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1. Introduction

In [8], Rooney defines a class s/ of complex-valued functions ( each of which is
analytic in a vertical strip a(£)<Res</?(£) in the complex s-plane and satisfies certain
growth conditions as |lms|->oo along fixed lines Res=c lying within this strip. These
conditions mean that the functions

fulfil the requirements of the one-dimensional Mihlin-Hormander theorem (see
[6, p. 417]) and so can be regarded as Fourier multipliers for the Banach spaces L"(U).
Consequently, each function £e<s/ gives rise to a family of bounded operators W[C, a],
ae(a(C),/?(£)), on L"{U), l<p<oo. By noting that the Mellin transform Mt/f of a suitably
restricted function \p could be expressed as

where F denotes the Fourier transform and

(see [7]), Rooney was able to develop a theory of Mellin multipliers on weighted
versions of the Banach spaces LP(O, oo) and as a result deduced the mapping properties
of certain operators, including the Erdelyi-Kober operators of fractional integration.

In this paper, functions £ in the class srf are shown to generate a family of continuous
linear operators W[(,a], a e (a(£), /?(()), on the Frechet spaces Du introduced by
Schwartz in [9]. These operators can be interpreted as the restrictions of the bounded
operators on L"(U) mentioned above. An application of standard techniques for
extending operators from spaces of classical functions to spaces of generalised functions
then establishes that the operators W[C,ff] permit natural extensions W'CC.ff] to the
distribution spaces D'Ll>. Since each space D'LP (1 <p< oo) contains the space Lq{U) (where
l/p+l/q = l) as a subspace, in the sense of regular generalised functions, the extended
operators W[(,, o~\ are also extensions of the corresponding Fourier multipliers on L'(R).

As illustrations of the theory, we concentrate on the Riemann-Liouville and Weyl
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operators of fractional integration and demonstrate how familiar results associated with
these operators emerge in a natural manner from properties possessed by their
multiplier functions. Also discussed are certain integral operators involving the Gauss-
Weierstrass kernel. The results deduced on all of these operators are used finally to
obtain distributional solutions of a class of boundary value problems involving the heat
operator.

2. Notation and preliminary results

Throughout, p, q and \i are real numbers with l<p, q<<x> and l/p+1/^=1.
LP( = LP(IR)) denotes the Banach space of (equivalence classes of) functions (f> such that

J \<Kt)\'dt<ao,
— oo

with the norm || • ||p on If defined in the usual manner by

For any ft, the space Lp M is the weighted version of U given by

If we introduce a norm ||"||p.^ on Lp„ defined by

then Lplt becomes a Banach space which is homeomorphic to IS under the
homeomorphism e~"':0-»e~'"<p, <f>eLp ^

We shall also be concerned with certain subspaces DLP and Dp„ of IP and LPfl

respectively. These are defined by

Equipped with the topologies generated by the families of seminorms {v£} and
(k = 0,1,...) respectively, where

DLp and Dp„ are Frechet spaces, with D^, and Dp0 identical. In addition, for each pair
of parameters (p,n), Dp A is a space of test functions in the sense of Zemanian [11] and
consequently functionals in the dual D'p„ can be regarded as generalised functions.
Convergence in D'p„ is defined by means of the weak*-topology. Hence, if (/,(/>) denotes
the action of feD'plt on 0eD p / 1 then {/„}<= D'pll converges to feDpfl if and only if
(/„, <P)^(f, <P) in C for each <f>eDp<l.
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Properties of the spaces Dp ^ and D'p„ can easily be obtained from the corresponding
properties of DLP and D'LP given in [9] (see [3]). We list the main facts below.

Lemma 2.1. / / 4>sDp„ then |$(t)|^iMe"' for all tsU, where M is a positive constant
independent of t.

Lemma 2.2. The mapping ekt defined by ekt:(j>->eu(t> is a homeomorphism of Dp „ onto
Dp fl+x with inverse e~Xt for any real numbers X and \i.

Lemma 2.3. The mapping e** defined on D'ptllfor any \i, AeR by

( ^ 7 " , 0 ) = ( / , e ^ ) feD'Pill,<peDp^x (2.1)

is a homeomorphism of D'p„ onto D'PI1-X with invefse e~kt.

Lemma 2.4. If \peLq__ll then \ji generates a regular generalised function ij}eD'Ptll by
means of the formula

(^, $) = j ^{x)4>{x) dx, 4> e DP.,. (2.2)
— oo

Lemma 2.5. If feD'pil then f = Yj=oD'k$k where, for fc = 0, l , . . . ,n, i/'fceL,,-^ and Dk

denotes the distributional differential operator defined by

(Dkf,<t>) = (-l)k(fDkcl>),feD'p^ <t>eDp^. (2.3)

Note that (2.3) is meaningful since Dk can be shown to be a continuous linear
mapping of Dp„ into Dp>(J for any fi.

3. Fourier multipliers

Definition 3.1. A measurable function *F:IR->C is a Fourier multiplier for LP
(henceforth abbreviated to an LP multiplier) if there exists a bounded operator
W[y¥y.Lf-+Lp such that

Here, and in the sequel, F denotes the Fourier transform defined on L1 by

= J eilx<t>(x)dx

and extended by continuity from L1 n L2 to L2 (see [6, p. 305]).
Of particular interest is the following class of multipliers introduced by Rooney [8].
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Definition 3.2. The function f:C->C belongs to the class si if there exist extended
real numbers a(£) and /?(£) such that

(a) C is analytic in the strip <x(Q< Res </?(£),

(b) C is bounded in every closed substrip o1^Res^o2, where a{Q <o l^
(c) ida + it^Odt]-1) as |f|-oo for a({) <

Theorem 3.3. Let £ be a function in si and let £,„ be defined by

£„(*) = £(* +it), teR. (3.1)

Then, for each a e (a(C),/?(0) and pe(l ,oo), (,a is an If multiplier i.e. for each ae(a(£),/?(£))
and p e ( l , oo) there exists a bounded operator W\J,,a\:U^>U such that

l <l>eL2nL».

Proof. See [8].

Theorem 3.4. If C, belongs to the class si then, for each ae(a(£), /?(()) and p e ( l , oo),
the function £* defined by

C*(t) = f( f f - i t ) = C*(ff + it), (3-2)

(where C*(s) = C(s)) is an ^p multiplier i.e. for each ae(a(Q,P(Q) and pe ( l , oo), ffcere exists
a bounded operator W[C*, a]\Lp-*Lp such that

Proof. Since C e ^ it follows that, for each ae(a(Q,0(Q), ^eL^^nC^U).
Moreover, from Definition 3.2(c), J(Z>̂ "*)(t)| = O(|£-|~x) as |t|—>• oo and therefore there exists
a positive constant c such that, for each r>0,

and
•dt<c2r'1

where /r = {t:r/2<|j|<r}. The result now follows immediately from the Mihlin-
Hormander theorem (see [6, p. 417]).

Our aim in this section is to establish that the restrictions of the operators W[C, cr]
and W[C,*, CT] to the space DLp are continuous linear mappings of DLP into DLP whenever
Cesi,(7e(a(Q,P(Q) and pe(l, oo). To this end, we give the following preliminary results
and definitions.

Definition 3.5. The set 0 M of functions of slow growth consists of functions
0eC°°(IR) such that, for each k = 0,1,..., there exists a non-negative integer Nk with

i e R
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Lemma 3.6. If Qe &M and ij/eS, the space of test functions of rapid descent, then
6*1/eS.

Proof. See [10, p. 107].

Lemma 3.7. / / £es/ then Co- end C* both belong to the class &M for each

Proof. Let a e (a(£), /?(£)) be arbitrarily fixed and consider the function Ca defined by
(3.1). Since ( is analytic in the strip <x(£) < Re s < /?(£), £ff clearly belongs to the class
CCO((R). Moreover, if s' is any point on the line Res = <r then there exists an E > 0 such
that the circle {s:|s—s'|<£}c{s:a(Q<Res</?(C)} and from Cauchy's inequality

s',a)fc!e-fc (fc = 0, l , . . . ) (3.3)

where M(E, s', a) denotes the maximum value of ( on the circle. From Definition 3.2(b), £
is uniformly bounded on the strip a — e^RessScr + e and therefore the constant
M(e,s',a) in (3.3) is independent of the choice of s' on the line Res = <r. Hence £ffe@M.
Similarly, since \(DkC*)(t)\ = \(DkCa)(-t)\ for /c = 0 ,1 , . . . , we can conclude that C* is also a
function in 0 M for each a e (a(£), /?(()).

Theorem 3.8. Let Cejrf and, for each a e (a(Q, j8(Q), let W[t,c] and W[C*,<r] be the
bounded operators on U corresponding to the multipliers Ca and £* respectively. Then, for
each pe ( l , oo), the restrictions of W[C,ff] and W[C*,o~\ to DLP are continuous linear
mappings of DLP into DLP.

Proof. Let <r e (a(0,/?(£)) be fixed and let tj/eS so that, by Theorem 3.3,

(3.4)

From Lemmas 3.6 and 3.7 and the fact that F:S->S is a homeomorphism, we can
deduce that the right-hand side of (3.4) is a function in S and therefore, by choosing
F~iCITFil/(eS) as the representative of the equivalence class W[£,<r]i/' in L", we can write

^ f Consequently, for fc = 0 ,1 , . . .

={2n)-i~Dk f e - t o f , W J eiyx\}i{y)dydx (teR)
— oo — oo

=(2«)~1 f e-fc-UxX-ix)* f e^ii,(y)dydx (by [10, p. 182(3)])
- 0 0 - 0 0

=(2JI)-1 J e-^Ux) ? ^'(^^(yjdj'dx (by [10, p. 182(4)])
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Thus DkW[£,o~\il/ = W[C,<T]DV for any \j/eS. Now let 4> be any function in DLP. Since S
is dense in DLp, there exists a sequence {(/>„} of functions in S such that \l/n-+(j> in DLJ7. By
the result proved above,

and therefore {W[C, "•]'/'„} is a Cauchy sequence in DtP. Since DLP is complete, this
means that a function £,eDLP exists such that WK,ff]^n->^ in DLP. If we extend W[£ex]
from S to Djj, by setting £=W[(,o](f> then it follows that

D*WTC,<T]0=WK,ff]DV (3.5)

for each (j)eDLP and fc=0,1,2,... . Therefore, the operator W[(,ff], thus extended, is a
continuous linear mapping of DLP into DLP. Finally, since convergence in DLP implies
convergence in IF, we can state that, for 4>eDLP, W^a^ij), as defined above, agrees
almost everywhere on ( — 00,00) with W[C,,o~\<j> where, in the latter, W\_(,o~] is
interpreted as the bounded operator on LP corresponding to the multiplier £„. This
completes the proof for W[£,, a] and the proof for W[C,*, o~\ follows similarly.

4. Fractional integrals on Dpil

In this section we shall determine the mapping properties of the Riemann-Liouville
and Weyl operators of fractional calculus on the spaces Dpil. For Rea>0, the Riemann-
Liouville and Weyl fractional integrals of order a are defined on suitable functions <p by

j {r)dx, -oo<t<oo , (4.1)

] ( x ) d x , -oo<t<oo, (4.2)
t

respectively, while the operators of fractional differentiation D" and E" are given by

-oo<t<oo ,

= ( - mKn-°D"ct>)(t), - 00 < t < 00,

where n, a positive integer, is such that n>Rea. Results concerning these operators on
the spaces Dp„ have been deduced previously by the author [3] as a special case of a
theory of fractional powers of operators. Here we shall show that the same results
emerge in a natural manner from properties possessed by associated multiplier
functions.
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Of interest also are generalisations l\ and K% of /" and K" respectively. For a e C and
b > 0,1% and K% are defined on suitable functions <f> by

-oo<«oo, (4.3)

- o o < £ < o o . (4.4)

As with the operators of fractional calculus defined above, properties of Ia
b and Ka

b on
Dp,, will be deduced from the results proved on multipliers in the previous section.

We begin by establishing the mapping properties of /", K", 1% and K% on the Banach
spaces LPi/I.

Theorem 4.1. Let n>0 and pe(1, oo).

(a) / / R e a > 0 then I" is a bounded linear operator mapping Lp j u into Lpft.

(b) IfaeC and b>0 then 1% is a bounded linear operator mapping Lpil into Lpfl.

(c) II12 converges to I112 in the operator norm topology as fc—>0 + .

Proof.

(a) For fi>0, R e a > 0 and <j>eLPtfl,

- Vr(a)) * <l/\\p (H the Heaviside function)

^ Gfl(/i)||</'||p = G a ( / / ) |ML (by Young's inequality)

where Ga(/i), the L1 norm of the function H(i)e~'"ta~i/T(a) is given by

Gfl(/z) = r(Re a)/(|F(a)|/iR") [2, p. 137(1)].

(b) Proceeding as in the proof of (a), this time with a e C, we can show that

WIWI.^G.MWI,, (b>o)

where

| 7 ^ (b>0) [2, p. 146(29)].

The function Xv(z) appearing in the above formula is the modified Bessel function
of the third kind (see [4, p. 108]).
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(c) Since K1/2(z) = (7i/2z)1/2e~z [4, p. 112] we can apply Young's inequality to deduce
that

, (cpeLpJ

as required.

Theorem 4.2. Let n<0 and pe(1, oo).

(a) / /Ref l>0 then Ka is a bounded linear operator mapping Lp ^ into LPill.

(b) IfaeC and b>0 then K% is a bounded linear operator mapping Lp„ into Lpfl.

(c) Kj,/2 converges to Kil2 in the operator norm topology as b-*0 + .

Proof. The proof of this theorem is similar to that of Theorem 4.1.

Theorem 4.3.

(a) If n>0, pe(l,oo) and Rea>0 then I" is a homeomorphism of Dpil onto Dp/l with
(/«)-! =Da.

(b) If fi<0, pe( l , oo) and Rea>0 then K" is a homeomorphism of DPII onto Dpil with

Proof.

(a) In view of Lemma 2.2 and the definition of the topology on Dp ^ it is sufficient
to prove that, for ^>0 , e'^^e"' is a homeomorphism of DLP onto DLP with inverse
given by e~t"D"el". To this end, let C be the function defined by

C(s) = s~" = exp(-alogs)

where the function logs assumes its principal branch and s = a + it. Since Rea>0, ( is
clearly analytic in the half-plane Re s > 0 and is bounded on every substrip of the form
a1 ^Res^<72 where 0<cr1^ff2< o°- I n addition, £'(s)= —as~"/s so that

|C'(CT + it)| = |a(o- + it)"°|/(CT2 + f2)1/2 = 0(|t|-x) as | t | -oo

for each a e (0, oo). It follows from this that £ e si with a(Q = 0, /?(£) = oo and therefore,
by Theorem 3.4, there exists, for each <re(0, oo) and pe(l,oo), a continuous linear
operator W[C,*,o]:DLp^>Du such that
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Since

we can deduce that, for each \i e (0, oo),

n-]=e->"Iae>" (4.5)

as operators on DLP and hence /" is a continuous linear mapping of Dp„ into Dpi(1 for
any /z>0. Finally, to demonstrate that I" is a homeomorphism of Dp>(I onto Dp „ with
inverse D" we examine the function >?(s)= l/(*(s)=(cr —it)". This function is clearly not in
the class stf. However, if we note that s" can be decomposed into the product s~ n + V
where n, a positive integer, is such that n > Re a, then, since

and e~t"D"el", for each n = l ,2,. . . , is a continuous linear mapping of DLP into DLP, it
follows that, for each fi>0 and pe(l , oo), there exists a continuous linear operator
W[r],fi]:DLP-^DLP with the property that

(FW[ti,

By the results proved above and the definition of D",

and consequently, D":Dp ll^Dp ^ is a continuous linear mapping if n>0. Moreover,
since

it follows that W[t},n~] = (W[t,*,n~\)~l on DLP and this completes the proof.

(b) This can be proved similarly by verifying that, for //<0, e~"'Kaef"= W[£ —/*] as
operators on DLP, where ((s) = s~a.

Theorem 4.4.

(a) If n>0, pe( l , oo) and b>0 t/ien /? is a continuous linear mapping ofDpil into Dplt

for any aeC.

(b) Ifn<0, pe( l , oo) and b>0 then K"b is a continuous linear mapping ofDPll into Dptl

for any a e C
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Proof. As in the proof of Theorem 4.3, it is sufficient to verify that e'1"!^"' is a
continuous linear mapping of DLP into DLP for any pe(l, oo), /i>0, b>0 and ceC.
Clearly, from Theorem 4.1(b), g~M'/JJe'" is a bounded operator mapping II into LF.
Moreover, for 4> e DLP,

^M\r(a)\-1]e-fluuRea^1e'l"4udu (by Lemma 2.1)

= 2M|r(a)|-1(b/4A<)Refl/2KRea(&
1/V/2) (by [2, p. 146(29)])

and so e~'"'I^e1"<f> is continuous on U for each (j>eDLP. Now consider the function
C(s) = 2[r(a)]"1(fe/4s)a/2Ka(ft

1/2s1/2). This function is analytic in the half-plane Res>0.
Moreover, as s-»oo,

(from [4, p. 123, (5.11.9)]) and therefore £(s) is bounded in every closed substrip
a1 ^ Re s ̂  <r2 where 0 < dj ^ CT2 < °°- Similarly, since

we can deduce that |C'(ff + if)| = O(|t|~1) as |t|—»-oo for 0<CT<OO. Consequently Z,e$/ with
a(Q = 0, P(Q = co and so, for each a>0 and pe(l, oo), there exist continuous linear
operators W[C,<T] anrf PT[C*, a] mapping DLP into DLP such that

and

If we let 0 e S and examine F(e~"7?e"'0) then we find that

= 2(r(a))" Hfc/4(/x - it)r'2Ka(b^2^ - iO1/2)(F</.)(t) [4, p. 146, (29)]

This implies that W[t,*,n'] = e~lltIlellt as bounded operators on L" and therefore, for
<f)€DLP,

e-'1'Ia
be»'<p (4.6)
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a.e. on IR. In fact, since each side of (4.6) is a continuous function on U, we can state
that W[(*,/z]0 = e~'"/£e'"0 on R and this proves (a). Similarly, if we examine
F[e-»xKa

he
fIX(l>~] for <t>eS then

and arguing as above, we conclude that Ka
b:DPtll-^Dp „ is continuous for n<0.

For future reference, we list the results obtained in Theorems 4.1-4.4 in the following
table.

Table 4.5

Operator
Corresponding

multiplier operator Multiplier

Res>0,

Res>0.

Res>0.

Res>0.

2i,b/4srl2Ka{b
>l2s112)

Res>0.

Hb/4s)°l2K,,(bil2s112)

r(a)

Properties

Bounded on

Homeomorphism
of £>,,,„ onto

Dp „ with
(/»)-»=£)».

Bounded on LPi/1

Homeomorphism
of Dpll onto DPI1

Homeomorphism
of Dp,„ onto DPI1

Homeomorphism
of Dp „ onto Dp „
mth(E')~l = K°.

Bounded on LPIX.
Continuous on

Bounded on Lpi(1.

Continuous on

Restnctions on
parameters

Rea>0,

pe(l,co).

Rea>0,
H<0,

pe(l,oo).

Rea>0,

pe(l,oo).

Reo>0,

pe(l,oo).

aeC,

pe(l,oo).

aeC,

b>0u<0

K°

D°

E"

ef"W[t,*, /

pe(l,oo).

Remark 4.6.

(a) Of particular interest in the sequel are the operators 7^2and K^tf By replacing a
and b by y and x2 respectively in the appropriate entry of the above table, we find
that the associated multiplier function is

C(s) = 2(x2/4s) 1/4K1/2(|x|s1/2)/F(i) (Re s > 0)

(b) For /x>0, the operator e^K'e'1" is the adjoint of g-"'/^"' while e^Kfe'"' is the
adjoint of e""'/ge^'. In each case, the operator and its adjoint can be written in

https://doi.org/10.1017/S0013091500017752 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500017752


320 W. LAMB

multiplier from as W[C*,/*] and W[C,/x] respectively (with the multiplier function
chosen appropriately). This is not surprising since, for suitable \p,

FCaF-1ilJ = F-1t:*Fil/ (4.7)

so that, in general, l-F[C,//] is the adjoint of W£(*,/z].

Theorem 4.7. Let <j>eDPtll, where 1 <p<oo.

(a) Ifn>0 then Il
bl

24>^llt2<t> in Dp/, as b->0 + .
(b) Ifn<0 then Kb

1/2<£-K1/2<£ in DPill as b->0 + .

Proof. We prove (a) only, the proof of (b) being similar. If/x>0 and <f>eDPft then

vp
k-Vl'2<P~lm4>) = \\D\e-»Vl12 - / 1 / 2 ] e^)\\p W e DLP, * = e""'</,)

^\\l^-I^\\\\D^\\p (from (3.5))

^ 0 as b->0+ (from Theorem 4.1(c)).

Theorem 4.8. Let 4>eDPIJl with 1 <p<oo.

(a) If /x>0 then 1XJ?<$> is a twice strongly-differentiable Dp ^-valued function of x for
x£0.

(b) If n<0 then K^4> is a twice strongly-differentiable Dp ^-valued function of x for
x£0.

Proof, (a) Let Tx be the operator defined on suitable functions <p by

Since Tx = xl~2
il2, we can deduce that Tx:DPtll-*DPill is continuous and

for each ij/eDLP and fc = 0,1,. . . . Consequently,

^M(x,ft,/i)vf'M(0) (using Young's inequality)

where M(x, h, fi) is the constant given by

https://doi.org/10.1017/S0013091500017752 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500017752


FOURIER MULTIPLIERS ON SPACES OF DISTRIBUTIONS 321

Suppose without loss of generality that he{ — E,E) where £>0 is chosen small enough
to ensure that [x—e,x + e]c(R —{0}. By the second mean value theorem, there exists
£,{ = £(w, h)) in (x — e, x + e) such that

Hence,

* > - l x c - x 2 / 4 w | ( 4 8 )

if x—£>0, where ^ > 0 is chosen so that n —(x — e)2<0. Similarly, if x + e < 0 then the
expression in (4.8) can be shown to be bounded above by

where this time n is chosen so that n —(x + e)2<0. In either case, we can deduce that a
constant C exists such that

M(x,h,n)g:C\h\J w-^e-^e-"1*™ dw
o

and this converges to 0 as /i-»0. As a result, 7^2is strongly-differentiable for x=/=0 with
d/dx(l}c{

2) = Tx as operators on Dp ^ In a similar manner, we can verify that d2/dx2(I^2) =
as operators on Dp „ where, for (j>eDPfl,

(T'x<t>)(t) = n-"2 \ [(l-T)-5/2(x2/4)-2-1(t-T)-3

- o o

(b) This can be proved in the same manner as (a).

Corollary 4.9. Let 1 <p< oo, (f>eDp „ and t be a fixed point in U.

(a) If fi>0 then (Ii{2(t>)(i) is twice continuously differentiable with respect to x on
K-{0}.

(b) If fi<0 then (K^20)(t) is twice continuously differentiable with respect to x on

Proof. If we note first that the singular distribution 8, defined by (5,,<f>) = <
belongs to D'pli then these results follow from the fact that strong convergence implies
weak convergence in a Frechet space.
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5. Multiplier operators on the spaces Uu

The operators W[C,a] and W[(*,er] defined in Section 3 can be extended in a natural
manner to the generalised function spaces D'LP. The method adopted to carry out this
extension process is the adjoint operator approach described in [5]. To see what this
entails, let ^ belong to the Banach space I? and let a(£) < Re s </?(() so that, from
Lemma__2;4_and Theorem 3.3, \\i and W[(,,a]^i generate regular generalised functions $
and W[C,,o~]\jj in D'LP. If we denote the extended version of W[£,(j] by iV[_C,&], then we
require

as generalised functions in D'LP. Suppose temporarily that [p,<f>eS. Then

J (F-
— co

J tfr(t)(F£,F-V)(O<fc (by Parseval's equation [10, p. 179])
— 00

J WKF-itfFmW (by (4.7))

Similarly, under the same restrictions on </> and ij/, we can show that

Motivated by this, we make the following definition.

Definition 5.1. If C,esf and £* is defined by (3.2) then, for any ae(a(Q,/?(£)) and
p e ( l , oo), the operators W[£, ff] and W[(*,ff] are extended to D'LP by the formulae

]0), feD'LP,4>eDLP, (5.1)

]0), feD'LP,4>zDLp. (5.2)

Using standard properties of adjoint operators (see [11]), we can immediately prove
the following.

Theorem 5.2. Let Ces/ and let W[C,,o] and W\£*,o] be defined on D'^, by (5.1) and
(5.2) respectively. Then, for any oe(tx(0,P(Qi) and pe(l ,oo), W[(,,<j~] and M [̂C*,ff] are
continuous linear mappings of D'LP into D'u,.
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Proof. This follows from the corresponding properties of WI(*,ff] and W[(, a] on
DLP-

6. Fractional integrals on D'pil

In Section 4 it was established that each of the operators /", D" and /jj, on Dp „, could
be expressed as a product of the form eM'Wr[C*,|i]e~'" (see Table 4.5). The discussion
given in the previous section indicates that the natural extensions of these operators to
the spaces D'PI1 take the form e^'W^*, -fi]e^, where e"' and e""' are defined by (2.1).
From (5.1) and (5.2), we can deduce that, for feD'p-ll, (j>eDPtll and the appropriate
choice of multiplier function £,

{J, K"<I>1 (5-3)

(D°f, <f>) = (f, e"WK, -ii\ e-"1^) = (/, Ea<f>) (5.4)

and

(flf, </>)=(/> e » W K , - A t ] e~>"<t>) = (f, K°b<t>) (5.5)

Note that formula (5.3) is simply a statement of the rule for fractional integration by
parts and is the formula usually used for extending the classical operator /" to spaces of
distributions. Formula (5.7) is also expected since the operators 1% and K% are formal
adjoints.

Proceeding similarly, we also arrive at the following formulae:

(f,I°4>), (5-6)

(£" / ,<«=(/ ,0V) , (5.7)

(K°bf,<t>) = (f,I°b<t>) (5.8)

where, in each case, feD'Pill and

Thorem 6.1.

(a) If n<0, Rea>0 and pe(l,oo) then 7" is a homeomorphism of D'p „ onto D'P „ with

(b) / / n<0, aeC, b>0 and pe(l , oo) then 1% is a continuous linear mapping of D'PI1

into D'pfl.

Proof. These facts follow immediately from the corresponding properties of K", E"
and K% on Dp„.

Similar results can also be established for K", E" and K%.
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Theorem 6.2. Let f eD'pll where 1 <p<oo.

(a) Ifn<0 then l\'2 f ^Ix>2 f in D'Pttl as b - 0 + .
(b) If n>0 then Kll2f^K1/2f in D'Pill as b->0 + .

Proof. We prove only (a), the proof of (b) being similar. Let <j> be any test function
in Dp p. Then

= 0asb->0+ (from Theorem 4.7(b))

and this proves the assertion.

Theorem 6.3. Let fsD'Pfl, where 1 <p<co.

(a) If n<0 then I]^f is a twice weak*-differentiable D'p ^-valued function of x for x^O.
(b) If n>0 then K^f is a twice weak-*differentiable D'p ^-valued function of x for

x=/=0.

Proof. This can be proved in the same manner as the previous theorem by using the
results given in Theorem 4.8.

7. Application to the heat equation

In this final section, the preceding theory is applied to find distributional solutions of
a simple class of boundary value problems involving the one-dimensional heat operator
d/dt — d2/dx2. The classical formulation of a typical problem is as follows. Given
f(=f(t)), find u{ = u{x,t)) in C2(Cl)nC(Cl), Q = {(x,t):x>0,t>0}, such that

du d2u .

Tt=^2 inQ' ™

u(0,t) = f(t), t>0; (7.2)

M(X,0) = 0, X > 0 . (7.3)

Under suitable restrictions on the function /, it is possible to show [1, p. 240] that a
solution of this problem is given by

«iT (7.4)

where the function g satisfies the Abel integral equation

= /(t)) t>0.
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Alternatively, by applying the Laplace transform, a solution can be found in the form

u(x, t) = x(2^) ~1 j (t - x) - 3 ' 2 exp( - x2f4(t - T))/(T)<*T (7.5)

(see [1, p. 243]).
Our objective is to demonstrate that similar results hold for the same problem posed

within a distributional framework where fewer restrictions are necessary on the function
/ . The distributional version of (7.1)-{7.3) which we consider is the following. Given
feD'p<ll, find u(x)eD'pll (x^O) such that

—u(x)=—^u(x) in Q, (7.6)
dt dx2

lim u(x)=f, where supp/E[0, oo); (7.7)
x->0 +

supp u(x) £ [0, oo) for each x>0. (7.8)

The solution u(x) we seek is regarded as a D^-valued function of x for x^O.
Consequently, in (7.6), differentiation with respect to x is interpreted as differentiation in
the weak* sense of a D'p ̂ -valued function, whereas 3/dt denotes the distributional
differential operator defined by

In (7.7), convergence is with respect to the weak*-topology while in (7.8), support is
interpreted in the distributional sense.

Lemma 7.1. If n<0 and pe(l,oo) then a solution of (7.6) and (7.7) is given by

u(x) = T1
xL

2(D1/2f). (7.9)

Proof. From Theorems 6.1(a) and 6.2(a),

/ 2 / ) = / as x ^ 0 + ,

and therefore M(X), given by (7.9), satisfies the boundary condition (7.7). Moreover, from
Theorem 6.3(a), /^2(D1 / 2 / ) is twice weak*-differentiable with respect to x for x>0. To
complete the proof, it remains to show that
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Let </>e£>p/, and let g = D1/2f. Then geD'p „ and, by definition,

(7.10)
\ui /

Now

00

lKx{
2(d(j)/dt)^(i) = n~112 J (T — t)~1/2exp(-x2/4(T — t)){d^/dx){x)dx

t

= - n~1/2 J [ ( T - 1 ) " 5/2(x2/4) - ( T -1) ~3/22"i] exp( - X 2 / 4 ( T - t))ct)(x)dx,

(7.11)

on integrating by parts. Similarly,

and, on differentiating under the integral sign twice with respect to x, we find that
— d2(Kl

x^4>)/dx2 is given by (7.11). This holds for any x>0 and hence the theorem
follows immediately.

Lemma 7.2. If fi<0 and pe(l,oo) then the solution u(x) of (7.6) and (7.7), given by
(7.9), has the equivalent representation

u(x)=-x/;2
1 / 2 / . (7.12)

Proof. For (peD'p^,

( - xi^f, ct>)=(/, - XK;2"2 <fi)

and

Therefore the result will follow if we can show that

l. (7.13)

This identity is best established by considering the corresponding multiplier functions.
On the left-hand side, £1/2/^corresponds to s1/2s"1/2exp(-xs1/2) while on the right-
hand side the corresponding multiplier function is (x/2v/7c)(2x/7rx~1exp(—xs1/2)) (see
Table 4.5, Remark 4.6(a) and [2, p. 146,(28)]). Hence, in each case the associated
multiplier is exp(—xs1/2) so that (7.13) is certainly true on the dense subset S of Dp ^
The result for any <j>eDpll follows from the continuity of the operators.
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Lemma 73. If fi<0, pe(l, oo) and supp / s [0 ,00) then suppu(x)<=, [0, oo) for each
x>0, where u(x) is given by either (7.9) or (7.12).

Proof. Let $e£)p>,, be such that supp</><=( — oo,0). Then

(u(x),<t>)=-x(rj2f,cl>)

= 0

where the last line follows since supp/c[0, oo) and suppK~2
1/20c=( — oo,0).

As a consequence of Lemmas 7.1-7.3, it is seen that a solution of (7.6)-(7.8) always
exists in D'p „ whenever 1 < p < oo and fi < 0. This solution can be expressed as either
(7.9) or (7.12).

Finally, it should be noted that, with slight modifications, the above analysis will
provide distributional solutions of problems involving different boundary conditions
(e.g. du/dx + lu = f(t) at x = 0) and can also be used to deal with spherically symmetric
problems involving the three-dimensional heat operator. It is the author's intention to
discuss these additional problems in a future paper.
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