GROWTH OF FUNCTIONS IN CERCLES DE REMPLISSAGE

P. C. FENTON and JOHN ROSSI

(Received 2 August 2000; revised 13 February 2001)

Communicated by K. Wysocki

Abstract

Suppose that f is meromorphic in the plane, and that there is a sequence $z_{n} \rightarrow \infty$ and a sequence of positive numbers $\epsilon_{n} \rightarrow 0$, such that $\epsilon_{n}\left|z_{n}\right| f^{\prime \prime}\left(z_{n}\right) / \log \left|z_{n}\right| \rightarrow \infty$. It is shown that if f is analytic and non-zero in the closed discs $\Delta_{n}=\left\{z:\left|z-z_{n}\right| \leq \epsilon_{n}\left|z_{n}\right|\right\}, n=1,2,3, \ldots$, then, given any positive integer K, there are arbitrarily large values of n and there is a point z in Δ_{n} such that $|f(z)|>|z|^{K}$. Examples are given to show that the hypotheses cannot be relaxed.

2000 Mathematics subject classification: primary 30D20.

1. Introduction

For a meromorphic function f, discs of the form

$$
\Delta\left(z_{n}, \epsilon_{n}\left|z_{n}\right|\right)=\left\{z:\left|z-z_{n}\right|<\epsilon_{n}\left|z_{n}\right|\right\}
$$

where $z_{n} \rightarrow \infty$ and $\epsilon_{n} \rightarrow 0$, are called cercles de remplissage if f takes every extended complex value with at most two exceptions infinitely often in any infinite subcollection of them. Lehto [2] pointed out the close connection between the spherical derivative:

$$
f^{\#}(z)=\frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}
$$

and cercles de remplissage: if, for a sequence $z_{n} \rightarrow \infty$, there exist positive numbers $\epsilon_{n} \rightarrow 0$ such that

$$
\epsilon_{n}\left|z_{n}\right| f^{\#}\left(z_{n}\right) \rightarrow \infty,
$$

(c) 2002 Australian Mathematical Society $0263-6115 / 2002 \$$ A2.00 +0.00
then $\Delta\left(z_{n}, 2 \epsilon_{n}\left|z_{n}\right|\right)$ is a sequence of cercles de remplissage; and conversely, if $\Delta\left(z_{n}, \epsilon_{n}\left|z_{n}\right|\right)$ is a sequence of cercles de remplissage, then for each n there is a point $z_{n}^{\prime} \in \Delta\left(z_{n}, 2 \epsilon_{n}\left|z_{n}\right|\right)$ such that

$$
\epsilon_{n}\left|z_{n}^{\prime}\right| f^{\#}\left(z_{n}^{\prime}\right) \rightarrow \infty
$$

This note is concerned with the way in which the growth of f in cercles de remplissage is related to the growth of $f^{\#}$. We will prove:

THEOREM 1. Suppose that f is meromorphic in the plane, and that there is a sequence $z_{n} \rightarrow \infty$ and a sequence of positive numbers $\epsilon_{n} \rightarrow 0$, such that

$$
\begin{equation*}
\epsilon_{n}\left|z_{n}\right| f^{\#}\left(z_{n}\right) / \log \left|z_{n}\right| \rightarrow \infty \tag{1}
\end{equation*}
$$

If f is analytic and non-zero in the closed discs

$$
\Delta_{n}=\left\{z:\left|z-z_{n}\right| \leq \epsilon_{n}\left|z_{n}\right|\right\}, \quad n=1,2,3, \ldots,
$$

then f grows transcendentally there, that is, given any positive integer K, there are arbitrarily large values of n and there is a point z in Δ_{n} such that

$$
\begin{equation*}
|f(z)|>|z|^{K} \tag{2}
\end{equation*}
$$

(Notice that, from Lehto's theorem, the discs Δ_{n} form a sequence of cercles de remplissage; in fact the radius could be reduced to $2 \epsilon_{n}\left|z_{n}\right| / \log \left|z_{n}\right|$.) Theorem 1 cannot be significantly improved. As we will show, there is a function f, and a sequence $z_{n} \rightarrow \infty$, such that

$$
\begin{equation*}
0<\lim _{n \rightarrow \infty}\left|z_{n}\right| f^{\#}\left(z_{n}\right) / \log \left|z_{n}\right|<\infty \tag{3}
\end{equation*}
$$

and such that f is non-zero in $\Delta\left(z_{n},\left|z_{n}\right| / 2\right)$ and satisfies $f(z)=O(z)$ in $\Delta\left(z_{n},\left|z_{n}\right| / 2\right)$. Thus (1) cannot be relaxed. Also, there is a function f, and there are sequences $z_{n} \rightarrow \infty$ and $\epsilon_{n} \rightarrow 0$, such that (1) just holds, while $f(z)=O(z)$ in $\Delta\left(z_{n}, \epsilon_{n}\left|z_{n}\right|\right)$. Every such z_{n} is a zero of f, and thus the hypothesis that f does not vanish in Δ_{n} cannot be omitted from Theorem 1.

Two remarks are in order. First of all, in [1], the authors use the fact that all transcendental entire functions satisfy (1) to prove the existence of cercles de remplissage in which (2) holds. One need not assume that the function is non-zero in these cercles. Theorem 1 together with the second example mentioned above show that the situation is quite different for meromorphic functions.

Secondly, Theorem 1 is connected with the existence of Hayman directions. A direction $\theta \in[0,2 \pi]$ is said to be a Hayman direction for a meromorphic function
f if, given $\epsilon>0$, either f takes all complex values infinitely often in the region $D=\{z:|\arg z-\theta|<\epsilon\}$ or else all its derivatives take all complex values, except possibly zero, infinitely often there. The authors have shown [1, Theorem 2] that every transcendental entire function has a Hayman direction. The proof depends on the fact that every transcendental entire function has a sequence of cercles de remplissage in which it grows transcendentally [1, Theorem 1], and it is easily seen that, in view of Theorem 1 of the present paper, the same argument can be used to prove the following theorem:

THEOREM 2. Every meromorphic function satisfying (1) has a Hayman direction.
This complements a result of Yang Lo [5], who showed that a meromorphic function f has a Hayman direction if

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} T(r, f) /(\log r)^{3}=\infty \tag{4}
\end{equation*}
$$

The two statements appear to be independent.

2. Proof of Theorem 1

If Theorem 1 is false then there is a meromorphic function f, analytic and non-zero in the union of the discs Δ_{n}, and a positive number K, such that

$$
\begin{equation*}
|f(z)| \leq|z|^{K}, \quad z \in \Delta_{n} \tag{5}
\end{equation*}
$$

for all large n. For $z \in \Delta_{n}$, write $f(z)=\mathrm{e}^{p_{n}(z)}$, where p_{n} is analytic in Δ_{n}, so that

$$
\begin{equation*}
f^{\#}(z)=\left|p_{n}^{\prime}(z)\right| \frac{\mathrm{e}^{u_{n}(z)}}{1+\mathrm{e}^{2 u_{n}(z)}} \tag{6}
\end{equation*}
$$

where $u_{n}=\operatorname{Re} p_{n}$. Since $0 \leq t /\left(1+t^{2}\right) \leq 1 / 2$ if $t \geq 0, f^{\#}(z) \leq(1 / 2)\left|p_{n}^{\prime}(z)\right|$, and therefore

$$
\begin{equation*}
\left|p_{n}^{\prime}\left(z_{n}\right)\right| \geq 2 M_{n} \log \left|z_{n}\right| /\left|z_{n}\right| \tag{7}
\end{equation*}
$$

where

$$
M_{n}=\left|z_{n}\right| f^{\#}\left(z_{n}\right) / \log \left|z_{n}\right|
$$

Writing $p_{n}(z)=\sum_{j=0}^{\infty} a_{j}(n)\left(z-z_{n}\right)^{j}$ and defining $A_{n}(t)=\max _{\left|z-z_{n}\right|=t} u_{n}(z)$, we have, from (5), $A_{n}(t) \leq K \log \left|z_{n}\right|$, for $0 \leq t \leq \epsilon_{n}\left|z_{n}\right|$. Further [4, page 86],

$$
\left|a_{j}(n)\right| t^{j} \leq 4 \max \left\{A_{n}(t), 0\right\}-2 u_{n}\left(z_{n}\right),
$$

for all j. With $j=1$ and $t=\epsilon_{n}\left|z_{n}\right|$, we obtain

$$
\begin{align*}
\left|p_{n}^{\prime}\left(z_{n}\right)\right| & \leq\left(4 \max \left\{A_{n}\left(\epsilon_{n}\left|z_{n}\right|\right), 0\right\}-2 u_{n}\left(z_{n}\right)\right) /\left(\epsilon_{n}\left|z_{n}\right|\right) \tag{8}\\
& \leq\left(4 K \log \left|z_{n}\right|-2 u_{n}\left(z_{n}\right)\right) /\left(\epsilon_{n}\left|z_{n}\right|\right)
\end{align*}
$$

and therefore, in view of (7),

$$
\epsilon_{n} M_{n} \log \left|z_{n}\right| \leq 2 K \log \left|z_{n}\right|-u_{n}\left(z_{n}\right)
$$

Since $\epsilon_{n} M_{n} \rightarrow \infty$, from (1), we deduce that $u_{n}\left(z_{n}\right) \leq-(1+o(1)) \epsilon_{n} M_{n} \log \left|z_{n}\right|$, and further, from (8),

$$
\left|p_{n}^{\prime}\left(z_{n}\right)\right| \leq(2+o(1))\left|u_{n}\left(z_{n}\right)\right| /\left(\epsilon_{n}\left|z_{n}\right|\right)
$$

Returning to (6), we obtain, with $z=z_{n}$,

$$
\epsilon_{n}\left|z_{n}\right| f^{\#}\left(z_{n}\right) \leq(2+o(1))\left|u_{n}\left(z_{n}\right)\right| \mathrm{e}^{u_{n}\left(z_{n}\right)} \rightarrow 0
$$

But $\epsilon_{n}\left|z_{n}\right| f^{\#}\left(z_{n}\right)=\epsilon_{n} M_{n} \log \left|z_{n}\right| \rightarrow \infty$, a contradiction, which proves the theorem.

3. Two examples

The first example is

$$
\begin{equation*}
f(z)=\prod_{n=1}^{\infty} \frac{z+e^{\sqrt{n}}}{z-e^{\sqrt{n}}} \tag{9}
\end{equation*}
$$

Rossi [3] has shown that $f(z)=O(z)$ in any small sector about the imaginary axis, and f is evidently non-zero there. We will show that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} t f^{\#}(\pm i t) / \log t=\pi / 2 \tag{10}
\end{equation*}
$$

Differentiating $\log f$ we have, with $z= \pm i t$,

$$
\begin{equation*}
\frac{f^{\prime}(z)}{f(z)}=\sum_{1}^{\infty} \frac{2 e^{\sqrt{n}}}{t^{2}+e^{2 \sqrt{n}}} \tag{11}
\end{equation*}
$$

Fix N such that $e^{\sqrt{N}} \leq t<e^{\sqrt{N+1}}$. Since $X /\left(T^{2}+X^{2}\right)$ increases for $0 \leq X \leq T$ and decreases after that,

$$
\int_{0}^{N-1} \frac{e^{\sqrt{x}}}{t^{2}+e^{2 \sqrt{x}}} d x \leq \sum_{1}^{N-1} \frac{e^{\sqrt{n}}}{t^{2}+e^{2 \sqrt{n}}} \leq \int_{1}^{N} \frac{e^{\sqrt{x}}}{t^{2}+e^{2 \sqrt{x}}} d x
$$

and

$$
\int_{N+3}^{\infty} \frac{e^{\sqrt{x}}}{t^{2}+e^{2 \sqrt{x}}} d x \leq \sum_{N+2}^{\infty} \frac{e^{\sqrt{n}}}{t^{2}+e^{2 \sqrt{n}}} \leq \int_{N+1}^{\infty} \frac{e^{\sqrt{x}}}{t^{2}+e^{2 \sqrt{x}}} d x
$$

Using simple estimates on terms of the form $e^{\sqrt{w}} /\left(t^{2}+e^{\sqrt{w}}\right)$, it follows that

$$
\sum_{1}^{\infty} \frac{e^{\sqrt{n}}}{t^{2}+e^{2 \sqrt{n}}}=\int_{0}^{\infty} \frac{e^{\sqrt{x}}}{t^{2}+e^{2 \sqrt{x}}} d x+O\left(t^{-1}\right)
$$

After a change of variable the integral on the right hand side is

$$
\frac{2}{t} \int_{1 / t}^{\infty} \frac{\log u+\log t}{1+u^{2}} d u
$$

and since

$$
\int_{0}^{\infty} \frac{\log u}{1+u^{2}} d u=0 \quad \text { and } \quad \int_{0}^{\infty} \frac{1}{1+u^{2}} d u=\frac{1}{2} \pi
$$

we obtain, from (11),

$$
\frac{f^{\prime}(z)}{f(z)}=(\pi+o(1)) \frac{\log t}{t}
$$

And (10) follows from this since, for $z= \pm i t,|f(z)|=1$.
The second example is

$$
\begin{equation*}
f(z)=\prod_{n=1}^{\infty} \frac{1-z / a_{n}}{1-z / b_{n}} \tag{12}
\end{equation*}
$$

where $a_{n}=e^{3^{n} / \psi_{n}}, b_{n}=3 a_{n}$, and ψ_{n} is a positive increasing sequence that tends slowly to infinity, and is such that, for all large N,

$$
\begin{equation*}
3^{n} / \psi_{n} \leq 3^{N} /\left(2 \psi_{N}\right), \quad n<N \tag{13}
\end{equation*}
$$

Let $\epsilon_{n}=1 / \sqrt{\psi_{n}}$. Using the fact that $a_{n}<\sqrt{a}_{N}$ if $n<N$ and $a_{n}>\sqrt{a}_{N}$ if $n>N$, it follows from (13) that, for $\left|z-a_{N}\right|<\epsilon_{N} a_{N}$,

$$
\left(1-z / a_{n}\right) /\left(1-z / b_{n}\right)=\left(1+O\left(e^{-3^{N} / 2 \psi_{N}}\right)\right) b_{n} / a_{n}
$$

for $n<N$, and

$$
\left(1-z / a_{n}\right) /\left(1-z / b_{n}\right)=1+O\left(e^{-3^{n} / 2 \psi_{n}}\right)
$$

for $n>N$. Thus, if $\left|z-a_{N}\right|<\epsilon_{N} a_{N}$,

$$
\begin{equation*}
f(z)=(1+o(1)) 3^{N-1}\left(1-z / a_{N}\right) /\left(1-z / b_{N}\right)=(1+o(1)) 3^{N}\left(1-z / a_{N}\right) \tag{14}
\end{equation*}
$$

Writing $F(z)=f(z) /\left(1-z / a_{N}\right)$, we obtain $f^{\prime}\left(a_{N}\right)=-F\left(a_{N}\right) / a_{N}$, and so, by (14),

$$
f^{\prime}\left(a_{N}\right)=-(1+o(1)) 3^{N} / a_{N}
$$

We conclude that

$$
\epsilon_{n} a_{N} f^{\#}\left(a_{N}\right) / \log a_{N}=(1+o(1)) 3^{N} \epsilon_{n} / \log a_{N}=\sqrt{\psi_{N}}
$$

so that (1) holds with $z_{n}=a_{n}$. Moreover, from (14), if $\left|z-a_{N}\right|<\epsilon_{N} a_{N}$, then

$$
|f(z)| \leq(1+o(1)) 3^{N} \epsilon_{N}=(1+o(1)) 3^{N} / \sqrt{\psi_{N}} \leq(1+o(1)) \sqrt{\psi_{N}} \log a_{N}
$$

Thus, with $\psi_{n}=n$ say, which satisfies (13) for all $N \geq 3, f$ does not grow transcendentally in the discs $\Delta\left(a_{n}, \epsilon_{n} a_{n}\right)$.

References

[1] P. C. Fenton and J. Rossi, 'Cercles de remplissage for entire functions', Bull. London Math. Soc. 31 (1999), 59-66.
[2] O. Lehto, 'The spherical derivative of a meromorphic function in the neighbourhood of an isolated singularity', Comment. Math. Helv. 33 (1959), 196-205.
[3] J. Rossi, 'A sharp result concerning cercles de remplissage', Ann. Acad. Sc. Fenn. 20 (1995), 179-185.
[4] E. C. Titchmarsh, Theory of functions, 2nd edition (Oxford University Press, London, 1939).
[5] L. Yang, 'Meromorphic functions and their derivatives', J. London Math. Soc. 25 (1982), 288-296.

Department of Mathematics
University of Otago
Dunedin
New Zealand
e-mail: pfenton@maths.otago.ac.nz

Department of Mathematics
Virginia Tech
Blacksburg VA 24060
USA
e-mail: rossi@calvin.math.vt.edu

