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ABSTRACT

For sums of independent and identically distributed random variables x,, the Hartman-
Wintner law of the iterated logarithm is equivalent to x, € L. We show that this is also true when
the x, form a stationary, ergodic martingale difference sequence. This is accomplished by extend-
ing a theorem of Volker Strassen to the present context.

1. Introduction

In this paper we consider a sequence {x;} of identically distributed random
variables on a probability space (Q, %/, p) and the following two conditions:

(A) x, €L, and E(x,) = 0, E(x?) = K? for some K,
(B) p{lim sup(x, + - + x,)/(2n log log n)* = T?} = 1 for some T.

As usual, E denotes Lebesgue integration with respect to p of &/-measurable func-
tions on Q. For fixed ¢t > 0, L, is the set of functions f on Q for which E(]f l‘) < o0,
while for Aes, ““A a.e.”” means p(4) = 1.

If the x, are independent, (A) implies (B), with T? = K2, by the celebrated
Hartman-Winter law of the iterated logarithm [2]. In fact (B) implies (A), with
K? = T?, as shown by Strassen [6], who thus elucidated the true nature of the
log-log law for sums of independent, identically distributed random variables.
Like the central limit theorem ((x; + - + x,)/(nK?)* converges in law to the
unit normal distribution if and only if (A)), it is a second order result.

Even without independence such a characterization of the law of the iterated
logarithm may obtain. Specifically, suppose that the x, form a martingale dif-
Jference sequence with respect to an increasing sequence (¢, Q) = F, < -
< F, < --- of sigma sub-algebras of A; ie., x,eL; is #, measurable and
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E(x,4, [.9"' ») =0 a.e.,all n, where E( - [32' ;) denotes a version of the conditional
expectation operator on the &#; measurable functions. Then if the x, are also
stationary and ergodic the Hartman-Wintner theorem extends and (A) still implies
(B), as was shown by Stout [5]. Of course, E(x,) = 0 is redundant in (A).

Interestingly, Strassen’s theorem extends too, and (B) still implies (A), as
will be shown in the next section. The law of the iterated logarithm remains a
second order result in the martinglale case.

2. The result
We prove the following statement.

THEOREM. Let {x;} be a stationary and ergodic sequence of random vari-
ables on a probability space (Q,,p). If {x;, #;} is a martingale difference se-
quence and if condition (B) holds, then also condition (A) holds with K* = T2,

ProoF. Without loss of generality we may take  to be the set of all extended
real valued sequences {---,u_;,ug, Uy, +}, the x; to be the coordinate random
variables on €, &/ to be the o-algebra generated by the x;, p to be the probability
generated by finite dimensional distributions, and & to be the o-field generated
{x, — 00 < k < j}. A standard construction assures that there is such a represen-
tation that preserves the original finite dimensional distributions, so that the
given stochastic structure is not changed.

It suffices to prove x,eL, since E(x?) = T2 then follows directly from
Stout’s theorem. Also, the distribution of x; may be taken as continuous since
the distribution of y, = x,+ u, is (the u, are independent uniform random vari-
ables on [ —1, 1] and are independent of the x,) and because the y, form a station-
ary, ergodic martingale difference sequence and satsfy (i) y,e L, if and only if
X, € Ly; (ii) lim sup (y; + -+ + y,)/(2n log log n)* is finite a.e. if and only if
lim sup (x, + -+ + x,)/(2n log log n)? is.

By way of contradiction, suppose that (B) holds while x, ¢ L,. Using ideas
from [3], fix T > 0 and choose numbers C >0, D <0 so that, writing J
= [D, C], the following conditions hold:

)} E(x,|x,€J) =0
) E(x?|x,eJ) > 8T?
3) y=p{x,eJ} > 1%

Define the random variables U, = I({x,eJ}) and V, = I({x, ¢ J}) where, for
Ae o, I(A) is the function from Q to R taking values 1 when we A and 0 when
w ¢ A. As both are measurable functions of x,, the ergodic theorem applies to
show that

U_j+-+Ug+ -+ UJ(j+k+ D>y
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a.e. and
Voot Vot + WU+ k+ D1 -y

a.e., both as j + k— c0. E(x?) = oo means y < 1so that by (3), bothX%_ -;U;and
Zt._;Vi> o0 as j+ k- oo; the import of these statements is that p{x,eJ for
infinitely many ne M} = p{x,¢J for infinitely many ne M} = 1, where M is

any infinite set of consecutive integers. Define (random) subsequences {A(j)} and

{u(y)} by.

A1) =min (n>0:x,€J) p() =min(n>0:x,¢J)

A+ 1) = min (n > A(j) : x,€J) u(j+ 1) = min (n > u(j) : x,¢J),j>0
A )=max (n<A(j+1):x,ed) p(H=max(n<u(j+1):x,¢J0),j <0

By the above remarks, the sequences are well-defined, except possibly on a null
set; similarly with the sequences {Y;} and {Z;} defined by

4) Y, = Xy and Z, = x,,

Let G, be the o-subalgebra of 4 generated by {Y; — 0 <i < n}, define
2 = E(Y}|G,_,) and, for m 2 1, u} = t] + -+ + 2. Observe that the recurrence
times {d;}, 6, = A(n) — A(n — 1) are stationary since the x; are, and accordingly,
{Y;} is also stationary, a fact which easily gives the stationarity of {t7}.

Now Y, is G,-measurable and E(Y,|G,-,) = 0, a.e. Because |Y,| < C—D
a.e. and p{X%_,1* = oo} > 0, the conditions for Stout’s [4] martingale analogue
of the Kolmogoroff log-log law are satisfied. Accordingly,

5 p{lim sup (Y, + --- + Y,)/(2u? log log u?)* = 1} >0.

Using the stationarity of {t7}, the ergodic theorem and (2) imply that
for any 6 >0, p{u? = 8nT?}>1-6 for all sufficiently large n. Again by
the ergodic theorem, p{Z; + - + Z;,y—, = O for infinitely many n >0} > 0.
Finally x; + - + X305y = (Y + - + Y,) +(Z1 + -+ + Z;y—p) for n > 0, by (4).
These facts combine with (5) to establish
(6) p{lim sup (x; + -+ + x;30,»)/(8nT? log log n)* = 1} > 0.

Finally, by (3) and the ergodic theorem, p{i(n) = 2n for only finitely many
n >0} = 1 so that from (6)
@) p{lim sup (x; + -+ + x30,)/(34(M)T? log log A(n))* = 1} >0,

n-*oo
a contradiction to (B) that completes the proof.

REMARK. We conclude by pointing out a related problem that remains open. If
the x, are independent, (B) is equivalent to (x; + -+ + x,)/(nT?)* converging in
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law to the unit normal distribution, i.e., the central limit theorem. With the result
of the preceding section, the martingle central limit tkeorem (see [1], e.g.) would
be equivalent to the log-log law if the former result entailed x, e L,.
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