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SL,(F): TORAL CASE

KUOK FAI CHAO
(Received 7 January 2011)

Abstract

We investigate the tempered representations derived from the principal series of SLy(F) and their
geometric structure. In particular, we give the parameterization for special representations and prove
the tempered part of the Aubert—-Baum—Plymen conjecture for the toral cases of SL¢(F).
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1. Introduction

In the representation theory of reductive p-adic groups, the issue of the reducibility
of induced representations is quite intricate. For the special linear group SL,, (F) over
a p-adic field, this issue has been studied intensively (see [7, 8, 10, 12]). In [1, 2],
Aubert et al. propose a geometric conjecture related to reductive p-adic groups. They
conjecture that there exists a continuous bijection between the (compact) extended
quotients and the smooth (respectively tempered) dual of reductive p-adic groups.
In other words, they use extended quotients as a model to describe the location of
reducible points. We recall the definition of extended quotients here.

DEFINITION 1.1. Let X be a Hausdorff topological space. Let I' be a finite group
acting on X by a left continuous action. Let

X={@.y)eX xT|yx=ux),
with group action on X given by
g (x, y)=(gx,gvg ")
for g € I'. Then the extended quotient is given by
X)r:=X/T=| | x7/ZD). (1.1)

yell

where y runs through the representatives of conjugacy classes of I'.
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Let G be a reductive p-adic group and let M be a Levi subgroup of G. Let
s =[M, o] be the point in the Bernstein spectrum which contains the cuspidal pair
(M, o), where o is a cuspidal representation of M. Let W (M) denote the Weyl group
of M and W* denote the subgroup {w € W(M) | w - s = s} and call it the isotropy
group attached to 5. To conform to the notation in [2], we denote by w(M) the set
of unitary unramified characters of M. Indeed, W*(M) has the structure of a compact
torus. Attached to s, we set

ES:={Yy ®0c |y eV (M)

By a cocharacter we mean a morphism C* — T of algebraic groups, where TV is
a maximal torus of the Langlands dual group G". The g-projection ”f/q is constructed
from a finite set of cocharacters which are dependent on s (see [3]). The space of
tempered representations of G determined by s will be denoted by Irr'(G)®, and the
infinitesimal character will be denoted inf.ch (see [5]). The following conjecture is the
tempered part of the Aubert—-Baum—-Plymen (ABP) conjecture in [2].

CONJECTURE 1.2. There exists a continuous bijection i*: E® [JW* — Irr'(G)® with

: S __ s
(inf.ch) o u* = Ly

We will study the geometric structure of the tempered dual of SL,(F’) through the
extended quotient. In particular, this structure can be studied in terms of symmetric
groups and the special representations are totally determined by the conjugacy classes
of the symmetric groups. Here is the main theorem.

THEOREM 1.3. The tempered part of the ABP conjecture is valid for the toral case of
SL¢, where € is prime.

2. On the R-group

Let F be a local nonarchimedean field of characteristic 0. Let £ be prime and
put G = SL¢(F). We will focus on the toral case of G. Hence, we fix the standard
Levi subgroup M to be a maximal torus 7'. In this paper, we will use the framework
in [10]. Let M denote the corresponding Levi subgroup of G = GL,(F), so that M =
M N SLy(F). Leto € E2(M) and w, € Ex(M) with , D o, where E»(M) means the
collection of equivalence classes of irreducible discrete series representations of M.
Recall that W (M) is the Weyl group of M. Since M is maximal torus 7 here, the
group W (M) is just W, the Weyl group of G with respect to T. Let

L(n,) :={ne FX | n -y =" m, for some w € W},

X(ns):={neF*|n ms ~7ns}.

For the Bernstein variety s = [M, o]g, we let 5|y D 0. Then we write 7, in the
formnm, =m; @ Ty ® - - - ® my. In fact, the form of the representation 7, is the same
as the form of . This means

=T QRmQ - Qmy.
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Hence, we can rewrite this representation in the form
®n ®n Qng
o=n;"@mn, Q- -Q@m *, 2.1

where ) * n; = £ and m; is not the twist of 77; by an unramified character for all i # j.

Now we focus on the representations induced by (2.1) from the Levi subgroup M
to G, namely Indl(‘;,l (0), and classify them. First, we assume that 7, is not of the form
TRnr ®---®nt~ 7, where n is a ramified character of order ¢, and not of the
form 7®¢ (¢-tuple). We will return to these two cases later. Recall that the R-group
R(o) is isomorphic to the quotient L(7y) /X () [10, Theorem 2.4]. For details of
the R-group of SL,, refer to [7, 8, 10].

LEMMA 2.1. The group R(0o) is trivial when m, satisfies the above assumption.

PROOF. By (2.1),
Rny

o= Q" Q- Q]
Since, by assumption, we have n; < £ and £ is prime, we know that n; is coprime to ¢
foriel,?2,...,k,thatis, n; cannot divide £. Let n € L (7). This implies that there
exists w € W such that n - 7, =¥ 7. If w is trivial, then L(my) = X (7). Hence,
R(o) = 1. From now on, we assume that w is not trivial. Then there must exist 77; and
7 j such that nm; = 7 for i # j. Thus, n; =n;. In other word, this means that there
are several cycles in 77, after twisting by a character . The number of cycles is equal to
o(n), the order of the character 5. This implies that o(n) divides £. Since £ is prime, we
geto(n) = loro(n) =L.Ifo(n) =1, we have R(0) = 1 straightforwardly. Otherwise,
when o(17) = ¢, the representation of 7, is of the form7 @ nr @ ’7w ® - - - @ n*~ 7.
This contradicts our assumption. U

COROLLARY 2.2. The isotropy group W* attached to o is given by
WﬁZW(U):Gnl X Gy, X -0 X Gy

Now we go back to the other two cases. It is not hard to prove the following two
lemmas.

LEMMA 2.3. The R-group R(o) attached to mo =71 @ n @ - - - @ n* ™7 is given
by 7./¢Z. and the isotropy subgroup W* is 7./ 7.

LEMMA 2.4. The R-group R(c) attached to mwy = n®t is given by Sy and W® =
W =G,

Then we have Table 1.
Here, we turn to the relation between partitions of n and the special representations
wheren € Z and n > 2.

LEMMA 2.5. Supposens =m @ & - - - ® m. Each special representation in the set
Irr'(G)*® is parameterized by a partition . of n.
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TABLE 1. R-groups in the toral case of SL,.

Case 7y R(o) W(o) Condition
I TRTIT® Q7 1 Sy
®n ®no Rng - -~
2 TR, T®---Qmy 1 Gny X Gp, X -+ x Gy
3 7T(;=7T®277T®~~~®77€717T 7./07 1.7 n/‘:l

PROOF. First of all, we define the partitions of n. The symbol X is called a partition of
n if
A=[Dad2 A Y Ai=nandi; > 1€

The partition A is dominant if A > Xy >--->A,. We denote by A the set of the
partitions of n and by A" the set of dominant partitions. In fact, this makes sense
because, in this case, the isotropy group is given by &,, which acts on the Levi as
permutation groups. Thus, we can rearrange a nondominant partition to a dominant
one by suitable group actions.

EXAMPLE. n =14, [8, 1, 2, 3] is a partition and [8, 3, 2, 1] is a dominant partition.

For every dominant partition A =[Ay, A2, ..., Ax, ..., Al € AT, where Ay =1
and Ax_1 > 1, we can construct a corresponding special representation canonically.
In other words, for such a partition, the representation is of the form

Stkl(n) ®Stkg(7[) &--- ®Stkk_1(n) QTR -- ®7T’
Y
where Sty (7r) is the generalized Steinberg representation of GL,,; attached to 7.
Then we can twist an unramified unitary character of

GL)\IXGL)\ZX~~-XGL)L,(71XFX)(...XFX

to this representation by partition.
Then we have

Sty (z17) @ Sty (22m) @ - - - @ Sty (LU 1T) R uUT Q@ - - - Q 2,7 .
—
=301 i

It is clear that these representation are parameterized by the r-torus T”. Now we
induce these representations to GL,, and then restrict the obtained representations to
SL,. Hence, the parameter space is given by the quotient T” /T because the elements
of SL,, have determinant 1. O

Here, we mention that the cocharacters for the special representation can be taken
to be

t— ¢4, 0 e e e el e gmaer )
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where a; denotes the greatest integer a such that

a<(i+1)2.

In fact, the structure of such cocharacters is well adapted with the extended quotient
for this case. As we know, the extended quotient can be decomposed into the disjoint
union of some ordinary quotients (we call such parts ‘components’) via the conjugacy
classes of the action group. We know that the action on the quotient is given by a finite
group, which is an isotropy subgroup of the Weyl group. In this case, such an isotropy
subgroup is given by the symmetric group S,. It is well known that the conjugacy
classes of G, depend on the length of cycles in G,,.

3. Geometric structure

In this section, we discuss the extended quotient E°//W?® with respect to each
Bernstein variety s = [M, o]g and show the geometric conjecture for the toral case of
SL¢(F). Hence, we will construct the explicit bijection between E*//W* and Irr(G)®.
From now on, for convenience, we denote (GL,, x GL,, x --- x GL,,) N SL, by
ni+ny+---+n,, where Y n; =n. For example, 1 + 1 4+ 1 + 1 means

(GL; x GL1 x GL; x GL{) N SL4.

31. Case l: t®@T @7 ® - - - ® m. In the previous section, for the case 7, = 7®t,
we have shown that W® = G,. The group W* is given by the symmetric group &y.
The number of conjugacy classes equals the number of cycle types in &;.

We denote by B, the number of conjugacy classes of G,. We consider the extended
quotient E*®//W*. Recall the property of the extended quotient,

Eywe =[] E"/Z(),
14

where y runs through all the representatives {e =y, y1, ..., ¥B,—1} of conjugacy
classes. We choose yg,—1 to be the length £ cycle. In other words, the cycle is
(123 - - - ¢). Hence, we can decompose into By components as follows:

E°JWS=E*/W*UE"/Z(y) UE"/Z(y2) U~ --UE"" | Z(yp,—1).

Then we investigate each component E/Z(y;) for k=1,2,..., By —2 in
E®//W*. In fact, each y; represents a kind of partition of £. We denote such partition
by [A1, A2, ..., A;], where ) A; =€ and A; > O for any i. Since we can rearrange
the order of such partitions, without loss of generality, we assume A1 > Ay > -+ - > 4.
From above, we know that E?* is the projective variety

Eykz{[(ZI,ZI,,,.’ZI’ZZ,...,ZZ,...,Zj.,.Zj)]‘ZI,ZZ,...,ZjGT}
———
Al A2 Aj
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and
Z(y) =6y, x G, x -+ x Gy

In fact, the partition above is compatible with the structure of dominant partitions
in Lemma 2.5. Hence, now we apply Lemma 2.5 and each component corresponds to
a generalized Steinberg representation canonically. At the same time, y4 runs through
all the conjugacy class except yp and yg,—1.

REMARK 3.1. The component EY0/Z(yyp) is the ordinary quotient and the component
EV8c=1 / Z(yB,—1) is isomorphic to £ points, namely pt1, pta, pt3, . .., pty.

EVBe=V [ Z(yB,—1) = pti U ptry U+ - - L pty.

The paragraph above is all related to special representations. In what follows, we
consider the unramified principal series. Let = (z1, z2, . . ., z¢) be apointin E°/ W?,
except (1, w, ..., a)“l), where ! = 1, and let X+ be the corresponding unramified
unitary character.

CLAIM. The induced representation Ind? (x; ® o) is irreducible for such a point t.

PROOF. Assume 1) € L(x; ® 7). This implies
N X ®@ms = x ® 7y (3.1)

for some w € W. The element w permutes the representations in 5. Hence, there
exist several cycles g1, g2, ..., qn- (In fact, it is not necessary to compute m.)
According to (3.1), the length of these cycles must divide £. Since £ is prime, there
are two possibilities. The length of a cycle is 1 or £. If the cycle has length 1, this
implies n = 1. Otherwise, cycles are given by cyclic permutations. This contradicts
our assumption. Hence, L(x; ® 7y ) is trivial. This implies that R(x; ® o) is trivial.

In other word, IndAG,, (x+ ® ) is irreducible. O
Let t=(1, w, @, ..., 0" ") e ES/ WS, where w'=1, and let x; be the
corresponding unramified unitary character. Thus, L(x; ® n5) =1, w, o, ..., ot

and X(x; ® m,) = 1. Hence, R(x ® o) =7Z/l7Z. This implies that the
induced representation Indl(f,l (x: @ my) is reducible and there are ¢ irreducible
constituents. We match these representations by (1, w, @*, ..., ot HeE® /W* and
pt1, pta, ..., pty—1. Furthermore, we map St;(;r) to pt,.

The cocharacters can be taken to be

he=1 ifc=pywithl<i<f-1

and
he(t)y = (e, 1“7 Lo 170 7Y ife= pty,

where a denotes the greatest integer a such thata < (£ + 1) /2.
From the above, we conclude that part (3) of the conjecture is true for this case.
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3.2. Case2: ny; = n1®n1 ® thnz ®: - ® n,;e"k. Recall that the group W* is &,,, x
Gy, X -+ - x Gy,. The proof is analogous to that for case 1. We have a similar
conclusion and so we omit the proof. Note that if there are elements 7 in Lx: @ 7o),
the order o(n) of character n must divide the number £. Thus, o(n) is 1 or £. Since
k > 2 (this means we have at least two different representations in 77, ),  cannot be of
order £. Thus, 7 is a character of order one.

In this case, all Indfl( Xt ® 7, ) are irreducible. We mention that E* //W*® — E*/W?*
is mapped to special representations and E°/W? is mapped to unramified principal
series.

REMARK 3.2. The necessary condition for reducibility is that n; is a divisor of £,
except 1. Furthermore, if all n; = 1, the representation , will be in the form 7, =
T QM ® - --®me. The isotropy group W* is trivial. In this case, Indfl (x: @ myr)
is irreducible for all r € E°/W*. A special representation does not exist since the
necessary condition is that there are at least two equal terms in x; ® 7, .

33. Case3: i, =T QT ® -+ - ® ﬂe_ln. In this section, we will discuss the case
when 7, =7 @ 9 ® - - - @ n*~'7. From Table 1 we know that the R-group R (o)
with respect to this is the cyclic group Z/£7Z. Jawdat and Plymen have proved that
there exists a bijection between the extended quotient and the tempered dual with
respect to this case (see [11, Theorem 5.3]).

From the discussion of the above three cases, we conclude that the Aubert—-Baum—
Plymen conjecture for the tempered dual of SL,(F) is true in the toral case.
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