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ON LEVINE'S DECOMPOSITION 
OF CONTINUITY 

BY 

D A V I D A L O N ROSE 

ABSTRACT. A strong version of Levine's decomposition of con­
tinuity leads to the result that a closed graph weakly continuous 
function into a rim-compact space is continuous. This result implies 
a closed graph theorem: every almost continuous closed graph 
function into a strongly locally compact space is continuous. An 
open problem of Shwu-Yeng T. Lin and Y.-F. Lin asks if every 
almost continuous closed graph function from a Baire space to a 
second countable space is necessarily continuous. This question is 
answered in the negative by an example. 

1. Introduction. In 1961 N. Levine [4] introduced weak continuity and 
weak* continuity for a function f:X—>Y from a topological space X into a 
topological space Y and showed that / is continuous if and only if / is both 
weakly continuous and weak* continuous. The purpose of this note is to 
replace the weak* continuity by a weaker condition, local weak* continuity, 
and exercise the applicability of the resulting stronger decomposition theorem. 
As an application, a closed graph theorem of Paul E. Long and Earl E. 
McGehee Jr. [7] is slightly extended. An open problem of Shwu-Yeng T. Lin 
and Y.-F. Lin involving a similar closed graph theorem is answered in the 
negative by an example. 

2. Definitions and preliminary results. Unless otherwise specified, no special 
properties will be assumed for the topological spaces X and Y, or for a 
function /:X—» Y from X into Y. For a subset A of a topological space C1(A) 
and Int(A) denote the closure and interior of A respectively. 

DEFINITION 1. [4]. A function /:X—» Y is weakly continuous at the point x 
in X if and only if for each neighbourhood V of f(x) there is a neighbourhood 
U of x such that / ( I f )çCl(V) . A function f:X-^ Y is weakly continuous if 
and only if / is weakly continuous at each point x in X. 

THEOREM 1. [4] A function / : X - » Y is weakly continuous if and only if 
r W ç I n t C T ^ C K V ) ) ) for each open subset V of Y 
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THEOREM 2. A function f:X—> Y is weakly continuous if and only if there is 
an open basis B for the topology on Y such thatf~\V) ç int(/_1(Cl( V))) for each 
V in B. 

THEOREM 3. [8] Every weakly continuous function f:X->Y into a Hausdorff 
space Y has a closed graph, G(f). 

In 1966 T. Husain [2] defined almost continuity and thus revived this 
condition which had been studied by H. Blumberg in 1922 [1] for real-valued 
functions on Euclidean space. 

DEFINITION 2. [2] A function f:X—> Y is almost continuous if and only if for 
each x in X and for each neighbourhood V of f(x)9 Cl(/_1( V)) is a neighbour­
hood of x. 

THEOREM 4. A function f : X ^ Y is almost continuous if and only z / / _ 1 ( V ) ^ 
int(Cl(/_1( V))) for each open subset V of Y. 

DEFINITION 3. [4] A function /:X—» Y is weak* continuous if and only if 
/ - 1(Fr(V)) is closed in X for each open subset V of Y where Fr(V) = 
Cl(V)-Int(V) = C l ( V ) - V is the frontier (or boundary) of V. 

Weak continuity and weak* continuity are independent conditions [4], weak 
continuity and almost continuity are independent conditions [10], and almost 
continuity and weak* continuity are independent conditions. Since every 
function into a discrete space is weak* continuous, Example 1 below shows 
that weak* continuity does not imply almost continuity. Example 3 of this 
paper demonstrates that almost continuity does not imply weak* continuity. 

EXAMPLE 1. Let X = R be the usual space of real numbers, Y = R be the set 
of real numbers with the discrete topology, and let / : X - > Y be the identity 
function. 

3. Levine's decomposition of continuity. Levine's decomposition theorem 
[4] states that a function / : X - » Y is continuous if and only if / is weakly 
continuous and weak* continuous. The applicability of this result will be 
enhanced by replacing weak* continuity by local weak* continuity as defined 
below. 

DEFINITION 4. A function f:X—> Y is locally weak* continuous if and only if 
there is an open basis B for the topology on Y such that /_ 1(Fr( V)) is closed 
for each V in B. 

THEOREM 5. A function f:X-+ Y is continuous if and only if f is weakly 
continuous and locally weak* continuous. 

Proof. If / is weakly continuous and locally weak* continuous and if B is an 
open basis for the topology on Y such that /_1(Fr(V)) = / - 1 (Cl (V)) - / " 1 (V) is 
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closed for each V in B, then 

r\V) = ( X - r ^ F r C V))) n IntCr^CK V))) 

is open for each V in B and / is continuous. The converse is clear. 

The following example shows that locally weak* continuous functions exist 
which are not weak* continuous. 

EXAMPLE 2. Let X=Y = R be the space of real numbers with the usual 
topology. Let Q be the subset of rational numbers and let Z be the subset of 
integers. Let g : Q —> Z be a set equivalence (or bijection). Define f:X—> Y by 
f(x)= gW if x is in Q and f(x) = x if x is not in Q. Using the usual basis of 
open intervals / is seen to be locally weak* continuous. But / is not weak* 
continuous since V=\J{(2n, In +1) : n eZ} is open and /_1(Fr( V)) = / _ 1 (Z) = 
O is not closed. 

4. Applications. A topological space Y is rim-compact if and only if there is 
an open basis B for the topology on Y such that Fr( V) is compact for each V 
in B. Paul E. Long and Larry L. Herrington [6] proved that an almost 
continuous (S and S) closed graph function into a rim-compact space is 
necessarily continuous/This follows as a corollary to the following theorem 
since almost continuity (S and S) implies weak continuity [11]. 

THEOREM 6. Let /:X—» Y be a weakly continuous function with a closed 
graph G(f). If Y is rim-compact then f is continuous. 

Proof. Let B be an open basis for the topology on Y such that Fr(V) is 
compact for each V in B. Since G(f) is closed, / -1(Fr(V)) is closed for each V 
in B by Problem 6A of [3]. Thus / is locally weak* continuous and hence 
continuous by Theorem 5. 

By Theorem 3 and Theorem 6, every weakly continuous function into a 
rim-compact Hausdorfl space is continuous. But this is already known since 
weak continuity implies continuity when the range space is regular [4]. 

A topological space Y is said to be strongly locally compact if each point of 
Y has a closed compact neighbourhood. Every locally compact regular space is 
strongly locally compact and every strongly locally compact space is rim-
compact. Since non-regular strongly locally compact spaces exist (Example 73 
of [12]), a closed graph theorem of Paul E. Long and Earl E. McGehee Jr. [7] 
is slightly extended as follows. 

THEOREM 1. If f:X->Y is an almost continuous function into a strongly 
locally compact space Y and if f has a closed graph, then f is continuous. 

Proof. Let B be an open basis for the topology on Y such that C1(V) is 
compact for each V in B. Since the graph of / is closed, f_1(C1( V)) is closed for 
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each V in B. Thus lnt(C\(f-\V)))^lni{f-\C\{V))) for each V in B and by 
Theorem 4 and Theorem 2, / is weakly continuous. Since Y is rim-compact / is 
continuous by Theorem 6. 

COROLLARY TO THEOREM 7. If f:X—>R is an almost continuous closed 
graph real-valued function then f is continuous. 

5. Counterexample for an open problem. Shwu-Yeng T. Lin and Y.-F. Lin 
[5] recently posed the following open problem. If f'.X—> Y is an almost 
continuous closed graph function from a Baire space X into a second countable 
space Y, then is / necessarily continuous? This question is answered in the 
negative by the following example. 

EXAMPLE 3. Let X = R be the usual space of real numbers and let Q be the 
subset of rational numbers. Let Y=R be the space of real numbers topolo-
gized with the smallest extension of the usual topology for which Q is open 
in Y. Then X is a Baire space and if { VJ is a countable open basis for the usual 
topology on X then { V j U i ^ n Q } is a countable open basis for the extension 
topology on Y showing that Y is a second countable space. Clearly Y is a 
Hausdorflf (and Urysohn) space. Let f:X-+ Y be the identity function. By 
Theorem 2, / is weakly continuous since / _ 1 ( V ) ç I n t (/_1(C1(V))) for each 
V= (a, b) and for each V=(a,b)nQ where a < b. Further, / is clearly open 
but / is discontinuous since / _ 1 (Q) = O is not open in X. It is noted in [10] that 
every open weakly continuous function is almost continuous. Thus / is almost 
continuous and by Theorem 3 the graph of / is closed. Further, by Theorem 5 / 
is not locally weak* continuous. 
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