
12
Excitation of discrete states in (e, e′)

Consider the simplest case of excitation of a discrete state of the target in
inclusive electron scattering (e, e′). The kinematics are illustrated in Fig.
12.1. If M�

T is the final target mass, then

p′ = p − q

−M�2
T = −M2

T − 2p · q + q2

2p · q = M�2
T − M2

T + q2

= 2MT (ε1 − ε2) (12.1)

The last relation evaluates p · q = −MTq0 in the laboratory frame. One
observes that here only q2 is an independent variable.

The integral over the energy-conserving delta function appearing in the
response tensor can be performed according to∫

dε2δ(E′ − MT + q0) =

∫
dε2δ(Wf − Wi)

=

∫
dWf δ(Wf − Wi)

(
∂ε2

∂Wf

)

=

(
∂ε2

∂Wf

)
;Wi = MT + ε1 (12.2)

Fig. 12.1. Kinematics in inclusive electron scattering.
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64 Part 2 General analysis

This jacobian is evaluated as follows

Wf = (p′2 + M�2
T )1/2 + ε2

= [(k1 − k2)
2 + M�2

T ]1/2 + ε2

= [ε21 + ε22 − 2ε1ε2 cos θ + M�2
T ]1/2 + ε2

∂Wf

∂ε2
=

ε2 − ε1 cos θ

E′ + 1

=
ε2 + E′ − ε1 cos θ

E′ =
MT + ε1 − ε1 cos θ

E′

=
MT

E′

[
1 +

2ε1 sin2 (θ/2)

MT

]
(12.3)

Energy conservation has been used. The inverse of this relation gives the
required result

∂ε2

∂Wf
=

E′

MT
r

r−1 ≡
[
1 +

2ε1 sin2 (θ/2)

MT

]
(12.4)

Take out the following Lorentz invariant factors from the coefficients
in the response tensor

Wi(q
2, q · p) ≡ wi(q

2)
M2

T

E′ δ(p0 − p′
0 − q0) ; i = 1, 2 (12.5)

Then, from the above,∫
dε2

MT
Wi(q

2, q · p) = wi(q
2) r (12.6)

The remaining response tensor, which will be denoted by wμν , is given by

wμν(q
2) =

∑
i

∑
f

EE′Ω

M2
T

(2π)3δ(3)(p − p′ − q)〈i|Jν(0)|f〉〈f|Jμ(0)|i〉 (12.7)

The sum over final states in the continuum limit takes the form

∑
f

→
∑′

f

Ω d3p′

(2π)3
(12.8)

Here
∑

f
′ now goes over all other quantum numbers. The final result for

the Lorentz invariant response tensor in this discrete case can then be
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12 Excitation of discrete states in (e, e′) 65

written

wμν(q
2) =

∑
i

∑′
f

EE′Ω2

M2
T

〈i|Jν(0)|f〉〈f|Jμ(0)|i〉 (12.9)

= w1(q
2)

(
δμν − qμqν

q2

)
+ w2(q

2)
1

M2
T

(
pμ − p · q

q2
qμ

)(
pν − p · q

q2
qν

)

This relation allows an identification of the transition form factors w1,2(q
2).

The variables q2 and q ·p are here related through Eq. (12.1). Furthermore,
a combination of Eqs. (11.38, 12.6) yields the cross section

dσ

dΩ
= σM

[
w2(q

2) + 2w1(q
2) tan2 θ

2

]
r (12.10)

This is an exact result, to order α2, for the scattering of a relativistic
electron with corresponding excitation of a discrete state in any quantum
mechanical target.

As a simple example, consider elastic scattering from a Jπ = 0+ target.
The kinematics in Eq. (12.1) yields for elastic scattering

M�
T = MT ≡ m

2p · q = q2 (12.11)

From Lorentz covariance and current conservation, one can write the
general form of the matrix element of the current in this case as

〈p′ ; 0+|Jμ(0)|p ; 0+〉 =

(
m2

EE′Ω2

)1/2

F0(q
2)

1

m

(
pμ − p · q

q2
qμ

)
(12.12)

Hence one can simply read off from Eqs. (12.9)

w1 = 0

w2 = |F0(q
2)|2 (12.13)

As a second example, consider elastic scattering from a Jπ = 1/2+

target. It follows from Lorentz covariance and current conservation that
the most general form of the matrix element of the current in this case is
given by [Bj65]

〈 p′ ; 1/2+|Jμ(0)| p ; 1/2+〉 =
i

Ω
ū(p′)

[
F1(q

2)γμ + F2(q
2)σμνqν

]
u(p)

σμν ≡ 1

2i
[γμ, γν] (12.14)
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66 Part 2 General analysis

Fig. 12.2. Elastic scattering from isodoublets.

This time one has to do a little work, but with the aid of the positive energy
projection operator, and by taking the resulting traces, one identifies

w1(q
2) =

q2

4m2
|F1 + 2mF2|2

w2(q
2) = |F1|2 +

q2

4m2
|2mF2|2 (12.15)

Substitution in Eq. (12.10) then yields the celebrated Rosenbluth cross
section. Although very instructive, we leave the derivation of Eqs. (12.14,
12.15) to the dedicated reader.1

The Rosenbluth cross section is quite general. It of course applies to
the nucleon, the isodoublet (p, n). It also applies to the nuclear isodoublet
(32He, 3

1H) as illustrated in Fig. 12.2. In both cases, one can actually do
elastic scattering experiments on the higher energy state. In the case of
the neutron, one uses a deuteron 2

1H in which the neutron is bound to a
proton. In the case of tritium 3

1H, this nucleus lives long enough that one
can make targets of it for external beam experiments.

It is useful to make the isospin dependence of the form factor manifest
in the case of scattering from an isodoublet target. The general isospin
structure of the electromagnetic current operator in any description of
nuclei and nucleons (mesons and baryons, quarks and gluons, etc.) is

Jγμ = JSμ + JV3
μ (12.16)

Here the superscript describes the behavior under isospin transformations,
either scalar or third component of an isovector. It follows from the
Wigner–Eckart theorem that the matrix elements of the current must
reflect that behavior. Thus the form factors must have the structure

Fi =
1

2
(FS

i + FV
i τ3) ; i = 1, 2 (12.17)

Here τ are the Pauli matrices, and the target isospinors are suppressed in

1 Hermiticity of the current implies that the form factors in these examples are real.
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12 Excitation of discrete states in (e, e′) 67

Fig. 12.3. Inelastic transition 0+ → 1+.

Eq. (12.14). For the nucleon, it follows that

F
p
i =

1

2
(FS

i + FV
i ) FS

i = F
p
i + Fn

i

Fn
i =

1

2
(FS

i − FV
i ) FV

i = F
p
i − Fn

i (12.18)

It is useful to summarize the following numerical values for the nucleon
(m ≡ mp)

F
p
1 (0) = 1 FS

1 (0) = 1

Fn
1 (0) = 0 FV

1 (0) = 1

2mF
p
2 (0) = +1.793 2mFS

2 (0) = −.120

2mFn
2 (0) = −1.913 2mFV

2 (0) = +3.706 (12.19)

Consider next an inelastic transition 0+ → 1+ as illustrated in Fig.
12.3. From Lorentz covariance, the general form of the transition matrix
element of the current can be written as

〈p′; 1+λ|Jμ(0)|p; 0+〉 =

(
mm�

EE′ Ω2

)1/2
f(q2)√
2mm�

εμνρσ ε
(λ)�
ν pρqσ (12.20)

Here λ is the helicity of the final 1+ particle, and its polarization four-
vector is given by

ε(λ)�ν ≡ (ε(λ)†, iε(λ)†0 ) (12.21)

Because of the intrinsic parity of the 1+ particle, this matrix element
must transform as an axial vector. Note that current conservation is
automatically maintained since qμεμνρσqσ = 0.

To calculate the cross section one needs the sum over polarization
vectors, which for a spin one particle is given by2

∑
λ
ε(λ)�μ ε(λ)ν = δμν +

p′
μp

′
ν

m�2
(12.22)

2 This must be a second rank tensor, and the polarization vectors satisfy p′ · ε(λ) = 0.
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68 Part 2 General analysis

After some algebra, one then obtains

w1 =
q2

2mm�
|f(q2)|2

w2 =
q2

2mm�
|f(q2)|2 (12.23)

The cross section then follows from Eq. (12.10). We shall see from the sub-
sequent multipole analysis that this represents a “pure M1 cross section.”

The reader can now write his or her own “elementary cross section.” Just
pick a transition and use Lorentz covariance and current conservation to
write the general form of the matrix element of the current. The response
functions w1,2(q

2) are then identified from Eqs. (12.9) and the cross section
from Eq. (12.10).

Let us now make a connection to the analysis of real photon transitions
in chapter 9 and make a multipole analysis of the electron scattering cross
section. We start by going back a step and restoring the spatial dependence
to the matrix elements in Eq. (11.20) through the use of the Heisenberg
equations of motion

Wμν =
∑

i

∑
f
δ(p0 − p′

0 − q0)〈i|
∫

eiq·xJν(x) d3x|f〉

×〈f|
∫

e−iq·xJμ(x) d3x|i〉(E) (12.24)

This relation is still exact since if the initial and final states are eigenstates
of momentum, one has

〈f|
∫

e−iq·xJμ(x) d3x|i〉 = Ωδp,p′+q〈f|Jμ(0)|i〉

and then; 〈i|
∫

eiq·xJν(x) d3x|f〉 = Ω〈i|Jν(0)|f〉 (12.25)

Thus in the limit Ω → ∞
Wμν = (2π)3

∑
i

∑
f
δ(4)(p − p′ − q)〈i|Jν(0)|f〉〈f|Jμ(0)|i〉(E Ω) (12.26)

This is our previous result.
Assume one goes to a discrete state with mass M�

T , then just as before

Wμν ≡ M2
T

E′ δ(p0 − p′
0 − q0)wμν (12.27)

wμν =
∑
i

∑
f

(
EE′

M2
T

)
〈i|
∫

eiq·xJν(x) d3x|f〉〈f|
∫

e−iq·xJμ(x) d3x|i〉

= w1(q
2)

(
δμν − qμqν

q2

)
+ w2(q

2)
1

M2
T

(
pμ − p · q

q2
qμ

)(
pν − p · q

q2
qν

)
The cross section is again given by Eq. (12.10).
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12 Excitation of discrete states in (e, e′) 69

Let us now solve Eqs. (12.27) for the functions w1,2(q
2). First take

μ = ν = 4 and make use of the fact that in the laboratory frame
p = (0, iMT ). This yields

w1

(
1 +

q2
0

q2

)
− w2

(
1 +

q2
0

q2

)2

= w1
q2

q2
− w2

q4

q4

= −
∑
i

∑
f

(
EE′

M2
T

)
|〈f|

∫
e−iq·xρ̂(x) d3x|i〉|2 (12.28)

Next dot the spatial part of the tensor Wμν into the spherical unit vectors

eqλ from the left and e
†
qλ from the right. Here these spherical unit vectors

are defined with respect to the direction of the momentum transfer q [see
Fig. 8.1 and Eqs. (8.4)]. For λ = ±1 they satisfy

eqλ · e
†
qλ = 1

eqλ · q = 0 ; λ = ±1 (12.29)

As a result of these observations, the term in w2 no longer contributes.
Finally, take

∑
λ=±1 to simplify things. The result of these operations is

2w1 =
∑
λ=±1

∑
i

∑
f

(
EE′

M2
T

)
|〈f|

∫
e−iq·x e

†
qλ · Ĵ(x) d3x|i〉|2 (12.30)

These equations can now be solved for w1,2(q
2) with the result

2w1(q
2) =

∑
λ=±1

∑
i

∑
f

(
EE′

M2
T

)
|〈f|

∫
e−iq·x e

†
qλ · Ĵ(x) d3x|i〉|2 (12.31)

w2(q
2) =

q2

q2
w1(q

2) +
q4

q4

∑
i

∑
f

(
EE′

M2
T

)
|〈f|

∫
e−iq·x ρ̂(x) d3x|i〉|2

These equations are still exact.
Now assume, just as in the analysis of real photon transitions in chapters

8 and 9, that

• The target is heavy and the transition densities are well localized in
space

• The initial and final states are eigenstates of angular momentum

Thus one imagines that the target is heavy and “nailed down” (at the
origin, say). It makes a transition, and the localized transition density
scatters the electron. Here target recoil (i.e. the C-M motion of the target)
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70 Part 2 General analysis

is neglected in the transition matrix elements;3 it is included correctly
where it is most important through the recoil phase space factor r.

The multipole analysis now proceeds exactly as in chapter 9. The
essential difference is that the argument of the spherical Bessel functions
in the multipoles, instead of being given by |k| the momentum of the
photon (with |k| = ω), is now given by κ = |q| the momentum transfer in
the electron scattering process.

κ ≡ |q| (12.32)

In addition to the transverse electric and magnetic multipoles of Eq. (9.11)

T̂ el
JM(κ) ≡ 1

κ

∫
d3x

[
∇ × jJ(κx)YM

JJ1(Ωx)
]

·Ĵ(x)

T̂
mag
JM (κ) ≡

∫
d3x

[
jJ(κx)YM

JJ1(Ωx)
]

·Ĵ(x) (12.33)

there is now a Coulomb multipole of the charge density defined by

M̂JM(κ) ≡
∫

d3x jJ(κx)YJM(Ωx) ρ̂(x) (12.34)

This is the same multipole that appears at long wavelength in the expan-
sion of T̂ el

JM(k) in Eq. (A.13).
The use of the Wigner–Eckart theorem allows one to do the sum and

average over nuclear states, and exactly as in chapter 9 one arrives at the
relations

2w1(q
2) =

E′

MT

4π

2Ji + 1

∑
J≥1

{
|〈Jf ||T̂mag

J (κ)||Ji〉|2 + |〈Jf ||T̂ el
J (κ)||Ji〉|2

}

w2(q
2) =

q2

q2
w1(q

2) +
q4

q4

E′

MT

4π

2Ji + 1

∑
J≥0

|〈Jf ||M̂J(κ)||Ji〉|2 (12.35)

The Wigner–Eckart theorem limits the sums on multipoles appearing in
these expressions to values satisfying the triangle inequality |Jf −Ji| ≤ J ≤
Jf + Ji.

The cross section follows from Eq. (12.10) as

dσ

dΩ
= σM

4π

2Ji + 1

⎧⎨
⎩q4

q4

∑
J≥0

|〈Jf ||M̂J(κ)||Ji〉|2 (12.36)

+

(
q2

2q2
+ tan2 θ

2

)∑
J≥1

(
|〈Jf ||T̂mag

J (κ)||Ji〉|2 + |〈Jf ||T̂ el
J (κ)||Ji〉|2

)⎫⎬
⎭ r̄

3 The C-M motion can, in fact, be handled correctly in the usual non-relativistic nuclear

physics problem using, for example, the approach in appendix A of [Fo69]. We reproduce

that analysis here in appendix B.
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FT
2

Fig. 12.4. Elastic magnetic scattering response F2
T for 93

41Nb(e, e). Here qeff ≡ κ.
The single-particle shell model configuration assignment is (1g9/2)π . The work is
from Bates [Yo79].

Here the recoil factor r̄ is given by

(r̄)−1 ≡ MT

E′ r
−1

=
1

E′ (MT + ε1 − ε1 cos θ)

= 1 +
(ε2 − ε1 cos θ)

E′ (12.37)

Energy conservation has been used in obtaining this result (note that for
most nuclear applications MT/E

′ ≈ 1).
Equation (12.36) is the general electron scattering cross section, to order

α2, from an arbitrary, localized quantum mechanical target. It forms the
basis for much of our future discussion. To give the reader some feel for
these results, we briefly present a few selected applications.

For real photon transitions, it is the lowest allowed multipole that
dominates the transition (appendix A). One of the most intriguing features
of electron scattering (e, e′) is that by increasing the momentum transfer κ,
one can in essence dial the contributing multipolarity, even to the extent
that it is the highest allowed multipole that dominates. We give three
examples.

Figure 12.4 shows elastic magnetic scattering from 93
41Nb(e, e). This rep-

resents the contribution to the cross section from the transverse multipoles
in the second line of Eq. (12.36). This contribution can be separated ex-
perimentally by making a straight-line Rosenbluth plot against tan2 (θ/2)
at fixed q2, or by working at θ = 180o where only the transverse term
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�j, m = j>

Fig. 12.5. Surface of μ(x)max/2 for 51
23V with configuration assignment (1f7/2)π

plotted on a 10 fm square. Here the angular momentum is aligned along the
z-axis with mj = j [Do73].

contributes.4 Parity and time-reversal invariance of the strong interactions
limit one to the odd transverse magnetic multipoles in elastic scattering.5

The work shown is from Bates [Yo79]. The single-particle shell model
configuration assignment for 93

41Nb is (1g9/2)π; recall it is predominantly
the valence nucleon that gives rise to the magnetic properties of nuclei.
Note how at long wavelength (low κ) the transition is all M1, while each
higher multipole dominates in turn as κ is increased, until at high κ it is
all M9.

What does one learn from this? Figure 12.5 shows the surface of half-
maximum intrinsic magnetization density μ(x)max/2 for 51

23V (chosen so
that it would fit on a 10 fm square). Here the configuration assignment
is (1f7/2)π , and the nucleus is aligned so that its angular momentum
points along the z-axis with mj = j. The intrinsic magnetization tracks
the location of the valence nucleon. The nucleus is a small magnet with
a current loop provided by the motion of the orbiting proton. Elastic
magnetic electron scattering at all κ provides a microscope to actually see
the spatial structure of this small current loop [Do73].

We next recall that one of the distinguishing features of the shell model,
for whose discovery Mayer and Jensen won the Nobel prize, is that levels
with the highest angular momentum and opposite parity from one major
shell are pushed down close to the levels of the next lower major shell. If
that lower shell is filled (or partially filled), one can have low-lying, high-
spin, magnetic, particle–hole transitions of the nucleus. Figure 12.6 shows

4 The notation used here is dσ/dΩ ≡ σM[(q4/q4)F2
L + (q2/2q2 + tan2 θ/2)F2

T ]r.
5 An analysis similar to that for parity in chapter 9 shows that the time-reversal be-

havior (which includes complex conjugation) of both of the transverse multipoles is

T̂T̂JMT̂−1 = (−1)J+1T̂J−M . This, combined with the hermiticity of the current, leads to

the quoted selection rule in the elastic case [Pr65, Do73] — see appendix E.
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Fig. 12.6. Transverse response for 24
12Mg(e, e′) at θ = 160o and κ = 2.13 fm−1 with

the 6− indicated. Also shown is the inelastic form factor F2
T for the 6−, defined to

be the area under the inelastic peak, vs. κ ≡ qeff . This quantity is compared with
the theoretical result (open-shell RPA) for a transition to the [1f7/2(1d5/2)

−1]6−

state. The work is from Bates [Za77].

the large-angle, large κ response for electron excitation of 24
12Mg(e, e′). Also

shown is the inelastic form factor, the area under the peak, as a function
of κ for the dominant transition. This inelastic form factor manifests a
characteristic M6 dependence, identifying the excited state as 6−. The
configuration assignment here is 1f7/2(1d5/2)

−1 and the 6− is the highest

Jπ which can be formed from this configuration.6 The work was done at
Bates [Za77]. Excitations up to 14− in 208

82Pb have been similarly studied
[Li79].

As a third application, there are regions of the periodic table where
nuclei are deformed. Bohr, Mottelson, and Rainwater won the Nobel
prize for their analysis of these systems. Suppose one measures elastic
scattering, and inelastic electron scattering, to all members of the ground-
state rotational band, at all κ. This requires very good energy resolution,
since the ground-state band for heavy nuclei is closely spaced, and involves
bringing out all the transitions of increasing multipolarity in the rotational
spectrum. It is then possible to actually see the deformed charge distribution.
This is illustrated in Fig. 12.7. The work was done at Bates [He86]. The
study of the intrinsic structure of deformed nuclei is one of the most
important contributions of the Bates Laboratory.

6 Note that the large Jπ produces a very narrow state (this state lies above particle

emission threshold). Furthermore, the large isovector magnetic moment of the nucleon

in Eq. (12.19), through which the state is predominantly excited from the T = 0 ground

state, implies this excited state has isospin T = 1.
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(a)

(b)

theory

experiment

Z

R

Z

R

Fig. 12.7. Shape of charge distribution in the deformed nucleus 154
64Gd(e, e′) (b)

from work at Bates; (a) deformed Hartree–Fock calculation of the same [He86].

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Missing mass in GeV

10
9
8
7
6
5
4
3
2
1
0

d
2 5

d
Ω

d
E

(1
0–3

6  
cm

2 /
sr

 G
eV

) Resonance fit
E0 = 7.0 GeV
θ = 6.0 Degree

Fig. 12.8. Inelastic cross section for 1H(e, e′) in the resonance region measured
at SLAC with ε1 = 7.0 GeV and θ = 6.0o. The elastic peak has been suppressed.
Also shown are resonance and smooth background fits [Bl68].

As a fourth brief application, consider electron excitation of the nucleon
itself. A general discussion of the process (1/2+, 1/2) → (Jπ, T ) can be
found in [Bj66].

Figure 12.8 shows the inelastic cross section for 1H(e, e′) in the resonance
region measured at SLAC [Bl68]. These results are even more impressive
when one realizes that the elastic peak has been suppressed. Also shown
in this figure is a Breit–Wigner resonance fit, together with a smooth,
polynomial background [Bl68, Br71]. The first resonance, the Δ(1232)
with (Jπ, T ) = (3/2+, 3/2), clearly stands out. The second peak consists of
at least two levels. The third has several levels, and with a good stretch of
the imagination, one can even discern a fourth peak.

Figure 12.9 shows the ratio (dσin/dσel)6o for 1H(e, e′)Δ(1232) as mea-
sured by the SLAC–M.I.T. collaboration [Bl68, Br71]. The inelastic cross
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Fig. 12.9. Ratio (dσin/dσel)6◦ for 1H(e, e′)Δ(1232) (see text) [Wa72]. Here k2 ≡ q2.

section for excitation of the resonance is obtained from the area under
the resonance peak. The ratio to the elastic cross section is then plot-
ted as a function of the four-momentum transfer q2. Note that there is
one point on this plot at q2 = 0 obtained from photoabsorption.7 The
solid curve is a covariant, gauge-invariant calculation formulated in terms
of hadronic degrees of freedom [Pr69, Wa72]. The calculation uses the
multipole projections of the hadronic pole terms from (π, ω,N) exchange,
with a resonant final-state enhancement factor determined from the π-N
phase shift; it is discussed in some detail in chapter 28. This calculation
can be viewed as a synthesis of a great deal of work on this process by
Fubini Nambu and Wataghin [Fu58], Dennery [De61], Zagury [Za66],
Vik [Vi67], Adler [Ad68], and others. It is remarkable that a hadronic
description of the excitation of the first excited state of the nucleon can
succeed down to distance scales q2 ∼ 100 fm−2.

7 In dσel the factors σMottr are evaluated at the same (ε1, θ) while w1,2(q
2)el are evaluated

at the resonance peak. The resulting ratio in Fig. 12.9 is essentially independent of θ for

small θ and all the q2 �= 0 points [Wa72].
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