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Hadamard matrices exist for infinitely many orders Am, m ^ 1, m integer,
including all Am < 100, cf. [3], [2]. They are conjectured to exist for all such or-
ders. Skew Hadamard matrices have been constructed for all orders Am < 100
except for 36, 52, 76, 92, cf. the table in [4]. Recently Szekeres [6] found skew
Hadamard matrices of the order 2(p'+1) s 12 (mod 16), p prime, thus covering
the case 76. In addition, Blatt and Szekeres [1] constructed one of order 52. The
present note contains a skew Hadamard matrix of order 36 (and one of order 52),
thus leaving 92 as the smallest open case.

The unit matrix of any order is denoted by /. The square matrices Q and R of
order m are defined by their only nonzero elements

4;,; + i = <7m, I = 1, » = 1, •••, m - 1 ; r,jm_,+ 1 = 1, i = 1, • • % m

We have
gm = 1, R2 = I, RQ = QTR.

Any square matrix A of order m is symmetric if A = AT, skew if A + AT = 0,
circulant if AQ — QA. Hence, for circulant A we have

m - l

A = £ fljfi1, RA = ATR.
i = 0

Any square matrix H of order Am is skew Hadamard if its elements are 1 and
— 1 (we write + and —) and

HHT = Ami, H + HT = 21.

THEOREM 1. If A, B, C, D are square circulant matrices of order m, if A is
skew, and if

AAT+BBT + CCT+DDT = ( 4 m - l ) / ,
then

'A + I BR CR DR
_ -BR A + I -DTR CTR

-CR DTR A + I -BTR
.-DR -CTR BTR A + I .

satisfies HHT = Ami, H+HT = 21.

PROOF. By straightforward verification.
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REMARK. If, in addition, B, C, and D are symmetric, then H may be written
in terms of the quaternion matrices KA.,LA, M4 and the Kronecker product ® as
follows:

H = Ii

hence looking much like a Williamson-type matrix, cf. [7].

THEOREM 2. There exist skew Hadamard matrices of orders 36 and 52.

PROOF. We apply theorem 1 with the following circulant matrices of order 9:

A = (0 + + - + - + - - ) , B = ( + - + + - - + + - ) ,

C= (-- + + + + + + -), D = (+ + + - + + - + +).

By inspection the skew A and the symmetric B, C, D are seen to satisfy the hypo-
theses. Hence a skew Hadamard matrix of order 36 is obtained. Secondly, we con-
sider the following circulant matrices of order 13:

A = (0 + + + - + • + - - + - - - ) ,

B = ( - + - + + - - - - + + - + ) ,
C = D = ( - - + - + + + + + - + + + ) .

Application of theorem 1 to A, B, C, D yields a skew Hadamard matrix of order
52 since

AAT = 15I-J + 2B, BBT = 12I-J-2B, CCT = DDT = 12I + J.

REMARK. The positive elements of B indicate the quadratic residues mod 13.
The matrix of order 26

VB + I

L CT
C "I

- B - l l
is an orthogonal matrix with zero diagonal, cf. [2] p. 1007. The matrix A describes
the unique tournament of order 13 having no transitive subtournament of order 5,
which was recently found by Reid and Parker [5].
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