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On Hardy kernels as reproducing kernels
Jesús Oliva-Maza

Abstract. Hardy kernels are a useful tool to define integral operators on Hilbertian spaces like L2(R+)

or H2(C+). These kernels entail an algebraic L1-structure which is used in this work to study the
range spaces of those operators as reproducing kernel Hilbert spaces. We obtain their reproducing
kernels, which in the L2(R+) case turn out to be Hardy kernels as well. In the H2(C+) scenario, the
reproducing kernels are given by holomorphic extensions of Hardy kernels. Other results presented
here are theorems of Paley–Wiener type, and a connection with one-sided Hilbert transforms.

1 Introduction

Let 1 ≤ p < ∞, and let H be a Hardy kernel of index p, that is, a mapping H ∶ (0, ∞) ×
(0, ∞) → C which is homogenous of degree −1 and satisfies ∫

∞
0 ∣H(1, s)∣s−1/p

ds < ∞ (see Definition 2.1). As a straightforward consequence of the celebrated
Hardy’s inequality [9, Theorem 319], one obtains that H defines an operator AH given
by

(AH f )(r) ∶= ∫
∞

0
H(r, s) f (s) ds, r > 0, f ∈ Lp(R+),(1.1)

which is bounded on Lp(R+), where R+ ∶= (0, ∞). Hardy’s inequality also allows us
to define a bounded operator DH on the Hardy spaces on the half plane H p(C+),
where C+ ∶= {z ∈ C ∣Rz > 0}, by

(DH F)(z) ∶= ∫
∞

0
H(∣z∣, s)Fθ (s) ds

= ∫
∞

0
H(1, s)F(sz) ds, z = ∣z∣e iθ ∈ C+ , F ∈ H p(C+),

(1.2)

where Fθ (r) ∶= F(re iθ ), for r > 0, θ ∈ (−π/2, π/2). Indeed, the last term in (1.2)
shows that DH F is holomorphic (see, for example, [11]), and the boundedness of DH F
follows by an application of Hardy’s inequality together with the realization of the
norm of H p(C+) given in [19] by

∥F∥H p = sup
−π/2<θ<π/2

( 1
2π ∫

∞

0
∣Fθ (r)∣p dr)

1
p

, F ∈ H p(C+).(1.3)
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On Hardy kernels as reproducing kernels 429

We will refer to these families of bounded operators on Lp(R+) and H p(C+) as
Hardy operators. These families have been actively studied, and are often labeled as
Hausdorff operators due to its relation to the Hausdorff summability method through
the function φ(t) ∶= H(t, 1) for t > 0 (see the survey articles [4, 15] for more details).

On the other hand, recall that a Hilbert space X of complex-valued functions with
domain Ω is said to be a reproducing kernel Hilbert space (RKHS) if and only if point
evaluations Lx f ∶= f (x) are continuous functionals for all x ∈ Ω. Then, by the Riesz
representation theorem, for each x ∈ Ω, there exists a unique Kx ∈ X such that f (x) =
Lx f = ( f ∣ Kx ) for all f ∈ X, where (⋅ ∣ ⋅) denotes the inner product in X. Then the
reproducing kernel K ∶ Ω × Ω → C of X is defined by

K(x , y) ∶= Ky(x) = (Ky ∣ Kx ), x , y ∈ Ω.

The kernel K determines the space X. More precisely, X can be recovered from K as the
completion of span{Kx ∣ x ∈ Ω} under the norm given by scalar product (Ky ∣ Kx ) ∶=
K(x , y) (see the proof of the Moore–Aronszajn theorem [1]).

In this paper, we focus on the range spaces of Hardy operators in the Hilbertian
case, that is, for p = 2. We show that these spaces are RKHSs and obtain their
reproducing kernels. Our work is partly motivated by papers [7, 8], where the range
spaces of generalized Cesàro operators Cα on L2(R+) and H2(C+) are analyzed as
RKHSs. In this context, it is more appropriate to deal with Hardy operators using
Hardy kernels H rather than one-dimensional functions φ associated with Hausdorff
operators. Indeed, the set Hp of Hardy kernels of index p is naturally endowed with a
structure of convolution (see [2, 6, 13]). More precisely, Hp is a Banach algebra with
multiplication ● given by

(H ● G)(r, s) = ∫
∞

0
H(r, t)G(t, s) dt(1.4)

(see Section 2).
In the setting of Hardy operators on L2(R+), our main result is that, for a

Hardy kernel H of index 2, the range space A(H) = AH(L2(R+)) becomes an RKHS
(continuously included in L2(R+)) if and only if H belongs to a certain ideal of H2
(see Theorem 3.3). In this case, the reproducing kernel KH of A(H) is itself another
Hardy kernel, given by

KH = H ● H∗ ,(1.5)

where H∗ is the adjoint kernel of H (see Definition 2.2).
In the setting of Hardy spaces on the half plane, we prove in Theorem 4.3 that, for

a given Hardy kernel H, the range space D(H) of a Hardy operator DH is an RKHS,
continuously included in H2(C+), with reproducing kernel given by

KH = (H ● S ● H∗)hol .

Here, S is the Stieltjes kernel and (⋅)hol denotes the extension to C
+ × C

+, which is
holomorphic in the first variable and anti-holomorphic in the second one, whenever
such an extension exists (Theorem 4.3).

Next, we establish Paley–Wiener-type results in Section 5. We show that the
Laplace transform L provides an isometric isomorphism between A(H) and D(H⊺)
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430 J. Oliva-Maza

(see Definition 2.2 for H⊺), and between A(H) and D(H) under additional require-
ments on H.

In Section 6, we apply the results of preceding sections to several examples of
range spaces of Hardy operators, such as generalized Cesàro and generalized Poisson
operators. In particular, we retrieve results concerning generalized Cesàro operators
in [8], with simpler proofs.

2 Banach algebras of Hardy kernels

In this section, we are concerned with arbitrary p ∈ [1, ∞).

Definition 2.1 Let 1 ≤ p < ∞, and let H ∶ R+ × R
+ → C be a measurable map. H is

said to be a Hardy kernel of index p if the following conditions hold.
(i) H is homogeneous of degree −1; that is, for all λ > 0, H(λr, λs) = λ−1H(r, s) for

all r, s > 0.
(ii) ∫

∞
0 ∣H(1, s)∣s−1/pds < ∞, which is equivalent to ∫

∞
0 ∣H(r, 1)∣r−1/p′dr < ∞,

where p′ is such that 1/p + 1/p′ = 1 (with p′ = ∞ if p = 1 as usual).

Hardy kernels are useful tools to construct bounded operators on the Lebesgue
spaces Lp(R+) through (1.1). This is a well-known result of Hardy, Littlewood, and
Pólya (see [9, Theorem 319]), and it is part of folklore that such operators can be
described as convolution operators by identifying a Hardy kernel H with the function
gH ∈ L1(R) given by

gH(t) ∶= H(1, e−t)e−t/p′ , t ∈ R
(see, for example, [2, 6]). If one wants H ↦ gH to be a bijection, one must consider the
following equivalence classes in the set of Hardy kernels of index p. We set that two
Hardy kernels H, G of index p are equivalent, H ∼ G, if and only if H(r, 1) = G(r, 1)
for a.e. r > 0. From now on, Hp will denote this set of equivalence classes of Hardy
kernels of index p, and we will refer to H ∈ Hp as a Hardy kernel rather than an
equivalence class of Hardy kernels, so we identify an equivalence class by any of its
elements.

As a consequence, the mapping Φp ∶ Hp → L1(R) defined by Φp(H) ∶= gH is
a bijection, with inverse given by (Φ−1

p g)(r, s) = r−1/ps−1/p′ g (log r
s ), for a.e. r, s >

0, g ∈ L1(R).
Next, we endow the linear spaceHp with the norm and product given, respectively,

by ∥H∥Hp ∶= ∥Φp(H)∥L1(R) , H ● G ∶= Φ−1
p ((ΦpH) ∗ (ΦpG)) for all H, G ∈ Hp ,

where ∗ stands for the usual convolution of two elements of L1(R). We will denote
the Banach algebra of bounded linear operators on a Banach space X by B(X).

Proposition 2.1 Let 1 ≤ p < ∞. The space Hp is a commutative Banach algebra if
provided with the norm and product

∥H∥Hp = ∫
∞

0
∣H(1, s)∣s−1/p ds,

(H ● G)(r, s) = ∫
∞

0
H(r, t)G(t, s) dt, r, s > 0.
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Moreover, the mappings Ap ∶ Hp → B(Lp(R+)), Dp ∶ Hp → B(H p(C+)), given by
Ap(H) ∶= AH and Dp(H) ∶= DH , are bounded Banach algebra homomorphisms.

Proof It is readily seen that ∥H∥Hp = ∥gH∥L1(R) = ∫
∞

0 ∣H(1, s)∣s−1/p ds. Let us prove
the product identity. It follows that for H, G ∈ Hp ,

(H ● G)(r, s) = Φ−1
p (Φp(H) ∗ Φp(G)) (r, s) = r−1/ps−1/p′ (gH ∗ gG) (log r

s
)

= r−1/ps−1/p′ ∫
∞

−∞
G(1, e−t)e−t/p′H (1, e t−log(r/s)) e(t−log(r/s))/p′ dt

= 1
r ∫

∞

0
G(1, u−1)H (1, u s

r
) du

u
= 1

r ∫
∞

0
H (1, v

r
) G (1, s

v
) dv

v

= ∫
∞

0
H (r, v) G (v , s) dv , r, s > 0.

Next, it follows by Hardy’s inequality [9, Theorem 319] that ∥AH∥B(L p) ≤ ∥H∥Hp .
Moreover, one has that

(AH●G f )(r) = ∫
∞

0
(H ● G)(r, s) f (s) ds = ∫

∞

0
H(r, t) ∫

∞

0
G(t, s) f (s) ds dt

= (AH AG f )(r), f ∈ Lp(R+), a.e. r > 0.

Note that (DH F)θ = AH Fθ . Thus, by (1.3) and what we have just proved,

∥DH F∥H p ≤ ∥AH∥B(L p) sup
−π/2<θ<π/2

1
2π

∥Fθ ∥L p ≤ ∥H∥Hp ∥F∥H p , F ∈ H p(C+).

Similarly, (DH●G F)θ = AH●G Fθ = AH AG Fθ = (DH DG F)θ for any F ∈ H p(C+) and
θ ∈ ( π

2 , π
2 ), and thus DH●G = DH DG . ∎

Next, we give a few definitions and properties regarding Hardy kernels that will be
needed later. Let us denote by z the conjugate of z ∈ C.

Definition 2.2 Let 1 < p < ∞, and let H ∈ Hp . Set H⊺(r, s) ∶= H(s, r) for all r, s > 0.
Similarly, set H∗(r, s) ∶= H(s, r) for all r, s > 0.

Remark 2.2 Let 1 < p < ∞, and let H, G ∈ Hp . One has that H⊺ , H∗ ∈ Hp′ , that (H ●
G)⊺ = H⊺ ● G⊺, (H ● G)∗ = H∗ ● G∗, and that (H⊺)∗ = (H∗)⊺.

Definition 2.3 Let 1 ≤ p < ∞. We define Ip ⊂ Hp as Ip ∶= Φ−1
p (L1(R) ∩ Lp′(R)).

Clearly, Ip is a dense ideal of Hp since so is L1(R) ∩ Lp′(R) in L1(R). We
characterize its elements in the lemma below. For H ∈ Hp , define the family (Hs)s∈R+
of complex-valued functions defined a.e. in R

+, given by {Hs ∶= H(⋅, s) ∣ s ∈ R+}. In
particular, H⊺r = H(r, ⋅) for any r > 0.
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Lemma 2.3 Let 1 ≤ p < ∞, and let H ∈ Hp . The following are equivalent.
(i) H ∈ Ip .
(ii) (H⊺r )r>0 ⊂ Lp′(R+).
(iii) H⊺1 ∈ Lp′(R+).
In any of the above cases, one has that

∥H⊺r ∥L p′(R+) = r−
1
p ∥H⊺1 ∥L p′(R+) = r−

1
p ∥gH∥L p′(R), r > 0.

Proof All the statements of the equivalence are straightforward to obtain using the
homogeneity of degree −1 of H and the definition of the function gH . Let us show the
equivalence (i) ⇐⇒ (iii). For 1 < p < ∞,

∥H⊺1 ∥p′ = (∫
∞

0
∣H(1, s)∣p′ ds)

1/p′

= (∫
∞

−∞
∣H(1, e−t)∣p′ e−t dt)

1/p′

= ∥gH∥p′ .

For p = 1, it is straightforward that ∥H⊺1 ∥∞ = ∥gH∥∞ since gH(t) = H(1, e−t) for a.e.
t > 0. ∎

3 Hardy reproducing kernels on R+ ×R+

In this section, we analyze the range spaces of Hardy operators on L2(R+), although
some minor results are also valid for general p. Our main motivation is to characterize
the conditions for which these range spaces are RKHSs (Proposition 3.2).

Definition 3.1 Let 1 ≤ p < ∞, and let H ∈ Hp . Let A(H) be the range space

A(H) ∶= {AH f ∶ f ∈ Lp(R+)}.

We endow A(H) with a Banach (Hilbert if p = 2) space structure through the
canonical identification A(H) ≅ Lp(R+)/ ker AH .

Let C(R+) denote the space of continuous functions on R
+.

Lemma 3.1 Let 1 ≤ p < ∞, and let H ∈ Ip ⊂ Hp. Then A(H) ⊂ C(R+).

Proof Let f ∈ Lp(R+). We have that

(AH f )(r) = ∫
∞

0
H(r, s) f (s) ds = ∫

∞

0
H(1, t) f (rt) dt = ⟨τr f , H⊺1 ⟩, for all r > 0,

where (τr f )(t) ∶= f (rt) for t > 0, ⟨⋅, ⋅⟩ denotes the dual product between Lp(R+) and
Lp′(R+), and H⊺1 is defined before Lemma 2.3.

Since the mapping r ↦ τr f from R
+ into Lp(R+) is continuous for each f ∈

Lp(R+), it follows that ⟨τr f , H⊺1 ⟩ = (AH f )(r) is also continuous in r; that is, AH f ∈
C(R+), as we wanted to show. ∎

As a consequence of the lemma, point evaluations are well defined on A(H)
whenever H ∈ Ip . Indeed, the proposition below adds a bit more information.
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Proposition 3.2 Let 1 ≤ p < ∞, and let H ∈ Hp . Then point evaluations are continuous
functionals on A(H) if and only if H ∈ Ip. In this case, for all f ∈ A(H),

∣ f (r)∣ ≤ r−1/p∥H⊺1 ∥p′∥ f ∥A(H), r > 0.

Proof Let us assume first that point evaluations are well defined and continuous
on A(H), so for all r > 0, the mapping Ωr ∶ Lp(R+) → C given by Ωr f ∶= (AH f )(r)
is a well-defined continuous functional. Therefore, there exists gr ∈ Lp′(R+) such that
(AH f )(r) = ∫

∞
0 gr(s) f (s)ds for all f ∈ Lp(R+), which implies that H(r, s) = gr(s)

for a.e. s > 0. By Lemma 2.3, one gets that H ∈ Ip .
Now, let us assume that H ∈ Ip . By Lemma 3.1, it follows that point evaluations

are well defined on A(H). By Lemma 2.3, one has that (H⊺r )r∈R+ ⊂ Lp′(R+). Let f ∈
A(H), g ∈ Lp(R+) be such that f = AH g. Let [g + ker AH] be the quotient class of
Lp(R+)/ ker AH containing g. It follows that, for all g̃ ∈ [g + ker AH],

∣ f (r)∣ = ∣(AH g̃)(r)∣ = ∣∫
∞

0
H(r, s)g̃(s) ds∣ = ⟨H⊺r , g̃⟩

≤ inf
g̃∈[g+ker AH]

∥H⊺r ∥p′∥g̃∥p = ∥H⊺r ∥p′∥[g + ker AH]∥L p(R+)/ ker AH

= r−1/p∥H⊺1 ∥p′∥ f ∥A(H), ∀r > 0,

where ⟨⋅, ⋅⟩ denotes the dual product between Lp′(R+) and Lp(R+). Therefore, point
evaluations are continuous on A(H). ∎

The next theorem gives the reproducing kernel KH ofA(H) for H ∈ I2, which turns
out to be a Hardy kernel as well.

Theorem 3.3 Let H ∈ H2. Then A(H) is an RKHS if and only if H ∈ I2, and in this
case, its reproducing kernel KH is continuous and given by

KH(r, s) = ∫
∞

0
H(r, t)H(s, t) dt, for r, s > 0.

Then KH ∈ H2, satisfying KH = H ● H∗. As a consequence, KH∗ = KH .

Proof By Proposition 3.2, A(H) is an RKHS if and only if H ∈ I2, and in this case,
A(H) is isometrically isomorphic to L2(R+)/ ker AH ≅ (ker AH)⊥. Let us compute
its reproducing kernel. Assume that f ∈ ker AH , so it follows that

( f ∣ H∗u )L2 = ∫
∞

0
H(u, v) f (v) dv = (AH f )(u) = 0,

for all u > 0, where H∗u (v) = H(u, v) = H⊺u (v) for a.e. v > 0. Therefore, one has that
H∗u ∈ (ker AH)⊥ ⊂ L2(R+) for all u > 0.

Now, let hu = AH H∗u ∈ A(H), and let f ∈ A(H), so that f = AH g for a unique g ∈
(ker AH)⊥. Since A(H) ≅ (ker AH)⊥, it follows that, for all u > 0,

( f ∣ hu)A(H) = (g ∣ H∗u )(ker AH)⊥ = ∫
∞

0
H(u, v)g(v) dv = (AH g)(u) = f (u).
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Hence, KH(v , u) = hu(v) = (AH H∗u )(v) = ∫
∞

0 H(v , t)H(u, t) dt for all u, v > 0, as
we wanted to show.

Moreover, KH = H ● H∗ = H∗ ● H = KH∗ by Proposition 2.1 and Definition 2.2,
and in particular KH turns out to be a Hardy kernel. The continuity of KH in
each variable follows from the inclusion A(H) ⊂ C(R+) (Lemma 3.1) and the fact
that KH(r, s) = KH(s, r), for r, s > 0 (see, for example, [17, Lemma I.1.2]).
But then, KH ∶ R+ × R

+ → C is continuous jointly on both variables since
KH(r, s) = s−1KH(r/s, 1). ∎

Let H+ be the one-sided Hilbert transform on Lp(R+) defined by

H+ f (x) ∶= p.v. 1
π ∫

∞

0

f (r)
x − r

dr, x > 0, f ∈ Lp(R+).

The boundedness of H+ on Lp(R+) for 1 < p < ∞ immediately follows from the
boundedness of the Hilbert transform on Lp(R) (see, for example, [5]). The following
theorem has been inspired by [11, 14].

Theorem 3.4 Let 1 < p < ∞, and let H ∈ Hp. One has that H+AH = AHH+. There-
fore, H+ defines a bounded operator on A(H).

Proof Let f ∈ Lp(R+). Then, for all x > 0,

(H+(AH f ))(x) = lim
ε→0+

1
π ∫(0,x−ε)∪(x+ε ,∞)

1
x − r ∫

∞

0
H(1, s) f (rs) ds dr

= lim
ε→0+ ∫

∞

0
H(1, s) 1

π ∫(0,s(x−ε))∪(s(x+ε),∞)

f (v)
xs − v

dv ds.
(3.1)

Here, we have applied Fubini to commute the integrals since ∫
∞

0 ∣H(1, s) f (⋅s)∣ ds ∈
Lp(R+) and 1

x−(⋅) χ(0,x−ε)∩(x+ε ,∞)(⋅) ∈ Lp′(R+) for all 1 < p < ∞.
Recall that the maximal operatorMH+ defined as (MH+ f )(x) ∶= supε>0 ∣(H+,ε f )

(x)∣, for all x > 0, belongs to B(Lp(R+)), where

(H+,ε f )(x) ∶= 1
π ∫(0,x−ε)∪(x+ε ,∞)

1
x − s

f (s) ds, ε > 0, for x > 0

(see, for example, [5, Corollary 3.13]). As a consequence, the bound ∣H(1, s)(H+,sε f )
(xs)∣ ≤ ∣H(1, s)∣(MH+ f )(xs) holds for every ε > 0, a.e. s > 0. By Hardy’s inequality
[9, Theorem 319], ∣H(1, s)∣(MH+ f )(xs), as a function on s > 0, belongs to L1(R+) for
a.e. x > 0. Thus, we apply the dominated convergence theorem to (3.1) to commute the
limit and the integral ∫

∞
0 . Hence, A(H) is H+ invariant, and then the continuity of

H+ follows by the closed graph theorem. ∎

4 Hardy reproducing kernels on C+ ×C+

Next, we proceed to analyze the range spaces of Hardy operators on the Hardy spaces
of holomorphic functions on the right-hand half plane H2(C+).
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For 1 ≤ p < ∞, recall that the Hardy space H p(C+) is formed by all holomorphic
functions F on C

+ such that

∥F∥H p ∶= sup
x>0

( 1
2π ∫

∞

−∞
∣F(x + iy)∣p d y)

1/p
< ∞.

It is known that H2(C+) is an RKHS, with reproducing kernel K given by

K(z, w) = 1
z + w

, z, w ∈ C+

(see [12, Chapter VI]). Notice that the restriction of K to R
+ × R

+ defines the Stieltjes
kernel S(r, s) = 1

r+s . One has that S ∈ Hp for all 1 ≤ p < ∞. Recall that DH is the Hardy
operator on H p(C+) associated with H ∈ Hp through (1.2).

Definition 4.1 Let 1 ≤ p < ∞, and let H ∈ Hp . Endow D(H) ∶= DH(H p(C+)) with
the structure of Banach space induced by the canonical isomorphism D(H) ≅
H p(C+)/ ker DH .

Remark 4.1 Let H ∈ H2. Using that DH F = ∫
∞

0
H(1, s)F(s ⋅) ds, it is simple to

see that (DH F∣G)H2 = (F∣DH∗G)H2 in the inner product in H2(C+). Since all
Hardy operators commute between themselves (see Proposition 2.1), DH is a normal
operator.

Next, we give the main theorem of this section, for which we will need the following
lemma and definition. Set Kw ∶= K(⋅, w) for all w ∈ C+, so Kw ∈ H2(C+).

Lemma 4.2 Let H ∈ H2. For all z ∈ C+, one has that

∫
∞

0
∥H(1, t)Ktz∥H2 dt < ∞.

Proof Note that the vector-valued function t ↦ H(1, t)Ktz is strong measurable,
since t ↦ H(1, t) is measurable, and w ↦ Kw is continuous from C

+ to H2(C2).
Then, for all z ∈ C+,

∫
∞

0
∣H(1, t)∣∥Ktz∥H2 dt =∫

∞

0
∣H(1, t)∣

√
(Ktz ∣Ktz)H2 dt =∫

∞

0
∣H(1, t)∣

√
K(tz, tz) dt

=
√
K(z, z)∫

∞

0
∣H(1, t)∣t−1/2 dt =

√
K(z, z)∥H∥H2 < ∞.

∎

Definition 4.2 We define Hhol
p to be the subset of Hp consisting of those H ∈ Hp

with extension Hhol ∶ C+ × C
+ → C such that:

• H(r, s) = Hhol (r, s) for r, s > 0,
• the map z ↦ Hhol (z, w) is holomorphic on C

+ for all w ∈ C+, and
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• the map w ↦ Hhol (z, w) is holomorphic on C
+ for all z ∈ C+.

Note that if H ∈ Hhol
p , the extension Hhol is unique.

Notice that the Stieltjes kernel S satisfies that S ∈ Hhol
p with Shol = K.

Theorem 4.3 Let H ∈ H2. One has that H ● S ● H∗ ∈ Hhol
2 , and that D(H) is an

RKHS with reproducing kernel KH given by

KH = (H ● S ● H∗)hol .

Proof Let G be in (ker DH)⊥ such that F = DH(G) ∈ D(H).

∥F∥H2 = ∥DHG∥H2 ≤ ∥DH∥B(H2)∥G∥H2 = ∥DH∥B(H2)∥F∥D(H) .

Since H2(C+) is an RKHS, it follows from above that D(H) is an RKHS too. Let us
compute its reproducing kernel KH . As before, set Kw(z) = K(z, w). For F = DHG ∈
D(H), z = ∣z∣e iθ ∈ C+, and G ∈ (ker DH)⊥, we have

F(z) =∫
∞

0
H(∣z∣, s)Gθ(s) ds =∫

∞

0
H(∣z∣, s)(G∣Kse iθ )H2 ds =∫

∞

0
H(1, t)(G∣Ktz)H2 dt

= ∫
∞

0
(G∣H(1, t)Ktz)H2 dt = (G ∣ ∫

∞

0
H(1, t)Ktz dt)

H2
,

(4.1)

where one can intertwine the integral sign with the inner product by Lemma 4.2.
Let J ∈ ker DH . By substituting F by DH J = 0 and G by J in (4.1), one concludes that

∫
∞

0 H(1, t)Ktzdt ∈ (ker DH)⊥. Then, we have that

F(z) = (G ∣ ∫
∞

0
H(1, t)Ktz dt)

H2
= (F ∣ DH (∫

∞

0
H(1, t)Ktz dt))

D(H)
.

Therefore, after rearranging some variables, one gets that the reproducing kernel KH
of D(H) is given by

KH(z, w) = [DH (∫
∞

0
H(1, t)Ktw dt)] (z), z, w ∈ C+ .

Now, let us see that the expression above coincides with the one given in the statement
for all z, w ∈ R+:

[DH (∫
∞

0
H(1, t)Ktw dt)] (z) = ∫

∞

0
H(z, s) (∫

∞

0
H(1, t)Ktw dt) (s) ds

= ∫
∞

0
H(z, s) ∫

∞

0
H(1, t)K(s, tw) dt ds = ∫

∞

0
H(z, s) ∫

∞

0
S(s, u)H(w , u) du ds

= ∫
∞

0
H(z, s) ∫

∞

0
S(s, u)H∗(u, w) du ds = ∫

∞

0
H(z, s)(S ● H∗)(s, w) ds

= (H ● S ● H∗) (z, w).

Therefore, KH(z, w) = (H ● S ● H∗) (z, w) for all z, w ∈ R+.
Since all the elements in D(H) ⊂ H2(C+) are holomorphic, we have that

KH(z, w) is holomorphic in z, so it is determined for all (z, w) ∈ C+ × R
+ by its
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restriction at R+ × R
+. Moreover, since KH is a reproducing kernel, we have that

KH(z, w) = KH(w , z) (see [17, Lemma I.1.2]), and as a consequence, KH(z, w) is
anti-holomorphic in w, and by the same reasoning as before, KH(z, w) is determined
for all z, w ∈ C+ by its restriction to C

+ × R
+. All these statements imply that

H ● S ● H∗ ∈ Hhol
2 and that its holomorphic extension is precisely KH . ∎

5 Paley–Wiener theorems for range spaces

We wish to start this section with the following remark. Paley–Wiener’s theorem states
that L ∶ L2(R+) → H2(C+) is an isometric isomorphism, where L is the Laplace
transform given by

(L f )(z) ∶= ∫
∞

0
e−rz f (r)dr, f ∈ L2(R+), z ∈ C+(5.1)

(see [18, Theorem V]).
This classical L2 − H2 Paley–Wiener theorem can be used to prove that H2(C+)

is an RKHS with kernel K(z, w) = 1
z+w [10, Proposition 1.8]. Conversely, one can

reverse the implications of such a proof to obtain the L2 − H2 Paley–Wiener theorem
using RKHS theory (note that the kernel K of the space H2(C+) can be obtained
independently of Paley–Wiener’s theorem; see, for instance, [12, Chapter VI]), as we
show next.

Since the Laplace transform L acting on L2(R+) is injective, one can endow the
range space L(L2(R+)) with the structure of Hilbert space induced by the bijection
L ∶ L2(R+) → L(L2(R+)). For F = L f ∈ L(L2(R+)), one has

F(z) = ∫
∞

0
e−rz f (r) dr = ( f ∣e−rz)L2 = (F∣L(e−rz))L(L2) , z ∈ C+.

As a consequence, L(L2(R+)) is an RKHS with kernel KL given by

KL(z, w) = L(e−rw)(z) = ∫
∞

0
e−rz e−rw dr = 1

z + w
= K(z, w), z, w ∈ C+ .

That is, both L(L2(R+)) and H2(C+) are RKHSs with the same kernel KL = K, so
L(L2(R+)) = H2(C+) as Hilbert spaces (see, for instance, [17, Lemma I.1.5]), and the
claim follows.

Now, we establish results of Paley–Wiener type for range spaces. We first show that
L is an intertwining operator.

Proposition 5.1 LAH = DH⊺L on L2(R+) for all H ∈ H2.

Proof Let z ∈ C+ and f ∈ L2(R+). One has

(LAH f )(z) = ∫
∞

0
e−rz ∫

∞

0
H(r, t) f (t)dtdr = ∫

∞

0
e−rz ∫

∞

0
H(1, s) f (rs)dsdr

= ∫
∞

0
H(1, s) ∫

∞

0
e−rz f (rs)drds = ∫

∞

0
H(1, s)(L f ) ( z

s
) ds

s

= ∫
∞

0
H(u, 1)(L f ) (uz) du = (DH⊺L f )(z),
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where we have applied Fubini’s theorem since both r ↦ ∫
∞

0 ∣H(r, t) f (t)∣ dt and r ↦
e−rz are in L2(R+). ∎

Theorem 5.2 Let H ∈ H2. The Laplace transform L restricted to A(H) is an isometric
isomorphism onto D(H⊺), L ∶ A(H) → D(H⊺).

Proof By the definition of A(H) and D(H⊺), the restrictions ÃH ∶ (ker AH)⊥ →
A(H) and D̃H⊺ ∶ (ker DH⊺)⊥ → D(H⊺) are isometric isomorphisms. By the
L2 − H2 Paley–Wiener theorem and Proposition 5.1, it follows that (ker DH⊺)⊥ =
L((ker AH)⊥). Indeed, by Proposition 5.1, it easily follows that L(ker AH) = ker DH⊺ ,
and thus ( f ∣ g)L2 = 0 for all g ∈ ker AH if and only if (L f ∣ G)H2 = 0 for all G ∈
L(ker AH) = ker DH⊺ .

Therefore, by Proposition 5.1 again, we obtain L f = D̃H⊺L(ÃH)−1 f for all f ∈
A(H), where all the mappings D̃H⊺ , L (seen as an operator from the subspace
(ker AH)⊥ ⊂ L2(R+) to the subspace (ker DH⊺)⊥ ⊂ H2(C+)), and (ÃH)−1 are in
fact unitary operators. As a consequence, L ∶ A(H) → D(H⊺) defines an isometric
isomorphism. ∎

Corollary 5.3 Let H ∈ H2. The Laplace transform defines an isometric isomorphism
L ∶ A(H) → D(H) if and only if H ● H∗ is a real-valued kernel.

Proof By the theorem above, we have that L ∶ A(H) → D(H) is an isometric
isomorphism if and only if D(H) = D(H⊺) as Hilbert spaces, and this happens if
and only if their reproducing kernels are the same, KH = KH⊺ . By Theorem 4.3, this
is equivalent to S ● H ● H∗ = S ● H⊺ ● (H⊺)∗. The injectivity of the Stieltjes transform
AS (which can be proved via the Mellin transform; see, for example, [6]) implies that
this holds if and only if H ● H∗ = H⊺ ● (H⊺)∗ = (H ● H∗)⊺. Then, the claim follows
from the fact that (H ● H∗)⊺ = H ● H∗ for all H ∈ H2. ∎

Corollary 5.4 Let H ∈ H2. Either if H is symmetric, that is, H = H⊺, or if H is real-
valued, the Laplace transform L restricts to an isometric isomorphism from A(H) onto
D(H), L ∶ A(H) → D(H).

We will see in Theorem 6.4 that, for any H ∈ H2, there exist isometric isomor-
phisms P , Q ∶ A(H) → D(H) related to the Poisson kernel.

6 Examples and applications

Here, we illustrate the theory given above with some examples and applications.
(1) Generalized Poisson operators. For α, β, μ real numbers, let Pα ,β ,μ(r, s) =

rα μ−βsβ−1(rα + sα)−μ for all r, s > 0. The spectral properties of its associated Hardy
operator have been studied in [16]. Regarding the properties considered in the
present paper, we have that, for p ∈ [1, ∞) and α > 0, Pα ,β ,μ ∈ Hp if and only if
0 < β − 1/p < αμ, and in this case, Pα ,β ,μ ∈ Ip . For p = 2, one has

KPα ,β ,μ (r, s) = sβ−1

αrβ B (2β − 1
α

, 2μ − 2β − 1
α

) 2F1 (μ, 2β − 1
α

; 2μ; 1 − ( s
r

)
α
) , r, s > 0,
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where B is the Euler Beta function and 2F1 is the hypergeometric Gaussian function.
As particular cases, one has the following.

Stieltjes kernel. For α = β = μ = 1, we obtain P1,1,1(r, s) = S(r, s) = 1
r + s

for r, s > 0.
By Theorem 3.3, A(S) is an RKHS with kernel

KS(r, s) = ∫
∞

0

1
r + t

1
t + s

dt =
⎧⎪⎪⎨⎪⎪⎩

1
r−s log r

s , if r ≠ s,
1
r , if r = s,

for r, s > 0.(6.1)

Poisson kernel and conjugate Poisson kernel. Recall that, for x > 0, the Poisson
kernel Px and conjugate Poisson kernel Qx on the half-right plane C+ are given by

Px (y) = 1
π

x
x2 + y2 , Qx (y) = 1

π
y

x2 + y2 , s > 0.

These kernels give rise to Hardy kernels P, Q as follows:

P(r, s) ∶= Pr(s) = P2,1,1(r, s), Q(r, s) ∶= Q r(s) = P∗2,1,1(r, s), r, s > 0.

These kernels are related to the operators P , Q ∶ L2(R+) → H2(C+) given by

(P f )(z) ∶=
√

2
π ∫

∞

0

z
z2 + s2 f (s) ds, (Q f )(z) ∶=

√
2
π ∫

∞

0

s
z2 + s2 f (s) ds,

for any z ∈ C+, f ∈ L2(R+). Indeed, (P f )(r) =
√

2π(AP f )(r) and (Q f )(r) =√
2π(AQ f )(r) for r > 0, f ∈ L2(R+). It is a matter of fact that P , Q are isometric

isomorphisms (see Remark 6.2). Here, we provide a proof of it based on results of this
paper. Set

L2
hol (R+) ∶= { f ∶ R+ → C

+ ∣ f (r) = F(r), r > 0, for some F ∈ H2(C+)}.

Since any holomorphic function in C
+ is determined by its restriction to R

+, the
space L2

hol (R+), regarded as a range space of H2(C+), is an RKHS isometrically
isomorphic to H2(C+) with kernel S(r, s) = K(r, s) = 1

r+s , r, s > 0. To see this, take
F ∈ H2(C+), f = F∣R+ , and s > 0. Then,

f (s) = F(s) = (F ∣Ks)H2 = ( f ∣Ks ∣R+)L2
hol

= ( f ∣Ss)L2
hol

,

as claimed.

Proposition 6.1 Both P , Q ∶ L2(R+) → H2(C+) are isometric isomorphisms.

Proof Since P = Q∗, Theorem 3.3 implies thatA(
√

2πP) = A(
√

2πQ) is an RKHS
on R

+ with kernel K√2πP = K√2πQ given by

K√2πP(r, s) = 2
π ∫

∞

0

r
r2 + t2

s
t2 + s2 dt = 1

r + s
= S(r, s), r, s > 0.(6.2)

Therefore, A(
√

2πP) = A(
√

2πQ) = L2
hol (R+) as Hilbert spaces. Thus, all is left to

prove is that P f , Q f are holomorphic on C
+ and that both P , Q are injective

operators. First, claim which follows by an application of Morera’s theorem. For the
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second one, note that the Stieltjes transform AS is an injective operator and that
AS = AP●Q = AP AQ = AQ AP . Thus, both AP , AQ are injective, and so are P , Q. ∎

Remark 6.2 The proposition above is equivalent to Paley–Wiener’s theorem. To
see this, set L2

ev en(R) as the subset of even functions of L2(R), and note that the
Fourier transform F restricts to an isometric mapping from L2

ev en(R) onto itself.
Set ι ∶ L2

ev en(R) → L2(R+) by (ι f )(r) ∶= f (r) for a.e. r > 0. Then ιFι−1 is a unitary
operator on L2(R+), and one easily obtains that P = LιFι−1. Hence, P is an
isometric isomorphism if and only if L is an isometric isomorphism.

By considering the subset of odd functions of L2(R), one obtains an analogous
statement for Q.

Some other consequences of results of this paper are the following.

Corollary 6.3 As a range space, L(H2(C+)) is an RKHS with kernel K given by

K(z, w) =
⎧⎪⎪⎨⎪⎪⎩

1
z−w log z

w , if z ≠ w ,
1
z , if z = w ,

for z, w ∈ C+ .

Here, we consider L ∶ H2(C+) → H2(C+) given by (LF)(z) ∶= ∫
∞

0 e−zr F(r) dr.

Proof By Proposition 5.1, one has LQ =
√

2πDPL. Thus, L(H2(C+)) =
LQ(L2(R+)) = D(

√
2πP) regarded as Hilbert spaces, since all the operators

considered in the equalities are isometric isomorphisms. Hence, by Theorems 3.3
4.3 and (6.2),

K = K√2πP = (K√2πP ● S)hol = (S ● S)hol = (KS)hol ,

and the claim follows by (6.1). ∎

Next, we show that A(H) and D(H) are isometrically isomorphic for any H ∈ H2.

Corollary 6.4 Let H ∈ H2. Then PAH = DHP and QAH = DHQ. Hence, both
P , Q ∶ A(H) → D(H) are isometric isomorphisms.

Proof Let us show the claim for P , since the proof for Q is completely analogous.
Let r > 0 and f ∈ L2(R+). Then,

(PAH f )(r) =
√

2
π

(AP AH f )(r) =
√

2
π

(AH AP f )(r) = (DHP f )(r),

where we have used that AP AH = AH AP . It follows by analytic continuation that
PAH = DHP (Proposition 2.1). Then, reasoning as in the proof of Theorem 5.2, we
obtain P ∶ A(H) → D(H) is a well-defined isometric isomorphism. ∎

We define the one-sided Hilbert-like operator HC
+

+ ∶ H2(C+) → H2(C+) by

(HC
+

+ F)(z) = 1
π

p.v. ∫
γz

F(w)
z − w

dw = 1
π

p.v. ∫
∞

0

F(sz)
1 − s

ds, z ∈ C+ , F ∈ H2(C+),

where γz ∶ (0, ∞) → C
+, γz(s) = sz.
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Corollary 6.5 HC
+

+ is a well-defined bounded operator on H2(C+) and on D(H) for
any H ∈ H2.

Proof By Proposition 6.1, Corollary 6.4, and Theorem 3.4, the claim will follow
once we prove that HC

+

+ = PH+P
−1. For θ ∈ (−π

2 , π
2 ), set Pθ (r, s) ∶= re iθ

r2 e2iθ+s2 for
r, s > 0. Then, Pθ ∈ H2, so APθH+ = H+APθ on L2(R+) by Theorem 3.4, and it is
readily seen that (P f )θ =

√
2
π APθ f for any f ∈ L2(R+). Furthermore, notice that

Fθ ∈ L2(R+) for any F ∈ H2(C+) by (1.3). Then,

(PH+P
−1F)θ =

√
2
π

APθH+P
−1F =

√
2
π
H+APθ P

−1F = H+(PP−1F)θ

= H+Fθ = (HC
+

+ F)θ , θ ∈ (−π
2

, π
2

) , F ∈ H2(C+),

and the claim follows. Analogously, one can prove that HC
+

+ = QH+Q
−1. ∎

(2) Fractional kernels. Let α > 0, and let (x)+ = x, if x ≥ 0, and (x)+ = 0 otherwise.
Set Cα(r, s) = α(r − s)α−1

+ r−α , r, s > 0. These kernels are related to the Riemann–
Liouville and Weyl fractional integrals of order α. Their range spaces have been stud-
ied in [8], where they are realized as spaces of Sobolev type of absolutely continuous
functions of fractional order on R

+. Using the theory developed, we recover, with
simpler proofs, some results given in [8].

Theorem 6.6 The range space A(Cα) = A(C∗α) is an RKHS if and only if α > 1/2. In
this case, its kernel KCα is given by

KCα (r, s) = α
max(r, s) 2F1 (1 − α, 1; α + 1; min(r, s)

max(r, s)) , α > 1
2

, r ≠ s > 0,

and KCα (r, r) = α2

2α−1
1
r , r > 0. For α > 0, the range space D(Cα) = D(C∗α) is an RKHS

with kernel KCα given by

KCα (z, w) = α2 ∫
1

0
∫

1

0

(1 − x)α−1(1 − y)α−1

xz + yw
dxd y, z, w ∈ C+ .

In addition, the Laplace transform L defines an isometric isomorphism L ∶ A(Cα) →
D(Cα) for any α > 0.

Proof It is readily seen that Cα ∈ Ip if and only if α > 1/p. Hence, the claim is an
immediate consequence of Theorems 3.3 4.3 and Corollary 5.4. ∎

Another kernel related to fractional theory, in particular with the Hadamard
fractional integral (see [3]), is Dα ,c ∶= 1

�(α) ( s
r )c (log r

s )α−1 1
s χ(0,r)(s) (r, s > 0), for

α > 0 and c ∈ R. It is readily seen that Dα ,c ∈ Hp if and only if c > 1/p, and in this
case, Dα ,c ∈ Ip if and only if α > 1/p. In particular, if α, c > 1/2, then

KDα ,c (r, s) = 1
�(α)2 ∫

min{r ,s}

0
( t2

rs
)

μ

(log r
t

log s
t
)

α−1 dt
t2 , r, s > 0,
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and

KDα ,c (z, w) = 1
�(α)2 ∫

∞

0
∫

min{1,x}

0
( y2

x
)

μ

(log 1
y

log x
y

)
α−1 1

z + xw
d ydx ,

for z, w ∈ C+.
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