′(k; p, p′)Fss′(p, p′)

=
∑

ss′

ˆ
dk
(2π)n

dp dp′ kikj
∂ ln Fs(p)
∂pi

Zss′(k; p, p′)Fss′(p, p′). (C7)

Let us swap the dummy variables s↔ s′ and p↔ p′ and then apply (C2) to obtain(
dσ
dt

)
coll
= −

∑
ss′

ˆ
dk
(2π)n

ˆ
dp dp′ kikj

∂ ln Fs′(p′)
∂p′i

Zss′(k; p, p′)Fss′(p, p′). (C8)

Upon comparing (C8) with (C7), one can put the result in a symmetrized form(
dσ
dt

)
coll
= 1

2

∑
ss′

ˆ
dk
(2π)n

dp dp′ kikjZss′(k; p, p′)Fss′(p, p′)

×
(
∂ ln Fs(p)
∂pi

− ∂ ln Fs′(p′)
∂p′i

)
. (C9)

But notice that

Fss′(p, p′) =
(
∂ ln Fs(p)
∂pj

− ∂ ln Fs′(p′)
∂p′j

)
Fs(p)Fs′(p′). (C10)

Thus,(
dσ
dt

)
coll
= 1

2

∑
ss′

ˆ
dk
(2π)n

dp dp′Zss′(k; p, p′)Fs(p)Fs′(p′)

×
(

k · ∂ ln Fs(p)
∂p

− k · ∂ ln Fs′(p′)
∂p′

)2

� 0. (C11)
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Appendix D. Conservation laws for on-shell waves

Here, we prove the momentum-conservation theorem (7.87) and the energy-conservation
theorem (7.89) for QL interactions of plasmas with on-shell waves.

D.1. Momentum conservation
Let us multiply (7.83) by kl and integrate over k. Then, one obtains

0 =
ˆ

dk kl
∂J
∂t
+
ˆ

dk kl
∂(vi

gJ)

∂xi
−
ˆ

dk kl
∂

∂ki

(
∂w
∂xi

J
)
− 2

ˆ
dk klγ J

= ∂

∂t

ˆ
dk klJ + ∂

∂xi

ˆ
dk klv

i
gJ +

ˆ
dk
∂w
∂xl

J − 2
ˆ

dk wγ J. (D1)

Similarly, multiplying (7.84) by Hs and integrating over p yields

0 =
ˆ

dp pl
∂Fs

∂t
+
ˆ

dp pl
∂(vi

sFs)

∂xi
−
ˆ

dp pl
∂

∂pi

(
∂Hs

∂xi
Fs

)
−
ˆ

dp pl
∂

∂pi

(
Ds,ij

∂Fs

∂pj

)
−
ˆ

dp pl Cs

= ∂

∂t

ˆ
dp plFs + ∂

∂xi

ˆ
dp plv

i
sFs + ∂

∂xl

ˆ
dpΔsFs +

ˆ
dp
∂H0s

∂xl
Fs

−
ˆ

dpΔs
∂Fs

∂xl
+
ˆ

dp Ds,lj
∂Fs

∂pj
−
ˆ

dp pl Cs. (D2)

Let us sum up (D2) over species and also add it with (D1). The contribution of the collision
integral disappears due to (6.71), so one obtains

0 = ∂

∂t

(∑
s

ˆ
dp plFs +

ˆ
dk klJ

)
+ ∂

∂xi

(∑
s

ˆ
dp plv

i
sFs +

ˆ
dk klv

i
gJ

)

+
∑

s

∂

∂xl

ˆ
dpΔsFs +

∑
s

ˆ
dp
∂H0s

∂xl
Fs

+
∑

s

ˆ
dp Ds,lj

∂Fs

∂pj
− 2

ˆ
dk klγ J

−
∑

s

ˆ
dpΔs

∂Fs

∂xl
+
ˆ

dk J
∂w
∂xl
. (D3)

Next, notice that

2
ˆ

dk klγ J = 2π
∑

s

ˆ
dp dk klkj

|α†
sη|2
∂ωΛ

Jδ(w− k · vs)
∂Fs

∂pj

=
∑

s

ˆ
dp Ds,lj

∂Fs

∂pj
. (D4)
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Also, assuming that Ξ 0, |α†
sη|2 and η†℘sη are independent of x and using (7.80), one gets∑

s

ˆ
dpΔs

∂Fs

∂xl

=
∑

s

ˆ
dp
∂Fs

∂xl

(
∂

∂pi

 
dω dk

ki

2(ω − k · vs)
|α†

sη|2(h(k)+ h(−k)) δ(ω − w(k))

+ 1
2

ˆ
dω dk (η†℘sη)(h(k)+ h(−k)) δ(ω − w(k))

)
= −1

2

∑
s

 
dω dk dp (h(k)+ h(−k)) δ(ω − w(k))

ki|α†
sη|2

ω − k · vs

∂2Fs

∂xl∂pi

+ 1
2

∑
s

 
dω dk dp (h(k)+ h(−k)) δ(ω − w(k))

∂

∂xl
(η†℘sηFs)

= −
∑

s

ˆ
dω dk h(k) δ(ω − w(k))

∂

∂xl

 
dp
(

ki|α†
sη|2

ω − k · vs

∂Fs

∂pi
− η†℘sηFs

)

= −
∑

s

ˆ
dω dk h(k) δ(ω − w(k))

∂(η†Ξη)

∂xl

= −
∑

s

ˆ
dk h(k)

∂Λ(w(k),k)
∂xl

=
∑

s

ˆ
dk J

∂w
∂xl
, (D5)

where we also used (7.75b). Substituting (D4) and (D5) into (D3) leads to (7.87).

D.2. Energy conservation
Let us multiply (7.83) by w and integrate over k. Then, one obtains

0 =
ˆ

dk w
∂J
∂t
+
ˆ

dk w
∂(vi

gJ)

∂xi
−
ˆ

dk w
∂

∂ki

(
∂w
∂xi

J
)
− 2

ˆ
dk wγ J

= ∂

∂t

ˆ
dk wJ −

ˆ
dk
∂w
∂t

J + ∂

∂xi

ˆ
dk wvi

gJ −
ˆ

dk
∂w
∂xi
vi

gJ

+
ˆ

dk vi
g
∂w
∂xi

J − 2
ˆ

dk wγ J

= ∂

∂t

ˆ
dk wJ + ∂

∂xi

ˆ
dk wvi

gJ −
ˆ

dk
∂w
∂t

J − 2
ˆ

dk wγ J. (D6)

Similarly, multiplying (7.84) by Hs and integrating over p yields

0 =
ˆ

dpHs
∂Fs

∂t
+
ˆ

dpHs
∂(vi

sFs)

∂xi
−
ˆ

dpHs
∂

∂pi

(
∂Hs

∂xi
Fs

)
−
ˆ

dpHs
∂

∂pi

(
Ds,ij

∂Fs

∂pj

)
−
ˆ

dpHs Cs
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= ∂

∂t

ˆ
dpHsFs −

ˆ
dp
∂Hs

∂t
Fs + ∂

∂xi

ˆ
dpHsv

i
sFs −

ˆ
dp
∂Hs

∂xi
vi

sFs

+
ˆ

dp vi
s
∂Hs

∂xi
Fs +

ˆ
dp vi

sDs,ij
∂Fs

∂pj
−
ˆ

dpHs Cs

= ∂

∂t

ˆ
dpHsFs + ∂

∂xi

ˆ
dpHsv

i
sFs −

ˆ
dp
∂H0s

∂t
Fs −

ˆ
dp
∂Δs

∂t
Fs

+
ˆ

dp vi
sDs,ij

∂Fs

∂pj
−
ˆ

dpHs Cs

= ∂

∂t

ˆ
dp H0sFs + ∂

∂xi

ˆ
dp H0sv

i
sFs + ∂

∂xi

ˆ
dpΔsv

i
sFs −

ˆ
dp
∂H0s

∂t
Fs

+
ˆ

dpΔs
∂Fs

∂t
+
ˆ

dp vi
sDs,ij

∂Fs

∂pj
−
ˆ

dpHs Cs. (D7)

Let us sum up (D7) over species and also add it with (D6). The contribution of the collision
integral disappears due to (6.71), so one obtains

0 = ∂

∂t

(∑
s

ˆ
dp H0sFs +

ˆ
dk wJ

)
+ ∂

∂xi

(∑
s

ˆ
dp H0sv

i
sFs +

ˆ
dk wvi

gJ

)

+ ∂

∂xi

∑
s

ˆ
dpΔsv

i
sFs −

∑
s

ˆ
dp
∂H0s

∂t
Fs

+
∑

s

ˆ
dp vi

sDs,ij
∂Fs

∂pj
− 2

ˆ
dk wγ J

+
∑

s

ˆ
dpΔs

∂Fs

∂t
−
ˆ

dk J
∂w
∂t
. (D8)

Next, notice that

2
ˆ

dk wγ J = 2π
∑

s

ˆ
dp dk wkj

|α†
sη|2
∂ωΛ

Jδ(w− k · vs)
∂Fs

∂pj

=
∑

s

ˆ
dp vi

sDs,ij
∂Fs

∂pj
. (D9)

Also, assuming that Ξ 0, |α†
sη|2 and η†℘sη are independent of t and using (7.80), one gets

∑
s

ˆ
dpΔs

∂Fs

∂t

=
∑

s

ˆ
dp
∂Fs

∂t

(
∂

∂pi

 
dω dk

ki

2(ω − k · vs)
|α†

sη|2(h(k)+ h(−k)) δ(ω − w(k))

+ 1
2

ˆ
dω dk (η†℘sη)(h(k)+ h(−k)) δ(ω − w(k))

)
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= −1
2

∑
s

 
dω dk dp (h(k)+ h(−k)) δ(ω − w(k))

ki|α†
sη|2

ω − k · vs

∂2Fs

∂t∂pi

+ 1
2

∑
s

 
dω dk dp (h(k)+ h(−k)) δ(ω − w(k))

∂

∂t
(η†℘sηFs)

= −
∑

s

ˆ
dω dk h(k) δ(ω − w(k))

∂

∂t

 
dp
(

ki|α†
sη|2

ω − k · vs

∂Fs

∂pi
− η†℘sηFs

)

= −
∑

s

ˆ
dω dk h(k) δ(ω − w(k))

∂(η†Ξη)

∂t

= −
∑

s

ˆ
dk h(k)

∂Λ(w(k),k)
∂t

=
∑

s

ˆ
dk J

∂w
∂t
, (D10)

where we also used (7.75a). Substituting (D9) and (D10) into (D8) leads to (7.89).

Appendix E. Uniqueness of the entropy-preserving distribution

Here, we prove that the Boltzmann–Gibbs distribution is the only distribution for which
the entropy density σ is conserved. According to (C11), σ is conserved when

δ(k · (vs − v′s′)) (k · Gss′(p, p′))2 = 0 (E1)

(for all p, p′ and k, as well as all s and s′), where

Gss′(p, p′)
.= ∂ ln Fs(p)

∂p
− ∂ ln Fs′(p′)

∂p′
. (E2)

Let us decompose the vector Gss′(p, p′) into components parallel and perpendicular to the
vector vs − v′s′ :

Gss′(p, p′) = λss′(vs, v
′
s′) (vs − v′s′)+ G⊥ss′(p, p

′), (E3)

where λss′(vs, v
′
s′) is a scalar function. (Because the velocities are functions of the

momenta, one can as well consider λss′ as a function of p and p′.) Due to the presence
of the delta function in (E1), the contribution of the first term to (E1) is zero, so (E1) can
be written as

δ(k · (vs − v′s′)) (k · G⊥ss′(p, p
′))2 = 0. (E4)

By considering this formula for k parallel to G⊥ss′(p, p
′) (and thus perpendicular to

vs − v′s′), one finds that G⊥ss′(p, p
′) = 0. Combined with (E2) and (E3), this yields

∂ ln Fs(p)
∂p

− ∂ ln Fs′(p′)
∂p′

= λss′(vs, v
′
s′) (vs − v′s′). (E5)

Also, by swapping p↔ p′ and s↔ s′, one finds that

λss′(vs, v
′
s′) = λs′s(v

′
s′, vs). (E6)
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Equation (E5) yields, in particular, that46

∂ ln Fs(p)
∂p2

− ∂ ln Fs′(p′)
∂p′2

= λss′(vs, v
′
s′) (vs,2 − v′s′,2), (E7a)

∂ ln Fs(p)
∂p3

− ∂ ln Fs′(p′)
∂p′3

= λss′(vs, v
′
s′) (vs,3 − v′s′,3), (E7b)

where we have assumed some coordinate axes in the momentum and velocity space
labelled (1, 2, 3, . . .). Then,

∂2 ln Fs(p)
∂p2∂vs,1

= ∂λss′(vs, v
′
s′)

∂vs,1
(vs,2 − v′s′,2), (E8a)

∂2 ln Fs(p)
∂p3∂vs,1

= ∂λss′(vs, v
′
s′)

∂vs,1
(vs,3 − v′s′,3), (E8b)

where the derivative with respect to vs,1 is taken at fixed vs,i�=1 and at fixed v′s′ . Due to (E5),
λss′(vs, v

′
s′) is continuous for all Fs and Fs′ . (Here, we consider only physical distributions,

which are always differentiable.) Then, (E8) leads to

1
vs,2 − v′s′,2

∂2 ln Fs(p)
∂p2∂vs,1

= 1
vs,3 − v′s′,3

∂2 ln Fs(p)
∂p3∂vs,1

. (E9)

By differentiating this with respect to v′s′,2, one obtains

∂2 ln Fs(p)
∂p2∂vs,1

= 0, (E10)

whence (E8a) yields
∂λss′(vs, v

′
s′)

∂vs,1
= 0. (E11)

By repeating this argument for other axes and for v′ instead of v, one can also extend
(E11) to

∂λss′(vs, v
′
s′)

∂v
= 0,

∂λss′(vs, v
′
s′)

∂v′
= 0. (E12)

Hence, λss′(vs, v
′
s′) is actually independent of the velocities; i.e. λss′(vs, v

′
s′) = λss′ . Using

this along with (E6), one also finds that

λss′ = λs′s. (E13)

Let us rewrite (E5) as follows:

∂ ln Fs(p)
∂p

− λss′vs = ∂ ln Fs′(p′)
∂p′

− λs′sv
′
s′ . (E14)

Here, the left-hand side is independent of p′ and the right-hand side is independent of p,
so both must be equal to some vector

μss′ = μs′s (E15)

46The idea of this argument was brought to author’s attention by G. W. Hammett and is taken from Landreman
(2017), where it is applied to single-species plasmas with a specific Hs.
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that is independent of both p and p′. Because vs = ∂pHs, this is equivalent to

ln Fs(p)− λss′Hs(p) = μss′ · p+ ηss′ (E16a)

(and similarly for p′), where the integration constant ηss′ is independent of both p and p′.
This is supposed to hold for any s′, so one can also write

ln Fs(p)− λss′′Hs(p) = μss′′ · p+ ηss′′, (E16b)

where s′′ is any other species index. Subtracting equations (E16) from each other gives

(λss′ − λss′′)Hs(p) = (μss′ − μss′′) · p+ ηss′ − ηss′′ . (E17)

By differentiating this with respect to p, one finds

(λss′ − λss′′)vs = μss′ − μss′′ . (E18)

By differentiating this further with respect to vs, one obtains λss′ = λss′′ . Then, (E18) yields
μss′ = μss′′ , and (E17) yields ηss′ = ηss′′ . In other words, the functions λss′ , μss′ and ηss′ are
independent of their second index and thus can as well be written as

λss′ = λs, μss′ = μs, ηss′ = ηs. (E19)

But then, (E13) and (E15) also yield λs = λs′ ≡ λ and μs = μs′ ≡ μ. Therefore, (E16) can
be written as

Fs(p) = consts × exp(λHs(p)+ μ · p), (E20)

which is the Boltzmann–Gibbs distribution (§ 8.1). This proves that a plasma that
conserves its entropy density necessarily has the Boltzmann–Gibbs distribution.

Appendix F. Total momentum and energy

Here, we show that the total momentum and energy in the OC–wave representation
equals the total momentum and energy in the particle–field representation.

F.1. Non-relativistic electrostatic interactions
F.1.1. Momentum

Assuming the notation Pl
.=∑s

´
dp plf s and using (9.17) for�s, one can represent the

OC momentum density as follows:∑
s

ˆ
dp plFs = Pl + 1

2

∑
s

ˆ
dp pl

∂

∂pi

(
�s,ij

∂f s

∂pj

)

≈ Pl − 1
2

∑
s

ˆ
dp�s,lj

∂Fs

∂pj

= Pl −
ˆ

dk h(k)
∂

∂ϑ

∑
s

e2
s

 
dp

kl

w(k)− k · vs + ϑ k · ∂Fs

∂p

∣∣∣∣∣
ϑ=0

= Pl −
ˆ

dk klh(k)
∂

∂ϑ

(
k2(ε‖H(w(k)+ ϑ,k)− 1)

4π

)∣∣∣∣
ϑ=0

= Pl −
ˆ

dk klJ, (F1)

where we substituted (9.16). This leads to (9.18).

https://doi.org/10.1017/S0022377822000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000502


Quasilinear theory 91

F.1.2. Energy
Assuming the notation K .=∑s

´
dp H0sf s and using (9.17) for �s, one can represent

the OC energy density as follows:

∑
s

ˆ
dp H0sFs = K + 1

2

∑
s

ˆ
dp

p2

2ms

∂

∂pi

(
�s,ij

∂f s

∂pj

)

≈ K − 1
2

∑
s

ˆ
dp vi

s�s,ij
∂Fs

∂pj

= K −
ˆ

dk h(k)
∂

∂ϑ

∑
s

e2
s

 
dp

k · v
w(k)− k · vs + ϑ k · ∂Fs

∂p

∣∣∣∣
ϑ=0
.

(F2)

Notice that

∂

∂ϑ

k · v
w(k)− k · vs + ϑ =

∂

∂ϑ

(
−1+ w(k)+ ϑ

w(k)− k · vs + ϑ
)

= 1
w(k)− k · vs + ϑ + w(k)

∂

∂ϑ

1
w(k)− k · vs + ϑ . (F3)

Then,

∑
s

ˆ
dp H0sFs = K −

ˆ
dk w(k)h(k)

∂

∂ϑ

∑
s

e2
s

 
dp

k
w(k)− k · vs + ϑ ·

∂Fs

∂p

∣∣∣∣
ϑ=0

−
ˆ

dk h(k)
∑

s

e2
s

 
dp

k
w(k)− k · vs

· ∂Fs

∂p

= K −
ˆ

dk w(k)h(k)
∂

∂ϑ

(
k2(ε‖H(w(k)+ ϑ,k)− 1)

4π

)∣∣∣∣
ϑ=0

−
ˆ

dk h(k)
k2(ε‖H(w(k),k)− 1)

4π
. (F4)

Using (9.14) and (9.16), one obtains that the sum of the OC and wave energy is given by

∑
s

ˆ
dp H0sFs +

ˆ
dk wJ = K +

ˆ
dk h(k)

k2

4π

= K +
∑
σ

k
2
σ |ϕ̆σ |2
16π

=
∑

s

ˆ
dp
(

p2

2ms
+ esϕs

)
f s +

1
8π

Ẽ†Ẽ, (F5)

where we also substituted (7.64).
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F.2. Relativistic electromagnetic interactions
F.2.1. Momentum

Let us assume the notation P .=∑s

´
dp pf s and

χ(ω,k) .=
∑

s

4πe2
s

ω2

 
dp

vsv
†
s

ω − k · vs
k · ∂Fs

∂p
= ε(ω,k)− 1+ wp

ω2
. (F6)

Then, using (9.52) for �s, one can represent the OC momentum density as follows:∑
s

ˆ
dp plFs ≈ Pl − 1

2

∑
s

ˆ
dp�s,lj

∂Fs

∂pj

= Pl −
ˆ

dk klh(k)
∂

∂ϑ

∑
s

e2
s

 
dp

1
w2(k)

(η†vsv
†
sη)

w(k)− k · vs + ϑ k · ∂Fs

∂pj

∣∣∣∣∣
ϑ=0

= Pl −
ˆ

dk
klh(k)

4πw2(k)
η† ∂

∂ω

(
ω2χ(ω,k)

)
η

∣∣∣∣
ω=w(k)

= Pl +
ˆ

dk
klh(k)

2πw(k)
−
ˆ

dk
klh(k)

4πw2(k)
η† ∂

∂ω

(
ω2ε(ω,k)

)
η

∣∣∣∣
ω=w(k)

= Pl +
ˆ

dk
kl

4πw(k)
(h(k)+ h(−k))−

ˆ
dk klJ, (F7)

where we substituted (9.51) and used (7.23). Next, let us rewrite (9.54) as

P = P (kin) + (Ã/c)
∑

s

es
´

dp fs = P (kin) + 1
4πc

Ã(∇ · Ẽ), (F8)

where the last equality is due to Gauss’s law. This gives

Pl − P (kin)
l = 1

4π
(−iω̂−1Ẽl)(∂jẼ j) = − i

4π
(ω̂−1Ẽl)(∂jẼ j)∗. (F9)

Then, using (2.53) and also (7.63) for U, one obtains

Pl − P (kin)
l ≈ − i

4π

ˆ
dω dkω−1Ul

j(ω,k)(ikj)
∗

≈ −
ˆ

dk
k · η∗

4πw(k)
ηl(h(k)+ h(−k)), (F10)

and thus (F7) can be written as follows:∑
s

ˆ
dp pFs +

ˆ
dk kJ ≈ P +

ˆ
dk

k
4πw(k)

(h(k)+ h(−k))

≈ P (kin) +
ˆ

dk
1

4πw(k)
(k− η(k · η∗)) (h(k)+ h(−k))

= P (kin) + re
ˆ

dk
h(k)

2πw(k)
η∗ × (k× η), (F11)
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where we used (7.7) and (7.23) again. For an eikonal wave (9.57), which has
h(k) = δ(k− k)|Ĕ|2/4 (§ 7.4.1), this gives

re
ˆ

dk
h(k)

2πw(k)
η∗ × (k× η) = 1

8πc
re

(
Ĕ∗ ×

(
ck
ω
× Ĕ

))
= Ẽ × B̃

4πc
. (F12)

In case of a broadband spectrum, the same equality applies as well, because contributions
of the individual eikonal waves to both left-hand side and the right-hand side are additive.
(Alternatively, one can invoke (2.53) again.) This leads to (9.53).

F.2.2. Energy
Assuming the notation K .=∑s

´
dp H0sf s and using (9.52) for �s, one can represent

the OC energy density as follows:∑
s

ˆ
dp H0sFs ≈ K − 1

2

∑
s

ˆ
dp vi

s�s,ij
∂Fs

∂pj

≈ K −
ˆ

dk h(k)
∂

∂ϑ

∑
s

e2
s

 
dp
(k · vs)

w2(k)
(η†vsv

†
sη)

w(k)− k · vs + ϑ k · ∂Fs

∂p

∣∣∣∣
ϑ=0
.

Using (F3) and (F6) for χ , one further obtains∑
s

ˆ
dp H0sFs

=K −
ˆ

dk
h(k)

4πw(k)
η† ∂

∂ϑ

(∑
s

4πe2
s

 
dp

vsv
†
s

w(k)− k · vs + ϑ k · ∂Fs

∂p

)
η

∣∣∣∣∣
ϑ=0

−
ˆ

dk
h(k)
4π

η†

(∑
s

4πe2
s

w2(k)

 
dp

vsv
†
s

w(k)− k · vs
k · ∂Fs

∂p

)
η

=K −
ˆ

dk
h(k)

4πw(k)
η† ∂(ω

2χ(ω,k))
∂ω

η

∣∣∣∣
ω=w(k)

−
ˆ

dk
h(k)
4π

η†χη

=K −
ˆ

dk
h(k)

4πw(k)
η† ∂(ω

2ε(ω,k))
∂ω

η

∣∣∣∣
ω=w(k)

+
ˆ

dk
h(k)
2π

−
ˆ

dk
h(k)
4π

η†

(
ε(w(k),k)− 1+ wp

w2(k)

)
η

=K −
ˆ

dk wJ +
ˆ

dk
3h(k)

4π
−
ˆ

dk
h(k)
4π

η†ε(w(k),k)η

−
ˆ

dk
h(k)

4πw2(k)
η†wpη.

Using (9.50) and proceeding as in § F.2.1, one can also cast this as follows:∑
s

ˆ
dpH0sFs +

ˆ
dk wJ = K + 1

8π
(
3Ẽ†Ẽ − B̃†B̃

)− 1
8πc2

Ã†wpÃ. (F13)
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Now, notice that

K =
∑

s

ˆ
dp H0s(p)f

(kin)
s (p− esÃ/c)

=
∑

s

ˆ
dp H0s(p+ esÃ/c)f

(kin)
s (p)

≈ K(kin) + (Ã/c) ·
∑

s

es
´

dp vsf (kin)
s +

∑
s

e2
s

2c2

ˆ
dp (Ãμ−1

s Ã) f (kin)
s

≈ K(kin) + 1
c

Ã · j̃ + 1
8πc2

Ã†wpÃ, (F14)

where j̃ is the oscillating-current density. From Ampere’s law,

1
c

Ã · j̃ = (−iω̂−1Ẽ)†

4π
(
iĉk× B̃+ iω̂Ẽ

)
≈ − Ẽ†Ẽ

4π
− Ẽ

4π
·
(

ĉk
ω̂
× B̃

)

≈ − Ẽ†Ẽ
4π
−
(

Ẽ × ĉk
ω̂

)
· B̃

4π

≈ 1
4π
(
B̃†B̃− Ẽ†Ẽ

)
. (F15)

Substituting (F14) and (F15) into (F13) leads to (9.55).

Appendix G. Selected notation

This paper uses the following notation (also see § 2 for the index convention):

Symbol Definition Explanation

‚ placeholder
‚∗ complex conjugate
‚−1 inverse
‚† Hermitian adjoint
‚−† (‚†)−1 inverse Hermitian adjoint
‚ᵀ transpose
‚|a § 4.2 auxiliary notation
‚(μ) § 6.5 contribution from the microscopic part
‚(m) § 6.5 contribution from the macroscopic part
‚ average part or, for eikonal waves, a quantity evaluated

on the local wavevector
‚̃ oscillatory part
‚ macroscopic part
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‚̃ microscopic part
‚̂ operator
‚̇ time derivative◦‚ (2.23) Fourier image
‚̆ envelope of an eikonal (or monochromatic) wave
‚A § 2.1.2 anti-Hermitian part
‚H § 2.1.2 Hermitian part
∂‚ ∂/∂‚ partial derivative (but ∂i

.= ∂/∂xi, ∂α
.= ∂/∂zα , ∂a

.= ∂/∂Xa)
∂a, ∂ i ∂/∂Ka, ∂/∂pi partial derivative with respect to a lower-index quantity
ð‚ (4.27) auxiliary notation
dt (3.32), (7.36) convective time derivative
{‚, ‚}x (2.32) Poisson bracket on (x, k)
{‚, ‚} (2.56) Poisson bracket on (x,k)
[‚, ‚] commutator
〈‚|‚〉 (2.1), (2.59) inner product on Hx or on HX.= definition
· § 2.1.3 scalar product

 (2.30) Moyal product on (x, k)
� (2.72) Moyal product on (X ,K)
i0 § 4.2 i times an infinitesimally small positive numberffl

principal-value integral
eigv eigenvalue
im imaginary part
pv (4.24) auxiliary notation
re real part
operX operator corresponding to a Weyl symbol on (X ,K)
operx operator corresponding to a Weyl symbol on (x, k)
symb same as symbX or symbx when the two are equal
symbX Weyl symbol of an operator on HX
symbx Weyl symbol of an operator on Hx
sgn sign
tr trace
Γ, Γs § 6.7 part of a collision operator
Δs § 6.6 particle’s total ponderomotive energy in on-shell waves
�αβc (5.9) auxiliary notation
�αβ (5.23) dressing function (see § 5.3)
�ij,� (5.43) dressing function (a part of �αβ )
Λ § 7.1 dispersion function (one of Λb)
Λb § 7.1 bth eigenvalue of Ξ
Πs table 1 OC momentum flux density of species s
Πw table 1 wave momentum flux density
Ξ § 6.3 dispersion matrix
Ξ̂ (6.13), (6.17) dispersion operator
Ξ0 § 6.3 vacuum dispersion matrix
Ξ̂0 (6.1a,b) vacuum dispersion operator
Ξp (6.21) Weyl symbol of Ξ̂p
Ξ̂p § 6.1 auxiliary operator
Φ,Φs (5.25), (5.44) ponderomotive energy
Ψ i,Ψ § 6.1 generic interaction field
Ψ̃ i

c, Ψ̃ c (7.17a,b) complexified interaction field
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Ω (4.17) auxiliary notation
αs,i,αs § 6.1 Weyl symbols of α̂s,i and α̂s
α̂s,i, α̂s § 6.1 coupling operators
γ (7.47), (7.87) linear dissipation rate as a function of (t, x,k)
γ § 7.3 local linear dissipation rate of an eikonal wave
δ Kronecker symbol or delta function
ε § 3.1.1 geometrical-optics parameter
ε (9.42) dielectric tensor
ε‖, ε⊥ (9.9) parallel and transverse permittivity
ε § 3.1.1 small parameter proportional to the oscillation amplitude
η § 7.1 polarisation vector (one of ηb)
ηb § 7.1 bth eigenvector of Ξ
θ eikonal phase
κ § 7.2.3 auxiliary notation
κx, κp (3.2a,b) characteristic inverse scales in x and p, respectively
ρs charge density of species s
�αβ (5.18) auxiliary notation
℘s (6.22a,b) Weyl symbol of ℘̂s
℘̂s (6.22a,b) coupling operator
σ (6.73) entropy density
ςk (7.83) sign of the action density
ϕ electrostatic potential
ψ,ψ any field
ω coordinate in the frequency space dual to t
ω −∂tθ local frequency of an eikonal wave
ω̂ i∂t frequency operator
C (3.5) Fourier image of W
C‚,C‚ (2.77), (2.82) Fourier images of W‚ and W ‚
Cs § 6.8 collision operator of species s
C‚, C‚ (2.44), (2.52) Fourier images of W‚ and W‚
Dαβ § 5.1 Weyl symbol of D̂αβ

Dαβ (5.17) phase-space-diffusion coefficient
Dij,Ds (5.42), (6.77a) momentum-diffusion coefficient (part of Dαβ )
Dαβ0 (5.8) auxiliary notation
D̂αβ (3.34a,b) diffusion operator on HX
Es table 1 OC energy density of species s
Ew table 1 wave energy density (also see (7.42a,b) for eikonal waves)
F,Fs (5.28), (5.39) OC distribution functions
Fs (6.60) polarisation drag for species s
G,Gs § 4.2 Weyl symbols of Ĝ and Ĝs
G0 (4.23) approximation of G to the zeroth order in ε
Ĝ, Ĝs (3.25) effective Green’s operators on HX
Gss′ (6.30) spectrum of the correlations between gs and gs′
Ĝ § 3.2 Green’s operator on HX
I (7.27) action density of an eikonal wave
J § 7.4.3 phase-space action density
Jαβ, J (2.57) canonical Poisson structure
J i,J (7.28) action flux density of an eikonal wave
H,Hs particle Hamiltonian
Hs (5.41) OC Hamiltonian of species s
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Hx Hilbert space formed by functions on x
HX Hilbert space formed by functions on X
K (−ω, q) coordinate in the wavevector space dual to X
K̂ (−ω̂, q̂) wavevector operator on HX
L̂ (3.14) extended Liouvillian (up to a factor i)
L̂s (6.2) coupling operator
L̂X (2.73) same as the Poisson bracket on (X ,K)
L̂x (2.32) same as the Poisson bracket on (x, k)
L (6.6) Ψ -dependent part of the plasma Lagrangian density
L0 (6.1a,b) Lagrangian density of Ψ in vacuum
M number of components of Ψ or of another vector field
N 2n+ 1 dimension of the extended phase space X
N ,Ns (5.40) OC density
O big O (‘at most of the order of’)
Pi

s,Ps table 1 OC momentum density of species s
Pi

w,Pw table 1 wave momentum density (also see (7.42a,b) for eikonal waves)
Qi

s,Qs table 1 OC energy flux density of species s
Qi

w,Qw table 1 wave energy flux density
Qss′ § 6.8 symmetrised coefficient in the collision operator
R̂s (6.2) coupling operator
R real axis
S § 7.1 action integral
Sad (6.16) adiabatic action integral
S (8.9) spectrum of the macroscopic oscillations
T̂τ (3.21) shift operator (see also § 4.1)
Uij,U (6.78) average Wigner function of the macroscopic field Ψ̃ (x)
Uc±,Uc § 7.4.2 average Wigner matrix of Ψ̃ c and Ψ̃ ∗c (Uc ≡ Uc+)
Va,V § 3.2 unperturbed velocity in the X space
Vn volume of n-dimensional homogeneous plasma
W (4.4a,b) Wigner function of H̃(X )
W‚, W ‚ (2.76), (2.81) Weyl symbol of Ŵ‚ (Wigner function or matrix)
Ŵ (4.3a,b) density operator on HX of H̃
Ŵ‚, Ŵ ‚ (2.75), (2.80) density operator on HX of a given field
W,Ws § 5.6 Wigner functions of H̃ and H̃s with p as a parameter
W‚,W‚ (2.43), (2.51) Weyl symbol of Ŵ‚ (Wigner function or matrix)
Ŵ‚, Ŵ‚ (2.42), (2.50) density operator on HX of a given field
W § 6.4 average Wigner matrix of the microscopic field Ψ̃˜(x)Xa,X (t, z) coordinate in the extended phase space
X̂a, X̂ (̂t, ẑ) operator of the position in the extended phase space
Xss′ (6.36) Weyl symbol of X̂ss′
X̂ss′ (6.35) coupling operators on Hx that enter H̃˜d differential
es charge of species s
f , fs distribution function
g, gs § 4.3 initial conditions for f̃ and f̃s
h (7.65), (7.75a,b) rescaled phase-space action density
hc±, hc § 7.4.2 auxiliary notation (hc+ ≡ hc)
ki,k coordinate in the wavevector space dual to x
ki,k ∂iθ, ∂xθ local wavevector of an eikonal wave
k̂i, k̂ −i∂i,−i∂x wavevector operator
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k (−ω,k) coordinate in the wavevector space dual to x
k (−ω,k) local spacetime-wavevector of an eikonal wave
k̂ −i∂x spacetime-wavevector operator
|k〉 (2.16a,b), (2.17a,b) eigenvector of k̂ corresponding to the eigenvalue k
�τ § 4.1.1 displacement in X along unperturbed characteristics
ms mass of species s
n dim x number of spatial dimensions
n n+ 1 number of spacetime dimensions
pi, p coordinate in the momentum space
p̂i, p̂ p position operator corresponding to the coordinate p
qi, q (k, r) coordinate in the wavevector space dual to z
q̂ i, q̂ (̂k, r̂) wavevector operator corresponding to the coordinate z
ri, r coordinate in the wavevector space dual to p
r̂ i, r̂ −i∂ i,−i∂p wavevector operator corresponding to the coordinate p
s species index
t time
t̂ t time operator
uα (3.8a,b) oscillating part of the phase-space velocity
ûα (3.30) uα as an operator on HX
vα, vi, v (3.8a,b) average velocity in phase space or in physical space,

(5.33) or, since § 5.4, OC velocity
vi

g, vg (7.25) group velocity as a function of (t, x,k)
vi

g, vg (7.29a,b) local group velocity of an eikonal wave
w (7.22) eikonal-wave frequency as a function of (t, x,k)
xi, x coordinate in space
xi, x ray coordinate in space
x̂ i, x̂ x space-position operator
xi, x (t, x) coordinate in spacetime
x̂ i, x̂ x spacetime-position operator
|x〉 (2.16a,b), (2.17a,b) eigenvector of x̂ corresponding to the eigenvalue x
zα, z (x, p) coordinate in phase space
ẑα, ẑ (̂x, p̂) phase-space position operator
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