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DILATON BLACK HOLES WITH A COSMOLOGICAL TERM
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Abstract

The properties of static spherically symmetric black holes, which carry electric and magnetic
charges, and which are coupled to the dilaton in the presence of a cosmological constant,
A, are reviewed.

1. Introduction

String theory [16] appears to provide the most promising framework we know of for
constructing a quantum theory of gravity, a goal which has remained elusive despite
the attentions of at least one generation of researchers. Unfortunately, although the
mathematical structure of string theory is very rich, it has proved to be extremely
difficult to extract a phenomenologically viable model of physics from this structure.
In particular, in compactifying the extra spatial dimensions of the fundamental super-
string theory on a Calabi-Yau manifold, one finds a plethora of possible 4-dimensional
vacua, with no means of determining just which one should correspond to the ground-
state of the universe. However, recent work suggests that this central problem of
string phenomenology might be resolved through the introduction of a single large
"universal" moduli space [1], whose various branches correspond to distinct Calabi-
Yau vacua. To consistently deal with conifold singularities which arise in this moduli
space, it is necessary to include certain black hole states in the spectrum of string
excitations [17], which have the unusual property of being massless [37]. Thus there
appears to be an intimate connection between string theory and black holes. Such a
relationship has been suggested before on various grounds [38,39], and over the last
five years a number of exact black hole solutions of string theory have been found [40].
There would thus appear to be much insight to be gained from studying processes
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[2] Dilaton black holes with a cosmological term 199

involving such stringy black hole states. At a more modest level, we might hope to
gain some understanding of stringy black holes by studying the properties of solutions
to the effective field theoretic models which arise in the low-energy limit of string
theory - namely, the models one obtains when one keeps only the lowest-order terms
in a perturbative expansion in powers of the Regge slope parameter, a' = l/(2n T),
T being the string tension. Indeed a number of such solutions can be promoted to
be solutions of the exact string theory to all orders in a' [40], which justifies this
approach.

In this paper I would like to discuss recent work (with S. Poletti and J. Twamley)
[30-32] concerning the properties of black holes coupled to the dilaton field in the
presence of a cosmological term. The scalar dilaton, along with the pseudoscalar
axion, enters into the action of effective gravitational theories that arise in the low-
energy limit of string theory. Although one can consistently truncate such models to
consider, for example, solutions with a vanishing axion, the presence of the dilaton
cannot be ignored if one is to consider the coupling of gravity to other gauge fields,
and thus the dilaton can be considered to be an essential feature of stringy gravity.

The effective string action we will consider takes the form

r [ J? ^ - 1 )

in four dimensions,2 where we have included the dilaton <j>, with potential ^ (</>), and
an Abelian {/(I) gauge field with field strength FMU as representative of matter content.
The axion, which would enter with the matter degrees of freedom in a similar fashion
to F, has been excluded. It is a characteristic of string theory that the dilaton, <f>,
couples universally to matter through the conformal factor e"2* in (1). The metric
g^v is thus said to correspond to the string conformal frame. To obtain an action
resembling that of general relativity we conformally rescale to obtain the metric

—2<f> » /^\

of the Einstein conformal frame, in which the action becomes

where "V = e24"^ and g0 = lin the case of string theory. It is the non-trivial coupling
between <p and F in (3) which leads to a theory with rather different properties than
that of the standard Einstein-Maxwell (g0 = 0) theory.

2I will work exclusively in four dimensions here. The extension to arbitrary D > 4 is straightforward (at
least as far as the non-numerical results are concerned), and is dealt with in [30-32].
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Although the value of the dilaton coupling parameter is fixed to be g0 = 1 by the
tree-level string action, it is nonetheless useful to leave this as an arbitrary parameter
since a variety of similar theories can then be treated together. Another case of interest
is go = V3> which corresponds to the 4-dimensional theory obtained by dimensionally
reducing the 5-dimensional Kaluza-Klein theory. In that case the scalar <j> is associated
with the radius of the fifth dimension rather than being a dilaton field. From the string
theoretic point of view the potential (̂</>) can be expected to be present if one is
dealing, for example, with a central charge deficit in which case the potential takes
the Liouville form

%,P = | e-2*'*, (4)

with gi = — 1 and A = (Dcril — Deff) /(3a')> «' being the Regge slope parameter.
Alternatively, if one considers non-perturbative effects such as the generation of a
dilaton mass by supersymmetry breaking then one might also expect a contribution to
the potential of the form

ysusy = exp [-cie-1*] [Axe
2* + A2 + A3<T2*} , (5)

where a, A\, A2 and A3 are constants. This is in fact the potential which arises in
four dimensions from supersymmetry breaking via one-gaugino condensation in the
hidden sector of the string theory [5], and should be regarded as typical of the general
type of potential one might expect.

There has been a great deal of interest in the past few years in black hole solutions
of effective low-energy theories of gravity derived from string theory, such as those
described above. Most interest has focussed in particular on black holes with a
massless dilaton, "¥ = 0. For g0 = 1, which is the case of interest to string theory, the
general solution is given by3 [10,11,14]

ds2 = -f di1 +f~ldr2 + R2dQ2, (6)

V —

where

F = -Qe2lpdt A dr+P sin9id9^ A dO2, (7)

'±2 (8)

(9)

3The radial coordinate of Gibbons and Maeda [14] is obtained by r -*• r + M, and that of Garfinkle et
al. [10] by r —>• r — S, relative to the coordinate chosen here. Our choice here is dictated by the
requirement that R(r) agrees with the gauge chosen later in asymptotic expansions.
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/ (r) = i j [(r - M)2 - (M2 + E2 - Q2 - P2)], (10)

P 2 - 0 2 (11)

and dft2 is the standard round metric on a 2-sphere, with angular coordinates 9U 92.
The scalar charge S has been normalised such that

4> = j+O (r-2) (12)

at spatial infinity. It is possible to add an arbitrary constant <p0 to <p at the expense of
normalising the electromagnetic field differently from the standard choice at spatial
infinity; however, we shall not do so here. Similar exact solutions are known for
g0 = ,/3 in the case of dyonic solutions [7] and for all values of g0 in the case of
solutions with a single (electric or magnetic) charge [14].

Unlike the standard Reissner-Nordstrom solutions the global properties of the so-
lutions vary considerably according to whether the solutions carry a single charge, or
both electric and magnetic charges. In the case of the latter dyonic solutions the space-
time exhibits two horizons and the properties of the solutions are similar to those of the
Reissner-Nordstrom solutions. In particular, the extremal limit, |P | + \Q\ = -/2M,
[or S = (|P| — | Q\)/y/2 ], corresponds to the two horizons becoming degenerate at
a finite value of R, and the black holes have zero Hawking temperature in this limit.
However, the singly charged solutions have a single horizon, r#», and the extreme
solutions are obtained in the limit Rjt? = R(rjt?) -> 0, and 0^" = 4>i.rje) —• °° for
magnetic solutions (Q = 0), (or (j>jg> —> —oo for electric solutions (P = 0)). As a
result, the area of the event horizon and the entropy of the extreme solutions is zero.
Furthermore, the extreme solutions have finite Hawking temperature if g0 = 1, and in-
finite temperature if go > 1 [14,15]. The fact that the temperature is formally infinite
of course merely signals the breakdown of the semi-classical approximation if one is
considering the Hawking evaporation process. Holzhey and Wilczek [21] have in fact
demonstrated that in the case of the go > 1 solutions an infinite mass gap develops
for quanta with a mass less than that of the black hole so that the Hawking radiation
slows down and comes to an end at the extremal limit, despite the infinite temperature.
Furthermore, since scalar waves with an energy below the mass of the black hole are
repelled, the black holes behave in a fashion similar to that of elementary particles
[21].

An interesting feature of this extreme limit is that in the case of the purely magnetic
solutions the spacetime is in fact completely regular when viewed in terms of the metric
|MV of the string conformal frame [10]. Since strings couple to g^v, string physics is
not affected by the singularity which appears at R = 0 in the Einstein conformal frame
in the extreme case. In the string conformal frame the R = 0 singularity is replaced
by an infinitely long throat [10]. The property that the singularity here resides entirely
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in the conformal factor is also a feature of other solutions. In particular, in the case
g0 = </3, the purely magnetic solution corresponds to the Kaluza-Klein monopole
[19,36], which is singular from the point of view of the 4-dimensional Einstein
conformal frame but is completely regular in five dimensions. Further examples are
discussed in [12]. Although arguments based on the positivity of energy favour the
Einstein conformal frame as being the physical one in the context of Jordan-Brans-
Dicke theories and higher derivative models [3,25,35], it is clear that singularities
which can be removed by a conformal rescaling - so that roughly speaking the
singularity is in the Ricci tensor rather than the Weyl tensor - may be milder than
other types of singularities. However, some work remains to be done to put this on
a firmer footing in some general framework if one does not wish to appeal to string
theory or higher-dimensional physics.

The fact that classical solutions are obtained in dilaton gravity with properties that
differ significantly from the standard Einstein-Maxwell theory has provided fertile
ground for the development of new ideas concerning various quantum gravitational
phenomena, such as pair creation [8,9,13,20,33] and fission [13] of black holes.
These ideas have led to the realisation that the entropy of extreme black holes should
be zero, even in the case of the Reissner-Nordstrom solutions which have a horizon
of finite area in the extreme limit [20].

One major defect with the dilaton black hole models studied to date is that the
contribution of possible dilaton terms, "5^(0), has been largely ignored. Phenomeno-
logically this could be regarded as a major defect, since it is widely believed that
the dilaton must acquire a mass in order to avoid the generation of long range scalar
forces, which are not observed in nature. This is by no means the only possibility -
Damour and Polyakov have recently suggested an interesting scenario in which the
dilaton remains massless but very weakly coupled to ordinary matter [4] - however,
the "massive dilaton" scenario remains the conventional choice, and certainly one that
deserves to be further studied. The reason why such models have not been studied
very extensively is simply that the problem of finding appropriate exact solutions is
a technically very difficult one. Gregory and Harvey [18] and Home and Horowitz
[22] have made an investigation of black hole models which include a mass term, in
the form of a simple quadratic potential [18,22], Y = 2w2 (</> — 0O)2, or alternatively
of the form [18] V = 2m2 cosh2 (<p - (f>0). While a rigorous proof of the existence of
black hole solutions in these models has still to be given, the arguments of Home and
Horowitz [22] based on numerical work are nonetheless compelling. The stability of
the solutions remains an open question, however. Given that the putative black hole
solution of [22] appears to be the envelope of a set of singular solutions for R(r) and
a separatrix between different singular solutions for </>(r), it seems doubtful that this
solution could be stable - although the situation may be different for other potentials.
However, it is clear from the arguments of [18,22] that the properties of the solutions
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with a massive dilaton are essentially the same as those with a massless dilaton in the
case of black holes which are small with respect to the Compton wavelength of the
dilaton. This is a feature which one might expect to be generic of any potential, and
it does provide some further justification for studying the solutions with a massless
dilaton.

The aim of our recent series of papers [30-32] has been to study a problem which is
similar to that of dilaton black holes with a mass-generating potential, but is technically
somewhat simpler. In particular, we have set out to derive the properties of solutions
with a cosmological term, which might be expected to be analogues of the Reissner-
Nordstrom-(anti)-de Sitter solutions. I will outline our major results in turn.

2. Static spherically symmetric solutions with a Liouville potential

If one is to consider a cosmological term in the context of stringy gravity then the
first question to be asked is what is the appropriate cosmological term to be considered.
Rather than taking a simple cosmological constant, a Liouville-type potential (4) may
be more appropriate, as one can thereby obtain the potential appropriate to a central
charge deficit. Indeed, Kastor-Traschen type [24] cosmological multi-black hole
solutions have been discussed in the context of such models by Home and Horowitz
[23], and by Maki and Shiraishi [26]. However, all exact solutions which have been
constructed with non-zero dilaton couplings obtained involve a dilaton which depends
on certain special powers of the time-dependent cosmic scale factor [26], and thus in
particular they possess no static limit.

On the face of it, it would appear to be simple to rule out physically relevant black
hole solutions in models with a potential (4), on the grounds that they do not possess
"realistic" asymptotics. In particular, if by "realistic" asymptotics we require that
black holes be asymptotically flat or asymptotically of constant curvature we might
conjecture that:

(i) If V is non-zero then asymptotically (anti)-de Sitter solutions exist if and only
if

3 (f>o such that
d<p

= 0 and r Oft,) ^ 0. (13)
<t>=tpo

The solutions are asymptotically de Sitter (anti-de Sitter) for y(<pQ) > 0 C^(0o) < 0).
(ii) If y is non-zero then asymptotically flat solutions exist if and only if

dV
3 0o such that ——

dq>
= 0 and r(0o) = 0. (14)
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The fact that trivial solutions exist under both these circumstances is quite obvious:
if (13) holds then the Schwarzschild-(anti)-de Sitter solutions with constant dilaton,
<p = 4>o, are solutions; while if (14) is satisfied then the Schwarzschild solution with
constant dilaton, </> = </>0, is a solution. Any particular potential may have many such
solutions, depending on the number of different turning points.

The proof of necessity is much less clearly defined, since in the context of stringy
gravity it is not obvious what are physically realistic restrictions to place on the dilaton
asymptotically. The approach one would take in a conventional field theory setting is
to demand that all fields have regular Taylor expansions at spatial infinity, which in
terms of the coordinates (6) with f = f (r), R = R(r), are given by

<t>=<t>0+ — + ̂  + ...,
r r2

• ^ + 4 + - . 05)
r r2

— + ^-
r r1

if the solutions are assumed to be asymptotically flat or (anti)-de Sitter depending on
the value of A. If we now take the independent field equations obtained by variation
of the action (3), viz.

[ /?2f//»'V ft2 4- .̂ —• {Cp-J2^ p20-2go<l>~\ C\fi\

? = -0'2 , (17)

-2 - AfR1 [gVg 0* + p2
e-

2«»*] , (18)

where ' = d/dr, and substitute the expansions (15), we obtain the result

= 0, • A = 2V(<p0), (19)

from the lowest order terms, which proves the conjecture. "Realistic" black hole
solutions are consequently ruled out for the Liouville-type potential (4), since it is
monotonic in <p, except in the special case of a cosmological constant (gi = 0) when
^ = 0 identically.

In the context of stringy gravity, however, the asymptotic condition on <j> given in
(15) is too restrictive. In particular, in string theory all couplings between the dilaton
and matter fields involve powers of e2*, so that provided the dilaton energy-momentum
tensor is well-behaved at spatial infinity one would expect the weak-coupling limit
(j> —> —oo to be physically admissible asymptotically. In [32] we have therefore given
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a proof of necessity of the above conjecture in the case of singly charged black hole
solutions with a Liouville-type potential (4), without making any restrictions on the
asymptotic behaviour of 0. Our approach generalises a similar method used to derive
the global properties of uncharged static spherically symmetric solutions in a variety
of models involving scalar fields with potentials [27,28,41]. Unfortunately, we have
been unable to extend the method to deal with arbitrary potentials, ^ (0 ) , and so are
unable to offer a proof of the conjecture except on a case by case basis.

The argument of [32] proceeds by using an alternative radial coordinate [14],
defined by d% = / ~lR~2dr, and a slightly generalised metric, namely

ds2 = f [-dt2 + R4dt;2] + R2
gijdxldxJ, (20)

where now / = / ( £ ) , R = /?(§) and gtj is a 2-dimensional metric of constant
curvature

#<,=**(,-, i = l ,2 . (21)

Spherically symmetric solutions have X > 0 - however, integral curves in the A. > 0
portion of the phase space can also have endpoints with X = 0, which is why this
generalisation is necessary. It is then possible to convert the field equations into a 5-
dimensional autonomous system of ordinary differential equations, and consequently
various properties of the solutions can be derived from the 5-dimensional phase space
using standard techniques from the theory of dynamical systems. The crucial results
which concern us are:

(i) Critical points at finite values of the phase space parameters consist of a 2-
parameter set with A. = 0, A = 0 and Q = 0 (or P = 0 as appropriate). Solutions
with A. > 0 with endpoints at such critical points are found to correspond either to
central singularities, or in the case of a 1-parameter subset, to horizons.

(ii) Critical points at phase space infinity can be divided up according to whether
R -> 0 (central singularity), R —*• constant (Robinson-Bertotti solutions), or R —• oo
(asymptotic region).

The asymptotic properties of the solutions are conveniently summarised in terms
of the metric functions one obtains when using R as the radial variable, viz.

ds2 = -fdt2 + h~ldR2 + R2dn2, (22)

where h(R) = f ( ^ ) . The possible asymptotic behaviour of the solutions is sum-
marised in Table 1.

The points Ml2 correspond to the asymptotically flat solutions which lie in the
subspace with a vanishing potential, V(<f>) = 0, and which of course include the black
hole solutions of [10,14]. The only other instance in which "realistic" asymptotics
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TABLE 1. Asymptotic form of singly charged solutions for trajectories approaching critical points at
phase space infinity from within the sphere at infinity, in the case that R -> oo. The points are labelled
as in [32] - in some cases the values of g0, g\, A and A are restricted if certain points are to exist. Here
p{ = l + 2 [ 2 - g , (g, ±g o ) ] / (g i ± go)2 and fa =2g , / (g , ±go)-l. In all instances the + sign refers
to electric solutions and the — sign to magnetic solutions.

* 1 . 2

Ml.2

Nl,2

Pl.2

Tl,2

I/I
RVsl

const.

R2

R2'*

\h\
const.

const.
RW-st)

const.
R2k

e2*
R±Vsi

const.

R2/Sl

R4/(gt±g0)

are obtained is the special case of a cosmological constant, g\ = 0, when points N^2

correspond to asymptotically de Sitter or anti-de Sitter regions, according to the sign
of A. The weak coupling limit for the dilaton is attained in various cases for points
other than M^2, however, the metric is not asymptotically flat or of constant curvature
in any of these instances.

One must add the caveat that the points AT12 provide an interesting special case in
which solutions exist with a Riemann tensor whose components in an orthonormal
frame vanish as l/R2 at spatial infinity, even though the asymptotic structure of the
spatial hypersurfaces at spatial infinity is not that of flat space [32]. Solutions with
endpoints at Ki2 will include a 1-parameter subset with regular horizons [2,32], and
in certain cases the dilaton will be asymptotically weakly coupled. Chan, Home and
Mann [2], who have studied these exotic black hole solutions in detail, argue that
such solutions could be physical. Clearly, the physical properties of solutions with
such unusual asymptotics deserve further study. However, we will put aside these
interesting questions and will make the more conservative choice of demanding that
the solutions be asymptotically flat or asymptotically (anti)-de Sitter. With this proviso
the only possible "realistic" black hole solutions with a non-trivial dilaton potential
would be those corresponding to integral curves from outside the V = 0 subspace
which nonetheless have endpoints at M1t2- An analysis of small perturbations about
Mi,2 reveals that this is not the case, however. This completes the proof of the non-
existence of charged black hole solutions for the Liouville potential (4) in all cases
other the pure cosmological constant, gx = 0.

3. Static spherically symmetric solutions with a cosmological constant

In the case of a cosmological constant an analysis of small perturbations around
] 2 reveals that such points attract or repel a 5-dimensional set of trajectories. To
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further show that black hole solutions exist it is necessary to show that there exist
integral curves linking points Af1>2 to the 1-parameter set of critical points mentioned
above which correspond to regular horizons. This seems reasonable given that the
dimensionality of the set of solutions with endpoints at Ni<2 is greater than that of
the other critical points. However, although it might be possible to give a rigorous
argument simply from the properties of the phase space, the large dimensionality of
the phase space makes it difficult. There is one further complication if A > 0 since
in that case the asymptotic de Sitter region corresponds to one in which the Killing
vector d/dt is spacelike. The outermost horizon is therefore a cosmological one, and
to obtain genuine black hole solutions at least two horizons are required. In terms of
the phase space this means an additional requirement of the existence of integral curves
which link different points in the 1-parameter family of solutions that correspond to
horizons. Again the large dimensionality of the phase space makes the resolution of
this question difficult. Instead we have found that the issue can be settled by a simple
argument relating to the original dilaton field equation (16).

THEOREM 3.1. The maximum number of regular horizons possessed by a static
spherically symmetric spacetime coupled to the dilaton in the presence of a cosmo-
logical constant, "V = A/2, and an electromagnetic field which is either electrically
charged (Q ^ 0, P = 0) or magnetically charged ( P ^ O , Q = 0) with arbitrary
coupling constant, g0, is one.4

PROOF. A straightforward proof by contradiction was given in [30]. Consider the
case P = 0 and g0 > 0. Suppose that the spacetime possesses at least two regular
horizons, and let the two outermost horizons be labelled r±, with r_ < r+. Regularity
implies that near r — r+, f <x (r — r+) and 4>(r+) and /?(r+) are bounded with
R(r+) ^ 0, and similarly for r_. From (16) it follows that at both horizons

<t>'f
goQ2

R2 (23)

Suppose that d/dt is timelike in the asymptotic region, as is appropriate for asymptot-
ically flat or asymptotically anti-de Sitter solutions, so that f(r) < 0 on the interval
(r_, r+) , / ' (r_) < 0 and/ ' ( r+) > 0. For such solutions (23) implies that 0'(r_) < 0
and <p'(r+) > 0. These two values of <j>' must be smoothly connected and thus <f>'(r)
must go through zero at least once in the interval (r_, r+) at a point r0 such that
<p"(r0) > 0. However, since/ (r) < 0 on the interval (r_, r+) it follows from (16) that
if 0'(ro) = 0 then sgn0"(ro) = — sgngo < 0. We thus obtain a contradiction.

4For A > 0 this result is more restrictive than that obtained by Okai [29], who also placed limits on the
number of possible horizons by a different approach.
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If d/dt is spacelike in the asymptotic region, as is appropriate for asymptotically
de Sitter solutions, then / ' ( r_) > 0 and f'(r+) < 0, and thus the signs of <p'(r_)
and 4>'(r+) are reversed in the above argument. However, since / ( r ) > 0 now on
the interval (r_, r+), the sign of </>"(>b) must also be reversed and one still obtains a
contradiction. Similar remarks apply if one takes the purely magnetic case ( 2 = 0),
or if one reverses the sign of go, which completes the proof for all cases.

COROLLARY 3.2. No static spherically symmetric asymptotically de Sitter black
hole solutions exist when coupled to the dilaton in the presence of a cosmological
constant, V = A / 2 , and an electromagnetic field which is either electrically charged
(Q ^ 0, P = 0) or magnetically charged (P ^ 0, Q = 0) with arbitrary coupling
constant, g0-

PROOF. A S was noted above, black hole solutions with A > 0 must have at least
two horizons, and so the result follows.

It is clear that the above results will not apply to the case of dyonic solutions, since
then the right-hand side of (16) does not have a definite sign, which was a crucial
requi rement of the argument based on (23). Nevertheless, similar restrictions can be
made .

THEOREM 3.3 . The maximum number of regular horizons possessed by a static
spherically symmetric spacetime coupled to a non-constant dilaton field in the presence
of a cosmological constant, ~Y = A / 2 , and an electromagnetic field which is both
electrically and magnetically charged, Q ^ 0 and P ^ 0, with arbitrary coupling
constant, g0, is:

(i) two, if d/dt is timelike in the asymptotic region;
(ii) one, if d/dt is spacelike in the asymptotic region.

PROOF. A S was shown in [31] a simple proof by contradiction is obtained by
assuming the existence of at least two regular horizons, r_ and r+, as previously. It is
convenient to define a rescaled dilaton

<t> = <f> H In
2go

I • (24)

If the dilaton in (16) is rescaled in this fashion, and the resulting equation multiplied
by <$> we obtain

] > go**"*2*)*) ( 2 5 )

R2
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This equation can be integrated with respect to r between the horizons, r_ and r+,
with the result that the integral of the left-hand side vanishes. If / (r) > 0 on the
interval (r_, r+) then the right-hand side of (25) is positive-definite, and a contradiction
is obtained in all cases except that of a trivial constant dilaton, 4> = 0, .<!>' = 0. A
succession of three regular horizons is thus ruled out in the case of non-trivial solutions
since this would require that either/ (r) > 0 between the first pair of horizons or else
/ (r) > 0 between the second pair. Furthermore, we can have / (/•) < 0 between the
outermost horizons only if/ (r) > 0 on the interval (r+, oo), that is, if d/dt is timelike
in the asymptotic region, which is true for asymptotically flat and asymptotically anti-
de Sitter solutions but not for asymptotically de Sitter solutions. The latter solutions
can thus have at most one regular horizon if the dilaton is non-trivial.

COROLLARY 3.4. The unique static spherically symmetric asymptotically de Sitter
black hole spacetime coupled to the dilaton in the presence of a cosmological constant,
~f = A/2, and an electromagnetic field which is both electrically and magnetically
charged, 2 ^ 0 and P ^ 0, with arbitrary coupling constant, g0, is the Reissner-
Nordstrom-de Sitter solution with constant dilaton:

R(r) = r,

P

~Q
PROOF. Since black hole solutions with A > 0 must have at least two horizons and

d/dt is spacelike in the asymptotic region, it follows from (26) that 4> = 0, 4>' = 0
is the only possible dilaton solution. The solution (26) is then obtained by direct
integration.

If we require that <f>0 = 0, so as to obtain the conventional normalisation for the
electromagnetic field at spatial infinity, we see that (26) is in fact the solution for equal
electric and magnetic charges, \Q\ = \P\. The exact solution (26) of course also
applies to A < 0. In addition, there also exist Robinson-Bertotti-type solutions of the
form e2^ = \P\/\ Q\, R = Rext and

c2, (27)

where c\ and c2 are arbitrary constants, and the constant Rexl is a solution of the quartic

4 2 0. (28)
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4. Asymptotically anti-de Sitter black holes

In view of the results outlined in the last section it is clear that in the presence of
a cosmological constant, A, charged or dyonic black holes with a non-trivial dilaton
will only exist if A < 0. Unfortunately there is no obvious way of determining an
exact solution in closed form. In [30,31] we have therefore resorted to numerical
integration.

If we solve for the series expansions (15) from the field equations we find

, -Ar 2 2M Q2 + P2 A<f>3
2 ( 1 \

where we have made the gauge choice Ro = 0, </>0 = 0, which is the same choice
made in (6)-(10). The effect of the dilaton is therefore short range, as opposed to
the asymptotically flat case (12). The black holes with a massive dilaton [18,22]
similarly give rise to a short range force - however, in that case <p = <AT4 + O (r~5)
asymptotically. Furthermore, </>4 is fixed in terms of the other charges directly by the
asymptotic series solution in the solutions of [18,22], whereas here </>3 is only fixed
once we make the further demand that particular solutions with the asymptotic form
(29) correspond to black holes.

The appropriate constraint on <p3 is found by integrating the dilaton equation (16)
between the outermost horizon, r#>, and spatial infinity, to give

_ £o f°° dr

~~K]rjeT
2 (30)

This result is a direct analogue of (11) - it fixes </>3 in terms of the other charges of the
theory, so that </>3 is not an independent "hair".

For the purposes of numerical integration it is convenient to use R as the radial
variable, and to work with the metric (22). One can then solve for / in terms of h
and <p: f = /zexp \2 fR dR<j>2R , where • = d/dR. Only two independent field
equations then remain, viz.

-Rh + 1 - h = (A + h<p2) R2 + (<2VS0* + PV2*°*) - ^ , (31)

s(h,<t>,<j>) = 0, (32)
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where

, (P, 0) = j> \l + h - AR2 - (Q2e2g°* +s(h, ( ) ^

- ^ ( G V ^ - P V 2 ^ ) . (33)

The numerical procedure we adopted was to treat the problem as an initial value
one, and to integrate outwards from a regular horizon, R^, the initial data being set a
small distance away from R# using the solutions obtained by substituting the series
expansions

1 = 1

OO

in the field equations (31) and (32). For the lowest order terms, for example,

*' = -51- [R* ~ ARJr " Q2***" - P^-2***],

As the higher order terms are very lengthy we will not list them here. An outer horizon
is obtained if we restrict to initial data such that hx > 0. We then integrate out until
the solutions match the appropriate asymptotic series expressed in terms of R, rather
than in terms of r as in (29). This is possible for a range of initial values, Rj?, (j>^.
Details of the numerical procedures are discussed in [30,31] and numerous resulting
plots are presented there. Our results indicate that asymptotically anti-de Sitter black
holes with a non-trivial dilaton do exist and with all possible numbers of horizons
which are not excluded by Theorems 3.1 and 3.3. I will not reproduce all these results
here but will outline the important features.

Dyonic solutions There is an additional numerical complication for dyonic solutions
since it is possible, but not guaranteed, for asymptotically anti-de Sitter solutions to
exist with two horizons in this case. For singly charged solutions, on the other hand,
two horizons are ruled out by Theorem 3.1. To deal with the issue of the number of
horizons, we first examined the case of the asymptotically flat solutions with arbitrary
coupling constant, g0, since it appears that exact dyonic solutions are only known in
the cases g0 = 1 [10,11,14] and g0 = A/3 [7,15]. Although the singular nature of
the differential equations (31) and (32) in general prevents one integrating through
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the horizons, it is possible to determine whether one is dealing with a genuine second
horizon or not by examining the quantity s(h,<p,<p) defined by (33). At a genuine
horizon s should approach zero as h approaches zero. Interestingly enough, our
numerical results for the asymptotically flat case indicate that we appear to be dealing
with a non-linear eigenvalue problem. These results [31] are consistent with the
existence of two horizons only if g0 is the square root of a triangle number:

go = 0, 1, A/3, y/6,... , y/n(n + l ) / 2 , . . . (36)

In the case of the asymptotically anti-de Sitter solutions a similar qualitative be-
haviour is observed, with two horizons only existing for certain critical values of g0,
which differ slightly from the values (36). However, whereas the critical values of
go are independent of the initial conditions in the asymptotically flat case, this is no
longer true for asymptotically anti-de Sitter solutions. Thus the critical values would
appear to involve some complicated relationship between g0, A, M and | QP\.

As far as the thermodynamics properties of the solutions are concerned, there is
no qualitative difference between the cases of dyonic black holes with one or two
horizons. In particular, the pattern of isotherms [31] is qualitatively the same in both
cases, and the Hawking temperature of the solutions, which is given in general by

T = —L- [R*, - AR4^ - 0V«°^ - P V 2 * ° ^ ] , (37)

is always zero in the extreme limit. This is related to the fact that the extreme solution
always occurs at a finite value of R determined from (28):

Rext = ^ [yi-8A|QP| - l] . (38)

The spacetime geometry of the extreme solutions approaches that of the Robinson-
Bertotti-type solutions (27) and (28) in the neighbourhood of the degenerate horizon.
Furthermore, the entropy - at least, the entropy naively defined as one quarter the area
of the event horizon - is finite in the extreme limit, similarly to the Reissner-Nordstrom
and Reissner-Nordstrom-anti de Sitter solutions.

Singly charged solutions The solutions with a single electric or magnetic charge
are found to be qualitatively different to the dyonic solutions. This would appear to
stem from the fact that there are no Robinson-Bertotti-type solutions in this case. As
in the case of the asymptotically flat dilaton black holes there is a maximum of one
horizon and the extreme limit corresponds to Rje -*• 0 and </>.#> -*• oo for magnetic
solutions, (or fyj? —> —oo for electric solutions), independently of the value of A,
assuming A < 0 and g0 > 0. Consequently, from (37) we see that the extreme
solutions will have a formally infinite Hawking temperature and zero entropy. This is
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indeed verified by the numerical solutions [30]. Of course, the infinite temperature is
merely a signal of the breakdown of the semi-classical approximation.

In the case of the g0 = 1 magnetic solutions, one can verify that the "throat
structure" of the string conformal frame metric of the asymptotically flat extreme
solutions is preserved for the asymptotically anti-de Sitter black holes. In particular,
consider the independent field equations derived from the action (1), with y =
Ae~2<tl/2, as is appropriate for an Einstein frame cosmological term. With a string
conformal frame metric of the form

ds2 = -fdx2 + f~xdp2 + R2dSl2, (39)

/ = / (p) , R = R(p), these are given by

= 2e-^C2, (40)
p"

j = ~4>'\ (41)

'^ - 2e~2*^ , (42)

where now ' = d/dp. In the asymptotically flat case [10] the neighbourhood of the
<pse> —• oo singularity is a so-called "linear dilaton vacuum", that is, of the form
0 = — ap as p -» oo, (a < 0 being a constant), with vanishing corrections of the
form eap. We thus look for similar solutions of the form

" + • • • - (43)

R = R o + R i e a p + ••• .

It is straightforward to verify from the field equations (40)-(42) that the following
leading order coefficients are unaffected by the presence of A: (j>\ (free), <j>2 =
-24>iRx/R0, R2 = 2P2, /o = l/(2P2a2). Thus the extremal solution does indeed
appear to be a direct analogue of the one of Garfinkle, Horowitz and Strominger [10].
The cosmological constant only affects the higher-order corrections: / i = —A4>i/a2,

etc.

5. Conclusion

If we neglect the possibility of black holes with an exotic asymptotic structure
[2], then no physically interesting black hole spacetimes exist if the dilaton has a

5 By contrast, it is possible that/0 is altered for certain non-trivial dilaton potentials [18].
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Liouville-type potential, except in the case that this potential is a simple cosmological
constant in the Einstein conformal frame. Black hole solutions with a non-trivial
dilaton only exist for a negative cosmological constant. These spacetimes are asymp-
totically anti-de Sitter with a short range correction due to the dilaton. The horizon
structure and thermodynamic properties of the solutions are the same as correspond-
ing asymptotically flat solutions with a massless dilaton in both the dyonic and singly
charged cases.

Although a pure cosmological constant may not be the most natural cosmological
term in the context of stringy gravity, we hope that the solutions we have studied here
may nonetheless provide a useful approximation in some circumstances. In particular,
if we have a non-trivial dilaton potential and if the minimum of that potential which
corresponds to the groundstate of the dilaton has a value which is not precisely zero,
then the universe would contain some (hopefully small) vacuum energy. If this
vacuum energy is negative then the black hole solutions studied here (with A < 0)
might provide a useful approximation to the complete solutions, just as the solutions
of [18,22] are well approximated by the solutions with a massless dilaton in certain
regimes. If there is to be a non-zero vacuum energy then phenomenologically a small
positive vacuum energy is the one favoured by current measurements of the Hubble
constant. Although we find no black hole solutions with a non-trivial dilaton for
A > 0, it is possible that this conclusion could be altered in the presence of a non-
trivial dilaton potential, ^ (</>). In particular, the dilaton equation (16), upon which
Theorems 3.1 and 3.3 are based, acquires an additional ^ term which could provide
an obstruction to these arguments for suitable potentials. Of course, for suitably
complex potentials there are many additional features which could further complicate
things.
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