ANOTHER LAW FOR 3-METABELIAN GROUPS

CHRISTINE BUSSMAN
Department of Mathematics, Saint Louis University, St. Louis, MO 63103, USA
e-mail: olearyck@geek-den.net
and DAVID A. JACKSON
Department of Mathematics, Saint Louis University, St. Louis, MO 63103, USA e-mail: jacksoda@slu.edu

(Received 20 June 2011; accepted 21 December 2011; first published online 30 March 2012)

Abstract

We show that $[z, y]^{-1}[z, x]^{-1}[y, x]^{-1}[z, y][z, x][y, x]=1$ is another

 defining law for the variety of 3-metabelian groups.2000 Mathematics Subject Classification. 20E10.

A group G is defined to be metabelian if $\left[G^{\prime}, G^{\prime}\right]$ is the trivial subgroup and is defined to be 3-metabelian if all of its three generator subgroups are metabelian. In 1956, Neumann [7] gave an example of a group that is 3-metabelian but is not metabelian. In 1961, Macdonald [4], among other results, obtained information about the structure of 3-metabelian groups and observed that such groups satisfy the law $[x, y ; x, z]=1$. In 1962, Macdonald [5] proved as a special case of Theorem 7 in his paper that any group that satisfies $[x, y ; x, z]=1$ is 3 -metabelian, and hence this law defines the variety of 3-metabelian groups. Of related interest, in 1964, Bachmuth and Lewin [1] proved that the law $[x, y, z][y, z, x][z, x, y]=1$ also defines the variety of 3-metabelian groups. Macdonald [6] was aware of this last result and proved, also in 1964, that the law $[x, y ; y, z][y, z ; z, x][z, x ; x, y]=1$ is another law that defines the variety of 3-metabelian groups. We will use Macdonald's results to prove our result. The reader will find a discussion of these results and definitions for unexplained notation and terminology in Neumann's book [8].

The notation $W(x, y, z)$ for $[z, y]^{-1}[z, x]^{-1}[y, x]^{-1}[z, y][z, x][y, x]$ was introduced by Jackson, Gaglione and Spellman for expository convenience in [2] and used more extensively in [3]. In those papers, the following three properties of $W(x, y, z)$ were used: for G any group and x, y, z any elements of G,

$$
\begin{aligned}
{[z, y, x] } & =\left([y, x, z]^{-1}\right)^{[z, x][z, y]} W(x, y, z)[z, x, y]^{[y, x]} \\
W(x, y, z) & =[z, y ; z, x][z, y ; y, x]^{[z, x]}[z, x ; y, x] \text { and } \\
W(x, y, z) & =[z, x ; y, x]^{[z, y]}[z, y ; y, x][z, y ; z, x]^{[v, x]} .
\end{aligned}
$$

Jackson et al. were also aware of other identities, such as $(W(y, x, z))^{[y, x]}=$ $(W(x, y, z))^{-1}, W(x, y, z)=(W(y, z, x))^{[z, x][y, x]}$ and $W(x, x, z)=1$, but did not use or publish these.

Theorem. The variety of groups defined by the law $W(x, y, z)=1$ is the variety of 3-metabelian groups.

Proof. Permuting variable names when necessary, and using the law $[x, y ; x, z]=1$ from Macdonald's 1962 paper [5], the commutators $[x, y],[x, z]$ and $[y, z]$ commute with one another in any 3-metabelian group. Since $W(x, y, z)$ is defined to be $[z, y]^{-1}[z, x]^{-1}[y, x]^{-1}[z, y][z, x][y, x]$, it is easy to see that $W(x, y, z)=1$ for any elements x, y and z of a 3-metabelian group.

To see that any group that satisfies the law $W(x, y, z)=1$ is 3 -metabelian, we will use a result from Macdonald's 1964 paper [6]. It is proved there that the law $[x, y ; y, z][y, z ; z, x][z, x ; x, y]=1$ defines the variety of 3-metabelian groups. We will show for any group G and arbitrary elements x, y and z in G that $[x, y ; y, z][y, z ; z, x][z, x ; x, y]=1$ if $W(x, y, z)=1$.

Using $W(x, y, z)=1$, we see that

$$
[z, y]^{-1}[z, x]^{-1}[y, x]^{-1}=[y, x]^{-1}[z, x]^{-1}[z, y]^{-1}
$$

Using this and the commutator identity $[a, b]=[b, a]^{-1}$, we obtain

$$
\begin{equation*}
[y, z][z, x]^{-1}[x, y]=[x, y][z, x]^{-1}[y, z] . \tag{1}
\end{equation*}
$$

We next observe that $[x, y ; y, z][y, z ; z, x][z, x ; x, y]$ first expands by obvious substitutions to

$$
\left([x, y]^{-1}[y, z]^{-1}[x, y][y, z]\right)\left([y, z]^{-1}[z, x]^{-1}[y, z][z, x]\right)\left([z, x]^{-1}[x, y]^{-1}[z, x][x, y]\right),
$$

which reduces with obvious cancellations to

$$
\begin{equation*}
[x, y]^{-1}[y, z]^{-1}[x, y][z, x]^{-1}[y, z][x, y]^{-1}[z, x][x, y] . \tag{2}
\end{equation*}
$$

We then use equation (1) to substitute $[y, z][z, x]^{-1}[x, y]$ for the product of the third, fourth and fifth commutator factors in equation (2). We obtain

$$
\begin{aligned}
& {[x, y ; y, z][y, z ; z, x][z, x ; x, y]} \\
& \quad=[x, y]^{-1}[y, z]^{-1}\left([x, y][z, x]^{-1}[y, z]\right)[x, y]^{-1}[z, x][x, y] \\
& \quad=[x, y]^{-1}[y, z]^{-1}\left([y, z][z, x]^{-1}[x, y]\right)[x, y]^{-1}[z, x][x, y],
\end{aligned}
$$

which then easily reduces to 1 .

REFERENCES

1. S. Bachmuth and J. Lewin, The Jacobi identity in groups, Math. Z. 83 (1964), 170-176.
2. D. A. Jackson, A. M. Gaglione and D. Spellman, Basic commutators as relators, J. Group Theory 5 (2002), 351-363.
3. D. A. Jackson, A. M. Gaglione and D. Spellman, Weight five basic commutators as relators, in Computational group theory and the theory of groups, II, Contemporary Mathematics 511 (American Mathematical Society, Providence, RI, 2010), 39-81.
4. I. D. Macdonald, On certain varieties of groups, Math. Z. 76 (1961), 270-282.
5. I. D. Macdonald, On certain varieties of groups II, Math. Z. 78 (1962), 175-188.
6. I. D. Macdonald, Another law for the 3-metabelian groups, J. Austral. Math. Soc. 4 (1964), 452-453. Corrigendum, J. Austral. Math. Soc. 6 (1966), 512.
7. B. H. Neumann, On a conjecture of Hanna Neumann, Proc. Glasgow Math. Assoc. 3 (1956), 13-17.
8. H. Neumann, Varieties of groups (Springer-Verlag, New York, 1967).
