
Relativity in Fundamental Astronomy
Proceedings IAU Symposium No. 261, 2009
S. A. Klioner, P. K. Seidelman & M. H. Soffel, eds.

c© International Astronomical Union 2010
doi:10.1017/S1743921309990299

A relativistic motion integrator:
numerical accuracy and illustration with

BepiColombo and Mars-NEXT

A. Hees1 and S. Pireaux2

1 ,2Royal Observatory of Belgium (ROB)
Avenue Circulaire 3, 1180 Bruxelles, Belgium

1aurelien.hees@oma.be 2 sophie.pireaux@oma.be

Abstract. Today, the motion of spacecraft is still described by the classical Newtonian equations
of motion plus some relativistic corrections. This approach might become cumbersome due to
the increasing precision required. We use the Relativistic Motion Integrator (RMI) approach to
numerically integrate the native relativistic equations of motion for a spacecraft. The principle
of RMI is presented. We compare the results obtained with the RMI method with those from
the usual Newton plus correction approach for the orbit of the BepiColombo (around Mercury)
and Mars-NEXT (around Mars) orbiters. Finally, we present a numerical study of RMI and we
show that the RMI approach is relevant to study the orbit of spacecraft.
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1. The Relativistic Motion Integrator (RMI) and an analytical
development

The software RMI presented in Pireaux et al. (2006), Pireaux et al. (2008) numerically
integrates the relativistic equations of motion

d2Xα

dτ 2 = −Γα
μν

dXμ

dτ

dXν

dτ
(1.1)

for a given metric Gμν where Xμ = (cT,X, Y, Z) are the coordinates, τ is the proper
time and Γα

μν are the Christoffel symbols of the metric considered, derived numerically.
As an example, we use this integrator with the planetocentric metric advised by the IAU
2000 resolutions, described in Soffel et al. (2003) and characterised by a scalar potential
W and a vector potential Wi . Until now, we considered only the central body of mass
M , so that we have:{

W (Xα ) = GM
R
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]
Wi(Xα ) = −G

2
(R×S)i

R3

(1.2)
where G is Newton’s gravitational constant, c the speed of light, Clm and Slm are related
to the central gravity field, Re is the equatorial radius of the central body, while the
vector S is its spin moment and R =

√
X2 + Y 2 + Z2 .

It is possible to develop analytically the equations of motion (1.1) at first Post-
Newtonian (1PN) order. Doing so, one gets d2 R

dt2 = −GM
R3 R + corr, where the correc-

tions are composed of different types of forces: a Newtonian correction coming from
the harmonics (proportional to Clm or Slm ), a relativistic Schwarzschild acceleration
(proportional to 1/c2), a relativistic correction coming from the harmonics (propor-
tional to Clm /c2 or Slm /c2), a relativistic coupling between harmonics (proportional
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Figure 1. Corrections due to the relativistic
Schwarzschild acceleration.

Figure 2. Corrections due to the relativistic
contribution from the first harmonics (C20 , C22
and S22 ).

to Clm Clm /c2 , Clm Slm /c2 or Slm Slm /c2) and finally a relativistic Lense-Thirring accel-
eration (proportional to the spin momentum over c2).

2. Results for the BepiColombo and Mars-NEXT missions
The analytical development described above is used to assess the order of magnitude

of each separate effect and to validate the RMI method. Figures 1, 2 and 3 show the
separate impact of the relativistic effects in terms of cartesian coordinates (X,Y,Z),
radial distance R and L = ω + w, where ω is the argument of pericenter and w is the
true anomaly. The orbital parameters of the BepiColombo mission can be found in Balog
et al. (2000): a = 3389 km, e = 0.162, i = 90˚. The orbital parameters of the Mars-
NEXT mission (see Chicarro et al. (2008)) are: a = 3896 km, e = 0 and i = 75˚. The
numerical integration has been performed over 5 orbital periods.

3. Numerical precision
The numerical derivative has to be treated carefully. In the implementation of RMI,

we used a fourth-order numerical derivative

f ′(x) ≈ Dh + O(h4) =
f(x − 2h) − 8f(x − h) + 8f(x + h) − f(x + 2h)

12h
+ O(h4). (3.1)

For large h, the discretization error is important, while for small h, the roundoff error
increases. We use an optimal derivation step computed analytically for a function 1

r (see
Figure 4), given by hopt = (45εa6c2/(960GM))1/5 (Kincaid and Cheney (2002)) where
ε is the machine precision and a is the semi-major axis. As can be seen on Figure 4, we
derive Hμν = Gμν − ημν , with ημν the Minkowski metric, instead of Gμν since it is more
stable numerically. Moreover, we use a Richardson extrapolation in order to increase the
precision on the derivative (Richardson (1927)). This extrapolation uses two estimations
of the derivative of order 4 with different step size (Dh and Dh/k with k a real factor) to
construct an estimation of order 8

f ′(x) ≈
k4Dh/k − Dh

k4 − 1
+ O(h8). (3.2)

https://doi.org/10.1017/S1743921309990299 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921309990299


146 A. Hees & S. Pireaux

Figure 3. Corrections due to the relativistic
Lense-Thirring acceleration.

Figure 4. Relative precision of the metric
derivative as a function of the discretization step
size h.

Typically, the value of k is often chosen as 2 or 1.5. We can see on Figure 4 that this
procedure can increase the derivative precision. It is furthermore less sensitive to the
choice of hopt. With such an implementation, it is possible to show that the relative
precision of RMI is of the order of 10−12 in double precision and 10−22 in quadruple
precision.

4. Conclusion
We have shown that RMI is useful to compute relativistic orbits for different missions.

It includes all the relativistic effects (up to the corresponding order of the metric). It is
quite easy to use, since the user only has to change the metric module if he wants to
change the metric. Until now, RMI is only a prototype that is more time consuming than
the usual 1PN approach. Nevertheless, it is possible to reduce drastically the integra-
tion time required by the RMI method via proper coding and using parallelization (the
computation of the Christoffel symbols can easily be parallelized).
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