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O N L I N E A R M A T R I X E Q U A T I O N S 

BY 

P. S C O B E Y A N D D. G. K A B E 

ABSTRACT. Some results from the theory of minimization of 
vector quadratic forms (subjected to linear restrictions) are used to 
obtain particular solutions to the usual types of linear matrix equa­
tions. An answer to a question raised by Greville [1] is supplied. 

1. Introduction In linear parametric estimation theory of Normal Mul­
tivariate Statistical Analysis we are required to solve several types of normal 
equations. Among these equations are linear matrix equations of the type (i) 
DX = V, (ii) FX=WUXH= W2, (iii) AXB = C, (iv) AXB + CXD = E, or their 
combinations, where X may be a symmetric matrix. Such equations are often 
solved in statistical literature by using weighted least squares theory, and 
elsewhere by using unweighted least squares theory. In statistical literature 
only, obtaining of particular solutions is sufficient, because the scalar test 
criteria of statistics are unique, whatever be the particular solutions. We use 
some simple results on traces of vector quadratic forms (subjected to linear 
restrictions) minimization theory and obtain particular solutions to the above 
types of matrix equations. Following the practice in mathematical literature we 
obtain unweighted least squares solutions; however, we also indicate proce­
dures for obtaining weighted least squares solutions. 

Some results found useful in the sequel are stated in the next section. Section 
3 is devoted to solving linear matrix equations, and in Section 4 we answer a 
question raised by Greville [1]. 

Sometimes the same symbol denotes different quantities; however, its mean­
ing is made explicit in the context. All matrices in the paper are assumed to be 
full rank matrices, although all our results are valid for less than full rank 
matrices provided the pseudoinverses are properly handled. 

2. Some useful results. Let X be a pxN matrix, JJL a pxN matrix, A an 
NxN symmetric matrix, 2 a p x p symmetric matrix, D a given qxN matrix, 
and V a given pxq matrix, N>max(p , q). Then Kabe [2] shows that 

(1) min tr 2 ~ ( X - jx,)A(X- /x)\ subject to DX' = V , 

is given by 

(2) tr 2~( V - iiD'XD^DTW- /iD')', 
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and the value X of X which yields this minimum is 

(3) X = ii + ( V - J U D ' X D A ' D T ' D A 1 + 0 [ I - D ' t D A ' D ' ^ D A 1 ] , 

where 6 is an arbitrary pxN matrix. The solution (3) is called a weighted least 
squares solution, with weight matrix A, to the (consistent) system of linear 
equations 

(4) DX'=V. 

If in (3) we set p = 0, and A = I, then the resulting solution is an unweighted 
least squares solution to (4). 

If in (1) X and p are pxp symmetric matrices and A is a p x p symmetric 
matrix, then a particular solution X to X is 

X=p + (V- p D ' X D A ' D ' ) 1 

(5) 
+ A-1D'(DA-1D')"1(V-jLiDT[I-D'(DA-1D f)"1DA-1] , 

where V'D' = DV. In this case also the minimum of (1) is given by (2). Note 
that the rank of X is twice the rank of V. 

In case D and V in (1) are partitioned into a number of parts, say 
D = (D1'D2')\ V=(V 1V 2 ) , then (2) may be written as 

t r2 - 1 [ (V 1 - j LiD 1 ' ) ^ (V 1 -^D 1 T 
(6) 

+ (V2-pD2'-(V1-pD1')cj>p)ip(V2-pD2'-(V1-pDl')<t>pyi 

where 

(7) 4 = ( D ^ ^ D / ) 1 , p = D^'D^ i// = (D2A"1D2 ' - p<t>pY\ 

The inverse of the partitioned matrix 

( 8 ) r ^ A - ' D / D i A - ^ ' l 
LD2A_1D,' D2A"1D2'J 

is given by 

(9) 
(j) + (f)plfjp'(f) — (/>pi//l 

-l/>P> l// J 

Now consider (1) with double linear restrictions, i.e., 

(10) min tr 2 " ( X - /x)A(X- jut)', subject to DX'B ' = C. 

To solve (10), we first set D X ' = V , and write (2) as 

(11) t r c M V - i u D ' y S - ^ V - p D ' ) , 

and then minimize (11) under the restrictions 

(12) DX'B'=C, i.e., BV=C. 
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The minimum of (11) subject to (12) is given by 

(13) tr (MC-BjuDytBSBT^C-BjwD' ) , 

and the value V of V which yields this minimum is 

(14) V= nD' + XB'iBZBT'iC-BiJLD'). 

On substituting V for V in (3), a particular solution X that minimizes (10) is 

(15) X=v + XB'(B?,BT1(C-BnD')(DA-1DTlDA-\ 

and forms a weighted least squares solution to the system (12). 
If A is deficient in rank, and D, B, C are of specified rank, then A can be 

chosen in such a way that the solution X is of a specified rank, see Mitra [4]. 
However, this is not always possible if X is a symmetric matrix. 

We proceed to consider solutions to linear matrix equations. We simply show 
a procedure to compute a solution and do not discuss necessary and sufficient 
conditions for the existence of such solutions. 

3. Linear matrix equations. Khatri and Mitra [3], and Mitra [4, 5, 6], in a 
number of papers have utilized several available results from statistical litera­
ture, especially from multivariate linear regression theory, experimental de­
signs theory, and Rao's [7] MINQUE theory to solve linear matrix equations 
and supply the required analysis for the existence and other properties of the 
solutions of such equations. Thus, e.g., Mitra [6] considers the equation 

(16) D.X'B,' + D2X'B2' = E\ 

and solves it by a very complicated procedure and further remarks ([6], p. 825, 
Section 4) that when one or more terms of the same type are added on the 
lefthand side of (16), a solution to (16) appears difficult to compute. It is true 
that a unique solution to (16), or even a particular solution to (16), is very 
difficult to compute by using weighted least squares theory. However, a 
particular solution by using unweighted squares theory can be easily obtained 
to the system (16). It is also possible to compute a fixed rank solution to (16). 
We split up E into parts E = Ex + E2 such that rank E = rank Ex + rank E2, 
where Et may be a null matrix, and set 

(17) DXX'B^ = E / , D2X'B2' = E2\ 

We further set 

(18) A X ' ^ V / , D2X'=V2\ 

and by assuming 2 = 1, A = I, /u = 0, in (1), minimize (1) subject to the 
restrictions (18). The minimum, from (6), is 

(19) tr [ V j W + fVî - VKfrpMVa- V^p) ' ] , 
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where now D = (D^D2)' and 

(20) <$> = (OxD/)"1 , P = D1D2
,
9 (// = (D2D2

f - p'<\>pT\ 

The value X of X which solves this minimum value problem from (3) is 

X = ( Vi V ^ D D ' ) - ^ = VxfaD! + <\>p^p'<\>D1 - <t>pi!fD2] 

+ V 2 [ - # > D 1 + i//D2]. 

Now we write (16) as 

(22) BlV1 + B2V2 = E, 

and minimize (19), under the restrictions (22). However, to avoid this difficult 
minimization procedure, we shall solve 

(21) 

(23) B.V^E^ B2V2 = E2, 

and substitute the solutions in (21). The unweighted least squares solutions Vx 

and V2 to (23) are 

(24) V, = B1'(B1B1T
1El9 V2 = B2'(B2B2'T

lE2. 

On substituting these solutions into (21), a solution X that satisfies (16) is 

(25) X = B1\B1B1T
1E1[<I>D1 + c M A p W - 4>p^D2] 

+ B 2 ' (B 2 B 2 T 1 E2[-# '4>D 1 + i//D2]. 

Actually in practice any f̂  and £ 2 , such that E — Ex + E2, may be chosen. 
Obviously, this procedure can be applied to any number of terms on the 
lefthand side of (16). 

Note that (25) satisfies the simultaneous equations in (17), see Mitra [5]. We 
note that Bx and B2 may be identity matrices. 

We illustrate the procedure for finding a fixed rank solution to a given matrix 
equation by a numerical example. 

EXAMPLE 1. We wish to find a 2 x 3 matrix X that satisfied 

(26) DX' = d'X' = [1, 2, 1]X' =V' = v' = [4, 3], 

and is of rank 2. We choose A in (1) such that D does not belong to its range 
space; such a A of rank 2 is 

(27) A = 

1 
- 1 

2 

- 1 
1 

- 2 

2 
- 2 

9 

The matrix A is of rank 2, the two nonzero roots of A are 1 and 10 and the 
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respective latent vectors are 

(28) 
W 3 ' 3 J' [(18) -1/2 (18)-1/2,4(18)-1/2], 

and the latent vector corresponding to the zero root is proportional to 

(29) (' = [1,1,0]. 

The Moore-Penrose A~ of A is given by 

" 9 - 9 

(30) 20A~ = - 9 
- 4 

4 
4 
4J 

We note that D does not belong to the range space of A, and hence, following 
the practice of the maximum likelihood estimation of the mean vector of a 
singular normal distribution, we restrict the solution X to the range space of A. 
By assuming /x — 0 in (1), we find that 

(31) *-^*-«-«-[:S * *]m. 
We note that t'X' = 0, and that X is of rank 2. The theory behind this example 
is very complicated, see Mitra [4]. This procedure does not always suceed if X 
is symmetric, although it succeeds in finding fixed rank solutions to systems 
(16) and (17). 

We note that (5) is a more general solution to (4), if X is symmetric, than the 
one obtained by Khatri and Mitra ([3, p. 579, Theorem 2.1). 

It is possible to extend Khatri and Mitra's [3] theory to obtain symmetric 
solutions (although not of fixed ranks) to all types of linear matrix equations 
given in Section 1. Thus, e.g., we give a symmetric solution to the system 

(32) DXX' = V/ , D2X'B2' = E2
r. 

We first set 

(33) DXX' = V/, D2X' = V2', D = (D/D2 ' ) ' , 

and then, setting jix = 0, A = I, 2 = I in (5), we find that 

(34) X=(V1V2)(DDY1D 

satisfies (33). Further, by setting E2V2 = E2, we find that V2 = B2\B2B2)~
1E2 

satisfies B2V2 = E2. Thus a symmetric X that satisfies (32) is 

(35) 
X = (Vu B2'(B2B2r

1E2)(DDT1D 

+ D'{DD')-1{Vl,B2\B2B2r
1E2)'U-D'{DD')-1Dl 

provided that VÎDÎ = DlVl and B2'D2' = D2B2. 
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Similarly, we may obtain a symmetric solution to D 1X'B 1 ' + D2X'B2 '= : E. It 
is difficult to obtain a weighted least squares solution, expressible in the 
standard solutions format, to the equations FX = W, XH = T. 

Now by a numerical example we illustrate our procedure for obtaining a 
nonsymmetric solution X to the system D1X'B1 ' + D2X'B2 ' = E'. 

EXAMPLE 2. We consider the equation 

(36) d1
,X'b1 + d2

lXlb2=l9 d / = [ l , 2 ] , ft/= [0,1], d2' = [2 , l ] , 

and b2 ' = (4,3]. We fitst set 

(37) d / X ' = 0, d2'X'=v2' = (v2Uv22), 

and, by using (31), compute the solution X to (37) given by 

(38) X=i> 2 [ -^p '<K' + ^d2 ' ] , 

where 

(39) <̂  = (d1 'd1)-1 = 5"1, p = d /d 2 = 4, i// = (d2'd2-p^p)'1 = 5/9. 

By using (38) and (39) we have that 

where v2b2 = 4 v21 + 3 v22=l, i.e., t;21 = 4/25, u22 = 3/25, and hence we have 
that 

(4D * . [ » : ^ ] , 7 5 

which satisfies (36). Thus, a particular solution to (16) with any number of 
members on the left-hand side of (16) can always be computed. 

4. The matrix equation TAT = T. Let A be any p*p positive definite 
symmetric matrix and X and Y be any two q x p, q < p, matrices of rank q. 
Then the Gramian matrix 

(42) H=A-1-A-1X'(YA-1X'ylYA~\ 

is exactly of r a n k ( p - q ) . If R, (p-q)xp, is a semi-orthogonal matrix or­
thogonal to X, and P, (p - q) x p, is a semi-orthogonal matrix orthogonal to Y, 
then by writing H=P'GR for some p x pG, we note that JRAP'GK = RAH = 
R, i.e., GK = (RAP'^R or H = F ( K A P ' ) - 1 ^ . On the other hand, it is known 
that 

(43) H={EAF)~, 
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where E and F are idempotent matrices and G denotes the Moore-Penrose 
inverse of G. Now set X= Y in (42) and, using (43), find that 

(44) H=R'(RAR')1R. 

In (44) we assume the symmetric matrix A to be of rank ( p - q ) , and JR to be 
the (p-q)xp matrix of the first (p - q) latent vectors of A corresponding to 
the first (p-q) largest roots. In this case (44) gives 

(45) A~ = R'iRARY'R = (EAE)~. 

On setting T = Q~ in (43), we find that 

(46) TAT=Y=(EAE)~, 

has the solution T=A~ = (EAE)~. The structure of (45) shows that no other 
inverse of A, except the Moore-Penrose inverse of A, can be written as 
(EAE)~. If A is non-symmetric, then under certain conditions on P and JR we 
may write A" = (EAF)~ = P'iRAP'^R. Hence T must equal the Moore-
Penrose inverse of A in (46). This answers a question raised by Greville ([1], p. 
829, lines 14 and 15). 

This research is supported by National Research Council of Canada Grant 
A-4018. 
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