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ABSTRACT

For sums of independent and identically distributed random variables xn, the Hartman-
Wintner law of the iterated logarithm is equivalent to xn e Z-2- We show that this is also true when
the xn form a stationary, ergodic martingale difference sequence. This is accomplished by extend-
ing a theorem of Volker Strassen to the present context.

1. Introduction

In this paper we consider a sequence {xj} of identically distributed random
variables on a probability space (Q,s/,p) and the following two conditions:

(A) xn e L2 and E{xn) = 0, £(x2) = K2 for some K,

(B) p{lim sup(x! + ••• + xa)l(2n log log nf = T2} = 1 for some T.

As usual, E denotes Lebesgue integration with respect to p of .^/-measurable func-
tions onQ. For fixed t > 0, L, is the set of functions / on Q for which £(|/ | ') < oo,
while for Aes/, "A a.e." means p(A) = 1.

If the xn are independent, (A) implies (B), with T2 = K2, by the celebrated
Hartman-Winter law of the iterated logarithm [2]. In fact (B) implies (A), with
K2 = T2, as shown by Strassen [6], who thus elucidated the true nature of the
log-log law for sums of independent, identically distributed random variables.
Like the central limit theorem ((xt + ••• + x ^ n X 2 ) * converges in law to the
unit normal distribution if and only if (A)), it is a second order result.

Even without independence such a characterization of the law of the iterated
logarithm may obtain. Specifically, suppose that the xn form a martingale dif-
ference sequence with respect to an increasing sequence {<j>, Q) = 1FQ s •••
S F„ c ••• of sigma sub-algebras of A; i.e., xneLx is &n measurable and
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E(xn+11 &~n) = 0 a.e., all n, where £( • | J^ ) denotes a version of the conditional
expectation operator on the &j measurable functions. Then if the xn are also
stationary and ergodic the Hartman-Wintner theorem extends and (A) still implies
(B), as was shown by Stout [5]. Of course, E(xn) = 0 is redundant in (A).

Interestingly, Strassen's theorem extends too, and (B) still implies (A), as
will be shown in the next section. The law of the iterated logarithm remains a
second order result in the martinglale case.

2. The result

We prove the following statement.

THEOREM. Let {xj} be a stationary and ergodic sequence of random vari-
ables on a probability space (Q,s/,p).If {XJ,^J} is a martingale difference se-
quence and if condition (B) holds, then also condition (A) holds with K2 = T2.

PROOF. Without loss of generality we may take Q to be the set of all extended
real valued sequences {•••,u_uu0,uu---}, the x7- to be the coordinate random
variables on Q, s/ to be the a-algebra generated by the xJt p to be the probability
generated by finite dimensional distributions, and J^y to be the c-field generated
{xk, — oo < k ^ j}. A standard construction assures that there is such a represen-
tation that preserves the original finite dimensional distributions, so that the
given stochastic structure is not changed.

It suffices to prove xBeL2 since E(x2) = T2 then follows directly from
Stout's theorem. Also, the distribution of xt may be taken as continuous since
the distribution of yn = xn+ un is (the un are independent uniform random vari-
ables on [—1,1] and are independent of the xn) and because the yn form a station-
ary, ergodic martingale difference sequence and satsfy (i) yn e L2 if and only if
xneL2; (ii) lim sup (yt + ••• + yn)/(2n log log n)* is finite a.e. if and only if
lim sup (xj -\— + xB)/(2n log log n)* is.

By way of contradiction, suppose that (B) holds while xB £L2. Using ideas
from [3], fix T > 0 and choose numbers C > 0, D < 0 so that, writing J
— [P> £]> *he following conditions hold:

(1) £(xB|

(2) £(xB
2|xBeJ) > 8 T 2

(3) y = p{xnzJ}>i

Define the random variables Un = I({xn e J}) and Vn = 7({xB £ J]) where, for
Aesf, I(A) is the function from Q to R taking values 1 when coeA and 0 when
m 4 A. As both are measurable functions of xn, the ergodic theorem applies to
show that

(C/_y + ... + U0+
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a.e. and

a.e., both as j + k -* oo. £(x2) = oo means y< 1 so that by (3), bothE*= -jUl and
E*= -jVt ->oo as 7 + k -> oo; the import of these statements is that p{xnej for
infinitely many neM} = p{xn£J for infinitely many neM} = 1, where M is
any infinite set of consecutive integers. Define (random) subsequences {A(/)} and

by.

= min (« > 0 : xn e J) /t(l) = min (n > 0 : xn ^ J)

A(7 + 1) = min (n > X(j) :xneJ) n(j + 1) = min (n > fi(j) : xnt J), j > 0

A(7) = max (n < 2(7 + l ) : x , e J ) Kj) = max (n < n(j +\):xni J), j ^ 0.

By the above remarks, the sequences are well-defined, except possibly on a null
set; similarly with the sequences {Yj} and {Zj} defined by

(4) Yn = xm and Zn = xMn)

Let Gn be the cr-subalgebra of A generated by {Yh — 00 < i g n}, define
f̂  = £(yn

2| Gn_i) and, for m ^ 1, M2 = t\ + ••• + t*. Observe that the recurrence
times {Sj}, dn = X{ri) — X(n — 1) are stationary since the Xj are, and accordingly,
{Yj} is also stationary, a fact which easily gives the stationarity of {tj}.

Now Yn is GB-measurable and E(Yn\ G ^ ) = 0, a.e. Because \Yn\ ^ C - D
a.e. and p{Z™=i t2 = 00} > 0, the conditions for Stout's [4] martingale analogue
of the Kolmogoroff log-log law are satisfied. Accordingly,

(5) p{lim sup (Y, + ••• + Yn)l(2u2
n log log un

2)± = 1} >0.
n~*co

Using the stationarity of {i]}, the ergodic theorem and (2) imply that
for any 5 > 0, p{u* ^ 8nT2} > 1 — 5 for all sufficiently large n. Again by
the ergodic theorem, p{Z1 + ••• + ZA(n)_n ^ 0 for infinitely many n > 0} > 0.
Finally xx + - + xm = (Yt + - + Yn) + (Zt + - + Zm_n) for n > 0, by (4).
These facts combine with (5) to establish

(6) p{lim sup (*! + •••+ xMn))/(8nT2 log log nf ^ 1} > 0.
n ~* 00

Finally, by (3) and the ergodic theorem, p{X(n) ^ In for only finitely many
n > 0} = 1 so that from (6)

(7) p{lim sup (*! + •••+ xm)l(lk{n)T2 log log X{n)f ^ 1} > 0,

a contradiction to (B) that completes the proof.

REMARK. We conclude by pointing out a related problem that remains open. If
the xtt are independent, (B) is equivalent to (xt + ••• + xn)/(nT2)* converging in
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law to the unit normal distribution, i.e., the central limit theorem. With the result
of the preceding section, the martingle central limit theorem (see [1], e.g.) would
be equivalent to the log-log law if the former result entailed xneL2.
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