A CONVERSE TO THE LOG-LOG LAW FOR MARTINGALES

Dedicated to the memory of Hanna Neumann

W. L. STEIGER

(Received 1 June 1972, revised 29 October 1973)

Communicated by M. F. Newman

ABSTRACT

For sums of independent and identically distributed random variables x_n , the Hartman-Wintner law of the iterated logarithm is equivalent to $x_n \in L_2$. We show that this is also true when the x_n form a stationary, ergodic martingale difference sequence. This is accomplished by extending a theorem of Volker Strassen to the present context.

1. Introduction

In this paper we consider a sequence $\{x_j\}$ of identically distributed random variables on a probability space (Ω, \mathcal{A}, p) and the following two conditions:

(A)
$$x_n \in L_2$$
 and $E(x_n) = 0$, $E(x_n^2) = K^2$ for some K,

(B)
$$p\{\limsup_{n \to \infty} (x_1 + \dots + x_n)/(2n \log \log n)^{\frac{1}{2}} = T^2\} = 1 \text{ for some } T$$

As usual, E denotes Lebesgue integration with respect to p of \mathscr{A} -measurable functions on Ω . For fixed t > 0, L_t is the set of functions f on Ω for which $E(|f|^t) < \infty$, while for $A \in \mathscr{A}$, "A a.e." means p(A) = 1.

If the x_n are independent, (A) implies (B), with $T^2 = K^2$, by the celebrated Hartman-Winter law of the iterated logarithm [2]. In fact (B) implies (A), with $K^2 = T^2$, as shown by Strassen [6], who thus elucidated the true nature of the log-log law for sums of independent, identically distributed random variables. Like the central limit theorem $((x_1 + \dots + x_n)/(nK^2)^{\frac{1}{2}}$ converges in law to the unit normal distribution if and only if (A)), it is a second order result.

Even without independence such a characterization of the law of the iterated logarithm may obtain. Specifically, suppose that the x_n form a martingale difference sequence with respect to an increasing sequence $(\phi, \Omega) = \mathscr{F}_0 \subseteq \cdots$ $\subseteq F_n \subset \cdots$ of sigma sub-algebras of A; i.e., $x_n \in L_1$ is \mathscr{F}_n measurable and $E(x_{n+1} | \mathscr{F}_n) = 0$ a.e., all *n*, where $E(\cdot | \mathscr{F}_j)$ denotes a version of the conditional expectation operator on the \mathscr{F}_j measurable functions. Then if the x_n are also stationary and ergodic the Hartman-Wintner theorem extends and (A) still implies (B), as was shown by Stout [5]. Of course, $E(x_n) = 0$ is redundant in (A).

Interestingly, Strassen's theorem extends too, and (B) still implies (A), as will be shown in the next section. The law of the iterated logarithm remains a second order result in the martinglale case.

2. The result

We prove the following statement.

THEOREM. Let $\{x_j\}$ be a stationary and ergodic sequence of random variables on a probability space (Ω, \mathcal{A}, p) . If $\{x_j, \mathcal{F}_j\}$ is a martingale difference sequence and if condition (B) holds, then also condition (A) holds with $K^2 = T^2$.

PROOF. Without loss of generality we may take Ω to be the set of all extended real valued sequences $\{\dots, u_{-1}, u_0, u_1, \dots\}$, the x_j to be the coordinate random variables on Ω , \mathscr{A} to be the σ -algebra generated by the x_j , p to be the probability generated by finite dimensional distributions, and \mathscr{F}_j to be the σ -field generated $\{x_k, -\infty < k \leq j\}$. A standard construction assures that there is such a representation that preserves the original finite dimensional distributions, so that the given stochastic structure is not changed.

It suffices to prove $x_n \in L_2$ since $E(x_n^2) = T^2$ then follows directly from Stout's theorem. Also, the distribution of x_i may be taken as continuous since the distribution of $y_n = x_n + u_n$ is (the u_n are independent uniform random variables on [-1, 1] and are independent of the x_n) and because the y_n form a stationary, ergodic martingale difference sequence and satsfy (i) $y_n \in L_2$ if and only if $x_n \in L_2$; (ii) lim sup $(y_1 + \cdots + y_n)/(2n \log \log n)^{\frac{1}{2}}$ is finite a.e. if and only if lim sup $(x_1 + \cdots + x_n)/(2n \log \log n)^{\frac{1}{2}}$ is.

By way of contradiction, suppose that (B) holds while $x_n \notin L_2$. Using ideas from [3], fix T > 0 and choose numbers C > 0, D < 0 so that, writing J = [D, C], the following conditions hold:

$$E(x_n \mid x_n \in J) = 0$$

$$E(x_n^2 \mid x_n \in J) > 8T^2$$

(3)
$$y = p\{x_n \in J\} > \frac{1}{2}$$

Define the random variables $U_n = I(\{x_n \in J\})$ and $V_n = I(\{x_n \notin J\})$ where, for $A \in \mathcal{A}$, I(A) is the function from Ω to R taking values 1 when $\omega \in A$ and 0 when $\omega \notin A$. As both are measurable functions of x_n , the ergodic theorem applies to show that

$$(U_{-i} + \dots + U_0 + \dots + U_k)/(j+k+1) \rightarrow y$$

a.e. and

$$(V_{-j} + \dots + V_0 + \dots + V_k)/(j + k + 1) \to 1 - y$$

a.e., both as $j + k \to \infty$. $E(x_n^2) = \infty$ means y < 1 so that by (3), both $\sum_{l=-j}^k U_l$ and $\sum_{l=-j}^k V_l \to \infty$ as $j + k \to \infty$; the import of these statements is that $p\{x_n \in J \text{ for infinitely many } n \in M\} = p\{x_n \notin J \text{ for infinitely many } n \in M\} = 1$, where M is any infinite set of consecutive integers. Define (random) subsequences $\{\lambda(j)\}$ and $\{\mu(j)\}$ by.

$$\begin{aligned} \lambda(1) &= \min (n > 0 : x_n \in J) & \mu(1) &= \min (n > 0 : x_n \notin J) \\ \lambda(j+1) &= \min (n > \lambda(j) : x_n \in J) & \mu(j+1) &= \min (n > \mu(j) : x_n \notin J), j > 0 \\ \lambda(j) &= \max (n < \lambda(j+1) : x_n \in J) & \mu(j) &= \max (n < \mu(j+1) : x_n \notin J), j \leq 0. \end{aligned}$$

By the above remarks, the sequences are well-defined, except possibly on a null set; similarly with the sequences $\{Y_i\}$ and $\{Z_i\}$ defined by

(4)
$$Y_n = x_{\lambda(n)} \text{ and } Z_n = x_{\mu(n)}$$

Let G_n be the σ -subalgebra of A generated by $\{Y_i, -\infty < i \leq n\}$, define $t_n^2 = E(Y_n^2 | G_{n-1})$ and, for $m \geq 1$, $u_m^2 = t_1^2 + \cdots + t_m^2$. Observe that the recurrence times $\{\delta_j\}$, $\delta_n = \lambda(n) - \lambda(n-1)$ are stationary since the x_j are, and accordingly, $\{Y_j\}$ is also stationary, a fact which easily gives the stationarity of $\{t_j^2\}$.

Now Y_n is G_n -measurable and $E(Y_n | G_{n-1}) = 0$, a.e. Because $|Y_n| \leq C - D$ a.e. and $p\{\sum_{n=1}^{\infty} t^2 = \infty\} > 0$, the conditions for Stout's [4] martingale analogue of the Kolmogoroff log-log law are satisfied. Accordingly,

(5)
$$p\{\limsup_{n \to \infty} (Y_1 + \dots + Y_n) / (2u_n^2 \log \log u_n^2)^{\frac{1}{2}} = 1\} > 0$$

Using the stationarity of $\{t_j^2\}$, the ergodic theorem and (2) imply that for any $\delta > 0$, $p\{u_n^2 \ge 8nT^2\} > 1 - \delta$ for all sufficiently large *n*. Again by the ergodic theorem, $p\{Z_1 + \dots + Z_{\lambda(n)-n} \ge 0 \text{ for infinitely many } n > 0\} > 0$. Finally $x_1 + \dots + x_{\lambda(n)} = (Y_1 + \dots + Y_n) + (Z_1 + \dots + Z_{\lambda(n)-n})$ for n > 0, by (4). These facts combine with (5) to establish

(6)
$$p\{\limsup_{n \to \infty} (x_1 + \dots + x_{\lambda(n)})/(8nT^2 \log \log n)^{\frac{1}{2}} \ge 1\} > 0.$$

Finally, by (3) and the ergodic theorem, $p\{\lambda(n) \ge 2n \text{ for only finitely many } n > 0\} = 1$ so that from (6)

(7)
$$p\{\limsup_{n \to \infty} (x_1 + \dots + x_{\lambda(n)})/(3\lambda(n)T^2 \log \log \lambda(n))^{\frac{1}{2}} \ge 1\} > 0,$$

a contradiction to (B) that completes the proof.

REMARK. We conclude by pointing out a related problem that remains open. If the x_n are independent, (B) is equivalent to $(x_1 + \cdots + x_n)/(nT^2)^{\frac{1}{2}}$ converging in

law to the unit normal distribution, i.e., the central limit theorem. With the result of the preceding section, the martingle central limit theorem (see [1], e.g.) would be equivalent to the log-log law if the former result entailed $x_n \in L_2$.

Acknowledgement

I want to thank R.W. Shorrock for many cogent remarks and the referee for suggestions that improved the clarity.

References

- P. Billingsly, 'The Lindeberg-Lévy theorem for martingale', Proc. Amer. Math. Soc. 12 (1961), 788-792.
- [2] P. Hartman and A. Wintner, 'On the law of the iterated logarithm', Amer. J. Math. 63 (1941), 169-176.
- [3] W. L. Steiger and S. K. Zaremba, 'The converse of the Hartman-Wintner theorem', Z. Wahrscheinlickeitstheorie verw. Geb. 22 (1972), 193-194.
- [4] W. F. Stout, 'A martingale analogue of Kolmogorov's law of the iterated logarithm', Z. Wahrscheinlichkeitstheorie verw. Geb. 15 (1970), 279-290.
- [5] W. F. Stout, 'The Hartman-Wintner law of the iterated logarithm for martingales', Ann. Math. Statist. 41 (1970), 2158-2160.
- [6] V. Strassen, 'A converse to the law of the of the iterated logarithm', Z. Wahrscheinlichkeitstheorie verw. Geb. 4 (1966), 265-268.

Centre de Recherches Mathématiques Université de Montréal Canada