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The initial stages of the evolution of a spherical star system can 
be pictured in the following way. The stars have their beginning in a 
comparatively small region; the mechanism of the origin of initial 
velocities is not known exactly. From the point of view of the contem
porary state of stellar astronomy, it is an acceptable view that the ini
tial velocities have their origin in the attraction of each individual 
star towards the center of gravity of the system. The second possible 
assumption is to attribute the origin of initial velocities to forces of 
an explosive character. But in either case, initially, all orbits have 
to be almost exactly radial. 

However, immediately after the formation of a spherical star system, 
irregular forces enter the picture. Such a process is investigated in 
the paper by T. A. Agekian1, where it is shown that in the initial phase 
many stars will escape from the central region. We shall consider the 
next phase, i.e. when in the central part a Maxwellian distribution of 
velocities has already been established. This distribution gradually 
propagates towards the periphery. In reality, the transition from the 
center to the periphery has to be continuous, but in order to simplify 
the computations, we shall suppose that when the evolution stops (more 
precisely, slows down strongly) it is possible to distinguish the main 
body of the star system from the corona." In the main body a Maxwellian 
distribution is established (we neglect the truncation of this distribu
tion) . In the corona, the original distribution of velocities is pre
served. This means that there are no orbits which entirely avoid the 
main body. 

Boltzmann's well-known theorem2asserts that irregular forces can 
only increase the probability of the phase distribution and, consequent
ly, its logarithm (entropy). Boltzmann's theorem is proven under the 
assumptions that only binary collisions of an elastic character take 
place and that the interactions exhibited are central forces. However, 
this circumstance is not that essential. The reason is0that close 
multiple encounters of stars are extremely rare phenomena, and multiple 
encounters at large distances are subject to the law of superposition, 
i.e. are equivalent to several consecutive binary passages. 

On the other hand, regular forces exhibit no influence on the 
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entropy. From Boltzmann's theorem it immediately follows that the 
achievement of the maximum possible entropy is characteristic of the 
state of statistical equilibrium. 

It is known from statistical mechanics that the state of statistical 
equilibrium (in the absence of rotation) has a Maxwelliam distribution 
as a necessary property at every point in space. 

The aim of the present article is to show that this, generally 
speaking, is not sufficient, i.e. that a stationary state with a 
Maxwellian distribution of velocities is a state of statistical equilib
rium only under certain conditions. 

It has been remarked before that the region with a Maxwellian dis
tribution in a real system is always bounded. Therefore, a stationary 
spherical star system with a Maxwellian distribution can be determined 
by three parameters: the radius, R, of the Maxwellian region, the 
stellar number density at the center, vc, and the root-mean-square 
velocity, a. We are not, naturally, concerned with characteristics of 
individual stars. Escape of stars we neglect, proceeding as though the 
sphere at radius R were a reflecting boundary. 

Thus, we have to establish under what conditions the above-described 
phase distribution maximizes the entropy 

■ - / / ' In Y dr dv (1) 

when the total mass, M, and total energy, H, are given. Strickly 
speaking, the total mass varies with time due to the fact that the 
system is not isolated from the surrounding world and may lose stars 
which reach a velocity greater than the escape velocity. But this 
process is comparatively slow and therefore is only of secondary 
importance for the configuration of a star system at any particular 
moment of time. 

Expressions for total mass and total energy 

M = mJ\ Y dr dv, (2) 

H = M I f y fy- + |j dr dv = K + W . (3) 

In formulas (1), (2) and (3) we use the following notations: 

r - radius vector 
v - velocity vector 
¥(r,v) - phase density 
K - kinetic, and W - potential energy 
$(r) - potential energy per unit mass 

In (3) it is necessary to divide $ by two in view of non-additivity 
of potential energy. If we took not one half, but the full potential, 
then in the integration over all stars, each pair of gravitational 
interactions would be counted twice, i.e. one would get K + 2W. 

The phase density of a stationary system will be designated by VQ, 
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The condition that L be maximized by Y0 is equivalent to validity of the 
inequality 

6L 

for all permissible ¥ 

In Y V In Y) dr dv < 0 (4) 

(absolute maximum) or only those close to VG 

(relative maximum). We notice that the distinction between the relative 
and the absolute maximum corresponds in molecular physics to the distinc
tion between metastable and fully-stable states. 

In the beginning, we shall consider only the relative maximum. We 
shall introduce a certain classification of functions Y. Namely, we 
shall consider ^ and ¥2 as belonging to one class if they have the same 

1) star density v(r) = J ¥ dv, and hence also potential uniquely 
determined by the density; 

2) kinetic energy K. 
It is easy to see that all functions of one class are equally 

permissible or not permissible for a given M and H. But within each 
class considerable freedom is left in the choice of ¥ (e.g. different 
variations of velocity dispersion from point to point are possible). 
In each class, we choose a function ¥ to which corresponds the largest 
L. When such a choice is made, then validity of inequality (4) for 
the "worst case", ¥, insures the validity for all the rest of the 
functions in the same class. 

The selection process just described represents essentially an 
auxiliary constraint on the maximum, which we solve by Lagrange multi
pliers 5 

[(-<• yv^ In Y + X(r)¥ + ^ Y ]dr dv . L + A(r)v(r)dr + yK 
J 

We find the variation of this expression with accuracy up to terms of 
second order 

| | | - (In V + 1)8¥ - -^p- + A(r)6V 4- ̂  v2&V 
JJl 2V l 

Equating to zero terms of first order, we obtain the solution of our 
auxiliary problem 

2 
- In Y - 1 + X(r) + ^y-= 0 

dr dv (5) 

or 

Y = (2TTD) ve 
v 
2D (6) 

where 
0 = 1 , v( r) = (2TTD) 2 eX 1 

It is easy to verify, that v is indeed the stellar number density. D 
is the dispersion of velocities and is independent of the coordinates. 
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In agreement with the above, it is sufficient to verify the inequal
ity (4) for functions of type (6), i.e. a Maxwellian distribution. Among 
such functions is also ¥Q. 

Substitute (6) into (1) 

= /<i L = | v(| In 2TT D + | - lnv ] dr . (7) 

W r i t e down a l s o t o t a l mass and e n e r g y 

M= m j v dr, (8) 

H = m J ( ^ + f)vdr . (9) 
3 3 In (7) the terms containing -r- and y ln2ir play no role, as they vanish in 

variation. 
Suppose that v is the density of an inhomogeneous but incompressi

ble fluid. Generally speaking v does not have to have exact spherical 
symmetry. In such case we can displace the elements of the fluid, with
out changing their density, in such a way that the fluid will assume a 
spherically symmetrical configuration with the density monotonically 
increasing towards the center. During such a displacement, L, M and K 
do not change. The functions under the integral signs in (7) and (8) 
do not contain coordinates explicitly and only the function v varies. 

On the other hand, W decreases since the fluid mass in a spherically 
symmetric configuration has minimal potential energy (or, what is the 
same, is in the state of stable equilibrium). If we compensate for the 
decrease in H by increasing D, L increases. In this fashion, it is 
possible to replace an arbitrary stellar number density by a spherically 
symmetrical one, while L increases. From this it can be seen that the 
maximum of L existing for symmetrical configurations, has to remain 
maximal also with respect to more general, non-symmetrical configurations. 
In the following, we can limit ourselves to v depending on r = /(x2+y2+z2) 
only. 

We shall find now the variation of entropy with an accuracy up to 
terms of second order 

6L = 
r3 6D 3 / 6 D V r 3 x 6D M 3 . - n 

2 1 " 4 1 h 6 v l + 2 6 v l n D 

- (lnv + 1) 6v— v^ v/ \ dx dy dz 

Also, the variations of M and H must be equated to zero: 

(10) 
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6M = m 

3m 6H 

jff 6v dx dy dz = 0 

Jjf (v6D 4- D6v + 6D6v 

(11) 

;J dx dy dz 

/ / / 
( 2 $ 6 v + 6<$>&v) d x dy d z = 0 (12) 

In deriving formula (12) we have used the reciprocity relation known 
from potential theory 

fff$ 6v dx dy dz = Iff v6$ dx dy dz 

For a stationary state v has to satisfy a relationship which can be 
obtained by substitution of expression (6) - in the form 

1 /„2 
D y0 = (2TTD) 2 ve ° e ! + 

-into the Boltzmann equation. 
Here, the last coefficient is a function of the energy integrals of 

each star separately; consequently, it cancels out after substitution 
into Boltzmann1s equation. The remaining function of coordinates 
satisfies Boltzmann1s equation and reduces to a constant. As a result, 
for stationary systems 

ce (D = a2) (13) 

We multiply the variations 6M and 6H by Lagrange multipliers and 
combine with 6L: 

6 L " ^ D + l n C + 2 " 2 l n D 
6M 
m 

4- fine + | - | lnD^ 

(In v + 1) 

6v dx dy dz + 

+ Second order terms 

Here the values of the Lagrange multipliers were already substituted, 
making the first order terms in Sv and 6D vanish. This may be easily 
verified, having in mind (13). The remaining terms of second order give 

6L mm + JV ««2 
2D dx dy dz (14) 
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We shall solve (12) for 6D to be substituted into (14), remembering 
that D and 6D are independent of the coordinates. 

rn 2 fff$6v dx dy dz , _N 
6D = - -7-777 1 1 "T + ... (15) 

3 fffv dx dy dz 
The remaining terms are not needed, since they yield terms of higher 
order, for the substitution into (14). 

11 J L 2v 
0 3D2f r2vdr 

0 

where 6v must satisfy the additional condition (11), which is equivalent 
to 

R 
f r26v dr = 0 . (17) 

0 

Let us now int roduce a v a r i a b l e 

T = _ri_ . d6$ , 
47rmG d r 

and notice that in agreement with Poisson's equation 

4 ™ G 6 V - ^ - £ (-2^) • (18) 

It follows that 

6v=^.f , (18) 
which, considering (17), gives T(R) = T(0) = 0, where T(r=0)=0 is of 
third order in r. 

In (16) integrate by parts: 
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R R R 
f r 2 6v6$ dr = ffi$ ^- dr = -4TrmG f T2 dr 

0 

R 

0 

and (16) becomes 

R 
6L = -2TT 

0 

| r2*6v dr = | $ g dr = - J T g dr , 

£ L?7^ VdrJ D r^ J dr 

/ R \ 2 

Air ( / T g dr) (19) 

3D2 J r2v dr 
0 

Consider the function 

* (r) = r 2 £ (r g ) « r 2 ^ (rF) = r 3 4mnGv - r2F , dr 

where F(r) is the strength of the gravitational field. The asymptotic 
behavior of F is well known6 

lim rF = 2D , (20) 
r-x» 

where the approach to the limit is oscillatory. Thus, c()(r) has an 
infinite number of zeros, which we arrange in ascending order: 
ro = ° > rl> r2> •'• 

We will show that for R < r^ the first integral in (19) and 
consequently the whole expression is always negative. For this purpose 
we first establish that <Kr) satisfies the differential equation 

dr 
f 1 . d±\ + 4™G . J> 0 (21) 
lrzv dry D rz 
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We ve r i fy (21) 

dr = 4irmG - j ^ (r3 v) - 47rmGr2v = 4TrmG Ira ^ + 2r 2v J 

But from (13) e a s i l y follows 

v dr 

Consequent ly , 

1 # d± = 
vzv dr 

F 
D ' 

4iTmG 
D 

(22) 

r F 4- 87rmG , 

from which we deduce the validity of (21). 
Take R = ri. Then <j> may be considered as an eigenfunction of the 

equation 

f f - Z - - T 1) + n r ^ = 0 , (23) 
dr \ rzv dr / D rz 

It is the first eigenfunction in view of its constant sign, and the 
first eigenvalue X = 1. This corresponds to the value of the minimum 

j ^ (§) 2 dr 
. 0 , (24) 

m l n _ 

/ 
0 

47rmG T2 , —-— • ~Y dr D rz 

which is equal to unity, Q.E.D. 
Take further R = r^. Then X = 1 is the second eigenvalue of (23) 

with the same cf>. We shall prove that (19) can assume positive values. 
Let T be subject to the additional constraint 

R 

/ 
d$ T ̂  dr = 0 dr 

With this supplementary condition, the minimum (24) - in agreement with 
Courant's theorem7- is between the first and the second eigenvalue, and 
therefore is smaller than 1. The function T for which this minimum is 
attained makes 6L positive, Q.E.D. 

For a more exact investigation of expression (19) replace T by the 
function 
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To = r 2 4z ( r F ) + ^ 2 F > (25> 

where the parameter y is selected so that the boundary condition 
TQ(R) = 0 is satisfied, 

C¥), 'r=R 
y " F(R) 

I n t e g r a t i n g per p a r t s and tak ing i n t o cons ide ra t ion t h a t by (25) , T has 
a zero of t h i r d order a t r=0 , we obta in 

f ^L (**tf dr = _ [T±U- ^0) dr , 
J r z v \ dr J J 0 dr \ r z v dr ) 

L / _ ! . *lA\ + AlEG . I a = y L L f l , d ( r 2 F ) 1 
r \vzv dr J D r \dr [rzv dr J 

, 47TmG _ l 4iTmG „ 

6L 

R 4TT( / T F dr] 

277 J T 0 ~ D ~ y F d r - R 
0 3D2 / r 2 vdr 

0 

, r 2 J T F d r r 
i = S » - ° R ° 2 . / V d r . ( 2 « 

3D2 / r 2 vdr / 0 
0 

Notice t h a t for R+0 y-> - 2 , s ince near the c e n t e r , the g r a v i t a t i o n a l 
force may be considered p r o p o r t i o n a l to the d i s t ance from the cen te r . 
Consequently, for 0<R<r^ we have y<0. I f we l e f t out the l a s t i n t e g r a l 
in (19) then in p lace of (26) we would get 

4irmG g £ y2* J TQF dr , 

but this expression - as was already shown - is negative for 0<R<r^ 
and consequently the integral itself 
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/ 
0 

TQF dr> 0 . (27) 

Let us gradually increase R, beginning with value r^. Then for some R^ 
lying between r^ and r2, the expression in parentheses in (26) changes 
its sign from (-) to (+) (detailed calculation shows this). Since in 
the interval (̂ -pR̂ .) we have y>0, the inequality (27) is still valid 
in this interval. 

From (26) it follows that for R> R̂_ 6L can assume positive values. 
It remains to prove that when R=R]<_ (and hence also when R< R^) 6L can
not assume positive values. To show this represent an arbitrary T by 

T = T T Q + Tx , (28) 

for R=R]C, where T^ satisfies the constraint 

J T-L * dr = 0 , (29) 
0 

and TQ is determined by (25). Obviously, T1(0)=T1(R)=0 
Here, i|; is the first eigenfunction of equation (23) with boundary 

conditions i|;(0) = iK^k) = 0. From (28) and (29) the value of T is 
easily found 

I 
I \ 

Tijidr 
— . (30) 

T^dr 

The substitution T = T - T T in (29) shows that (29) is satisfied. 
The consistency of (28) will be proven if we can establish that the 
denominator in (30) does not vanish. 

The minimum of (24) with the constraint 

R 
J T ijj dr = 0 
0 

is indeed equal to the second eigenvalue of the equation (23); this 
value is equal to unity when R = r2 and consequently is larger than 1 
when R = Rk < r2. It follows that if TQ were orthogonal to i|;, then (19) 
with T = TQ would be negative, but this contradicts the choice of R̂ .. 
We substitute (28) into (19): 

1) The terms of the first and the second order in x are 
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9 f 1 # dT 0 / dT 0 6TA A 
-2TTT —7— • —— x -:— + 2 -r-1-) d r 

J r z v d r \ d r d r J 
0 

+ 2 „ i-nG f T0(TT0 + 2Tl) ^ 
D J rz 

ATTT 0 / R ( 2 T 1 + T T Q ) F d r ( / T0F d r . 
3 D 2 " R 

f r 2 v d r 

Integration by parts as in the derivation of (26) gives 

_ f ̂ L . £(> / dTo + 2 dT^N ̂  _ 
J rzv dr \ dr dry 
0 

- rR(xT0 + 2 T l ) A M . f o \ d r 
J O 1 dr \rzv dr / 
0 

Consequently 

f 1 . dT0 / dT0 dTl\ 

0 

R 
^ 4 ™ G f TQ(TT0 + 2TX) 
H — I — ^—n — dr = 

D J rz 

R 

/ 
0 

0 

(TT0 + 2Tl) ^ yF dr 

Taking into account the definition of R̂ -, we can see that the sum 
of the terms of the first and second order in T vanishes. 

2) The remaining terms do not contain T ; these are obtained from 
(19) by substituting T-̂  for T. The resulting expression is negative, 
which follows by inspection of the minimum (24) in view of (29). 

Proving in this manner the critical character of the value R = R̂ ., 
we shall now write the equation for R^ explicitly. In particular, 

https://doi.org/10.1017/S007418090014776X Published online by Cambridge University Press

https://doi.org/10.1017/S007418090014776X


536 V A. ANTONOV 

r e p l a c i n g p by i t s d e f i n i t i o n and r e p l a c i n g TQ by t h e d e f i n i t i o n ( 2 5 ) , 
we deduce from t h e v a n i s h i n g of t h e p a r e n t h e s i z e d t e r m i n (26) for R=Rk 
t h a t 

R R 
67TmGD(4TTmGRv - F) / r 2 v d r - 47rmGRv / r 2 F 2 d r + 

0 0 

R 
+ 47rmGF / r3vF dr = 0 (31) 

0 

The integrals in equation (31) may be eliminated using 

R 
f 2 A R2F(R) 
J r V dr = 4^G~ (32) 
0 

and the remaining two integrals we integrate by parts: 

R R 
f r2F2 dr - y- (F(R))2 - f / r3FFf dr = 

- £ (F(R))2 - j / r 3 F (4mnG - f ) d r - ^ ^ 

R 

3 
0 

J 47rmGr3vF d r + - | J r 2 F 2 d r , 

whence 

R R 
/ r 2 F 2 d r = - R 3 ( F ( R ) ) 2 + 87rmG / r ^ F d r . 

0 0 

From (22) f o l l o w s t h e r e l a t i o n 

R R / R \ 
/ r 3 v F d r = - D / r V d r = - D ( R 3 V < R ) - 3 / r 2 v d r ) = 
0 0 V 0 ' 

= - D ( R 3 v ( R ) - 4 ^ G R 2 F ( R ) ) • ( 3 3 ) 

T h e r e f o r e 
R 

/ r 2 F 2 dr. = - R3 ( F ( R ) ) 2 - 87rmGDR3v (R) + 6DR2F(R) . (34) 
0 
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Substituting the derived expressions for the integrals in (31), 
we have 

■| (4iTmGRv - F) DR2F - 4iTmGRv ( - R 3 F 2 - 8iTmGDR3v + 6DR2F) 

- 47TmGDR3vF + 3DR2F2 = 0 . (35) 

On t h e o t h e r h a n d , combin ing (13) w i t h P o i s s o n ? s e q u a t i o n , we o b t a i n 

1 d / o d I n v \ 47rmG / 0 ^ N 

77 ' d~r[r ~^r-]= " - D - V * (36) 

The order of equation (36) can be reduced in several different ways6. 
Thus, e.g., we introduce new variables 

d In v . dx ,0_N 
x = - r — 5 F - andy = r ¥ . (37) 

Clearly, by its definition x > 0. We substitute x into (22) and get 

F = ̂  . (38) 

r 

Substitution of x in the left-hand side of (36) yields 

1 d , N 4iTmG 
^ d7 ( r x ) = ~^~ v or 

47rmG x + y 
~D~V = r 

v = ±-^L (39) 

Next, we take the logarithm of (39) and differentiate with respect to r, 
keeping in mind the transformation (37): 

dx dy 
dr dr 2 d In v x_ 
x + y r dr r ' 

dy Substituting y as given by (37) and solving for -r*- , we have 

dy_ = 2x + y + x - xy (4Q) 
dx y 

The initial conditions are obtained by taking r=0; then x=0, y=0 and 
dy/dx=2. The previously introduced variable <j> differs from y only by 
the coefficient r. Therefore, the values of radius 0, rj, T2 .... 
correspond to the points of intersection of integral curve (40) with 
the axis of abscisses 0(0,)0, Ai(xi,0), A2(x2,0)... The integral curve 
passes from the point 0 from left to the right in the upper half-plane 
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while in the lower half-plan, from A^ to A£, from right to the left 
(since for y=0 &L changes sign, passing through infinity) and further 
continues to turn around the point C(2,0) as around a focus. 

We shall utilize now (38) and (39) in the transformation (35): 

| D2Rx 2f _ ££*£! |lD2Rx2 _ 2D2R(x+y) + 7D2Rx] + 

+ 3D3x2 = 0 , 

from which after obvious algebra we get 

3x - 2x2 ± x Ax 2 - 44x + 73" . (41) 
y 8 

In the region of interest 0 < x < x^ the curve represented by (41) has 
the shape of a closed loop, passing, in particular, through the points 
0 and C. Therefore, the point corresponding to R^, i.e. the point of 
intersection of curves (40) and (41) necessarily exists. It must be 
located on the section of the integral curve between A^ and A2. 
Numerical computation gives the coordinates of the point of intersection: 
x=+2.031; y=-0.364. From the values of x and y we go back to v: 

r x 
d In v x - v(r) f x , f x dx 
dr »$©--/!"--/ 

Integration with r=R^ yields 

v(Rk) = _1_ . 
v(0) 709 

Thus, we have proven that the density in the center of the main body of 
a star system with Maxwellian distribution of velocities, cannot exceed 
the density on the boundary of the main body more than 709 times. 

On the other hand, by equation (39) we have 

2 = (x + y)D = 1,667 * 22 • 709 , 
\ 4TrmGv 4innGv(0) 

R - 9> 7 0 a Rk " /d^G 

where d is mean density of the substance in the center and R^ defines 
the region which tends to establish within itself a Maxwellian distribution. 

The fact that 6 L may assume positive values for sufficiently large 
R(R> Rfc) means that Maxwellian distribution does not give a maximum of 
the entropy and that a phase distribution more probable (in the sense of 
Boltzmann's formula) than a stationary Maxwellian distribution is 
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possible. What has to be the nature of the evolution of a system if at 
the initial moment of time it finds itself in such an "excessively 
probable" state? In the first place, the system will not be approaching 
the Maxwell's distribution but going further away from it, on account of 
Boltzmann's theorem. Secondly, when the entropy reaches a certain limit 
the system will become non-stationary. We shall prove this last assertion. 

Let us divide the phase volume bounded in physical space by sphere 
x2+y2 + z2j<R into two regions such that in the first region 

* > e 2 h , 
and in the second region 

- 2h -1 1 
¥ < e < e 

where h is an arbitrary positive constant. 
Now, estimate the entropy 

L = - f f Y In V dr dv - f f V In Y dr dv <_ 

region I region II 

-i-1 
± //* i1 + i) drdv+ J7(1 + 5)e drdv • 

region I region II 

The substitution in the second integral was made on the basis of 
the fact that x In x is a decreasing function for x <̂ - . 

We may strengthen the inequalities by integrating both integrals 
throughout the whole phase volume. 

L < - + T^ + ̂ -(2*h)3/2 ^ *R3 — m hm 2e 3 
or 

K > hmL - hM - ^ (2irh) - TTR3 . 

It is clear from these relations that when the entropy increases, 
beginning at some moment, the inequality K>-H, i.e. 2K+W>0 will hold. 
In that case virial theorem shows that the system must disintegrate or 
else expand beyond the initial boundaries, which is what we wanted to 
prove. 

Finally, we will show that in our problem the entropy maximum can 
only be relative and not absolute. For a special phase distribution we 
take the following. Let mass otM be uniformly distributed inside the 
sphere N^ with radius p^, with a uniform distribution of velocities. Let 
the velocities have upper limit C-, . Let the second part of the total 
star mass 3M be distributed throughout sphere N2 of radius P2 in 
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analogous way, with maximum velocity C2- Let the distance between the 
centers of N-̂  and N2 be Pi2> the spheres being non-intersecting. Out
side N^, N2 the phase density is equal to zero. By the law of conserva
tion of mass a + 3 = 1. 

The corresponding phase densities are equal to 

„, _ ctM w _ W 
19 ~ 4 3 4 3 9 2 4 3 4 3 

m — irpj — TTC^ m -ô PJ ~^c2 

The entropy is 

L = - — ln^i - ^ lnY2 = - - (a In a + 3 In 3) + (42) m i m z m 

3M 
+ — (3 In copo -I- a In cipi). 

m *■ x ± 

The total energy, after some algebra, is seen to be 

3Ga2M2 3G32M2 a3M2 ^ 3 f „ 7 . Q1Jt 2N , / Q N H = =■- FT -r— + Tn (aMcf + 3Mc§) . (43) 5p I 5p2 P12 10 J- ^ 

c2, Pi and also the quantity f = -3 In (c2 p2) will be considered constant. 
On the other hand, let p2 be infinitesimally small. The remaining 
parameter C]_ will be chosen such that (43) is always satisfied, i.e. 

A flO L , a3M2\, 2G^M n 9 , 2Gf2M -
cl =/~ RS H + 1 + 3c^ + T= ry 
1 Jot J3M ̂  p 1 2y p l 2 P2( l n C2P2) . 

In the limit that P2 •* 0, 3+0, a->l, we have ci+ + °°. 
In (42),all terms with the exception of the last one tend to finite 
limits: 

a l n a + 0 , 3 In 3 + 0 , 3 In c2P2 = - f , 
but the increase of c^ has as a consequence the increase of L beyond 
any limit, i.e. there is no absolute maximum. 

In conclusion the author expresses his gratitude to Professor 
K. F. Ogorodnikov for his great help in the formulation of this article. 
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