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ON HURWITZ CONSTANTS FOR FUCHSIAN GROUPS

L. YA. VULAKH

ABSTRACT. Explicit bounds for the Hurwitz constants for general cofinite Fuchsian
groups have been found. It is shown that the bounds obtained are exact for the Hecke
groups and triangular groups with signature (0 : 2Ò pÒ q).

1. Introduction. It is known that PSL(2ÒR) can be identified with the group of all
orientation-preserving isometries of the upper half- plane model for hyperbolic plane
H2 = fx + yi 2 CÒ y Ù 0g endowed with metric y�2jdzj2 (see e.g. [1]). Transformation

T =
 

a b
c d

!
2 PSL(2ÒR) acts on H2 by the rule T(z) = (az + b)Û(cz + d). A geodesic

in H2 is a semicircle or a ray orthogonal to the real axis. Let Γ 2 PSL(2ÒR) be a finitely
generated Fuchsian group of the first kind. We assume that Γ is zonal, that is, Γ has a
parabolic fixed point at 1. Then there is a least positive w, the width of the cusp at 1,

such that
 

1 w
0 1

!
2 Γ.

Let ã be a real irrational number. In 1891 A. Hurwitz [5] showed that the inequality

jã � a
c
j Ú 1

hc2
(1)

has infinitely many solutions in coprime integers a and c when h =
p

5, and
p

5 is the
best constant possible. The first geometric proof of this result was obtained by L. Ford
in [3] where he makes use of properties of the modular group.

Let Λ be the limit set of Γ and P the set of cusps (parabolic vertices). Let ã 2 Λ�P .
J. Lehner [6] showed that there is a positive constant h depending only on Γ such that
the inequality

jã � T1j Ú 1
hjcj2(2)

holds for infinitely many left cosets of Γ1 = Stab(1ÒΓ) in Γ. When Γ is the modular
group, P = Q and (2) is reduced to (1).

For a fixed ã 2 Λ� P we denote by h(ã) the supremum of all such h in (2). The set
of numbers

L(Γ) = f1Ûh(ã)Ò ã 2 L � Pg

is the Lagrange spectrum for Γ and C(Γ) = sup L(Γ) the Hurwitz constant for Γ.
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For any real xo, the region P1 = f(xÒ y) 2 H2 : xo Ú x Ú xo + wg, where w is the
width of the cusp at 1, is a fundamental domain of Γ1. The region

D = P1 \ fz 2 H2 : jT0(z)j Ú 1ÒT 2 Γg

is an isometric fundamental domain for Γ in H2. Here T0(z) = jcz + dj�2. (The circle
jcz + dj = 1 is called the isometric circle of T) (see e.g. [1]).

Assume that a side õ of D, which is not a vertical ray, lies on some isometric circle ï.
The point of ï farthest from the real axis Λ is called the summit of õ. We shall call the
distance from the farthest from the real axis point of õ to the real axis the height of õ and
denote it by ht (õ). Suppose that v = v1 belongs to the cycle of vertices C = fv1Ò    Ò vng
of D. It is known that C lies on some horocycle Im z = const (see [1], p. 229 and p. 288).

Let õi and õ0i , ht (õi) � ht (õ0i), be the sides of D which meet at vi, i = 1Ò    Ò n. Denote

K(v) = K(C) = 2 minfht (õ1)Ò    Ò ht (õn)g(3)

We shall say that a vertex of D is odd (even) if it is an elliptic fixed point of Γ of an odd
(even) order. Let v be an endpoint of a side õ of D. Define ï(v) = 1 unless v is an odd
vertex of D of order q and the summit of õ belongs to õ when

ï(v) =
 

1 +
�

1 � cos
ô
q

�2
!1Û2

Ò(4)

and denote
hΓ = inf ï(v)K(v)Ò(5)

where K(v) is defined by (3) and the infimum being taken over all the vertices and cusps
v 6= 1 of D.

Rankin [10] found explicit upper and lower bounds for the Hurwitz constant C(Γ) for
a general zonal cofinite Fuchsian group Γ. In [12], a modification of the Ford geometric
approach to the problem of approximation of irrational real numbers by rational fractions
is developed. This method is applied to find an upper bound for the Hurwitz constant for
a geometrically finite discrete group acting in an n-dimensional hyperbolic space. When
n = 1, that is, when Γ is a general zonal Fuchsian group, this bound is better than the one
obtained by Rankin. In [11], this approach is used to find the approximation constants for
the imaginary quadratic fields of discriminant �20 and �24. The main purpose of this
paper is to obtain a further improvement for the upper bound for C(Γ). The following
result is stronger than Theorem 1 from [12] for n = 1.

THEOREM 1. Let Γ be a zonal cofinite Fuchsian group with the limit set Λ and set of
cusps P . Let ã 2 Λ � P . Then there are infinitely many left cosets of Stab(1ÒΓ) in Γ
whose members T satisfy

þþþþã � a
c
j = jã � T1j Ú 1

hΓjcj2
(6)

(c 6= 0). Thus, C(Γ) � 1ÛhΓ.
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We shall say that a side õ of D with an endpoint v is critical if hΓ = ï(v)K(v) =
2ï(v)ht (õ). It follows from the results obtained in [12], where ï(v) = 1 for all the
vertices of D, that C(Γ) = 1ÛhΓ if each of the endpoints of a critical side õ is an elliptic
fixed point of an even order. In the following theorem, some other cases are enumerated
when the equality holds for the Hurwitz constant in Theorem 1.

THEOREM 2. Let Γ be a zonal cofinite Fuchsian group. Let D be an isometric funda-
mental domain of Γ and let õ be a critical side of D. Assume that an endpoint v of õ is a
fixed point of Γ and that the summit s of õ is an elliptic fixed point of order two.

1. If v is an elliptic fixed point of an odd order q, then

C(Γ) =
1

2ht (õ)

 
1 +

�
1 � cos

ô
q

�2
!�1Û2



2. If v is an elliptic fixed point of an even order or a cusp of D, then

C(Γ) =
1

2ht (õ)


Moreover, if v is a cusp, then C(Γ) is an accumulation point in the Lagrange spectrum
for Γ.

In Section 2 we introduce h-neighborhoods of vertices and cusps of D, study their
properties, and use them to prove Theorem 1. In Section 3, Theorem 5, an analogue of
Theorems 1 and 2 for the disc model of the hyperbolic plane, is given. In Section 4 we
first prove Theorem 2 and the second part of Theorem 5 and then apply them to some
triangular groups, including Hecke groups Gq. In Example 1, for even q, we find also
the second minimum in the Lagrange spectrum of Gq. It was first found by Haas and
Series [4] (see also [8]).

The author thanks the referee for his useful remarks which led to an improvement of
this work.

2. h-neighborhoods of vertices and cusps. In this section we prove Theorem 1
using a modification of the notion of an h-neighborhood of a vertex or a cusp of D
introduced in [12].

Let ã 2 Λ � P . Denote by L = L(ã) the vertical ray through ã in H2. Let T 2 Γ.
For any h Ù 0, let R (TÒ h) be the open Euclidean disk in H2 tangent to the real
axis Λ at T1 = aÛc having radius 1Û(hc2). We have R (TÒ h) = TRh where Rh =
R (idÒ h) = fz : Im z ½ hÛ2g. Denote the boundaries of the horocyclic regions R (TÒ h)
and Rk by Q(TÒ h) and Qh respectively. Thus, the inequality (2) holds if and only if L
cuts Q(TÒ h).

Since ã is not a parabolic fixed point, the line L passes through infinitely many
fundamental regions T(D), T 2 Γ. Let the fundamental region through which L passes
be Tn(D), n = 1Ò 2Ò    , taken in order as a point z moves along L from 1 to ã. Let zn be
the point of intersection of L with the common boundary of Tn�1(D) and Tn(D). Denote
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by Ln the part of L between zn and ã. Define N (h) to be the region in H2 [ P which is
exterior to all R (TÒ h), T 2 Γ.

Let õ and õ0 be the sides of D that meet at v. Assume that their summits s and s0

belong to the closure of D. Let 2ht (õ) = ho Ú h. We denote by T (v) the component of
the closure of D which contains v and is bounded by the sides õ and õ0, two vertical lines
passing through the summits s and s0, and y = hÛ2. (If h Ú ho, then T (v) is a triangular
region). We shall call the union of all TT (v), T 2 Γ, which contain v the h-neighborhood
of v and denote it by N(vÒ h). There are two kinds of sides of N(vÒ h): parts of horocycles
Q(TÒ h), T 2 Γ, which will be called the horocyclic sides of N(vÒ h), and separating them
the geodesic sides which are the images of the vertical segments, sides of T (v).

For every vertex or cusp v of D, define k(v) to be the largest h such that any geodesic
passing through N(vÒ h) cuts a horocyclic side of N(vÒ h). Suppose that v = v1 belongs to
the cycle of vertices C = fv1Ò    Ò vng. Let õi and õ0i , ht (õi) � ht (õ0i), be the sides of D
which meet at vi, i = 1Ò    Ò n. If h � K(v) (see (3)) then N(vÒ h) does not have geodesic
sides. Hence

k(v) ½ K(v)(7)

It will be shown (see Lemma 3) that the equality holds in (7) when v is an even vertex
or cusp of D but when v is an odd vertex this bound can be improved.

Let vertex v of D be an elliptic fixed point of order q. Assume that some geodesic
L intersects T (v) but does not cut the horocyclic sides of N(vÒ h). Then L crosses two
geodesic sides of N(vÒ h) one of which is a vertical side adjacent to the horocyclic side
that lies on y = hÛ2. Since the order of v is q there are q horocyclic and q geodesic sides
of N(vÒ h). Figure 1 shows the sets T (v) and N(vÒ h), h Ù hΓ, when Γ is the Hecke group
G4. (Figure 1 in [12] shows these sets when h = hΓ).

Assume that the cyclic group Stab(vÒΓ) is generated by W, Wq = id, and W(õ) = õ0.
Denote by Qk the side of N(vÒ h) that lies on the horocycle Q(Wk Ò h) and by Bk the
geodesic side of N(vÒ h) that lies on the geodesic with endpoints Wk1 and Wk+11. Thus,
B0 and Bq�1 are the vertical sides of N(vÒ h) (see Figure 1 where q = 4). The summit s of
õ is the hyperbolic midpoint of B0 and sk = Wks is the midpoint of Bk.

The improvement of Theorem 1 from [12] for n = 1 is based on the following.

LEMMA 3. Let D be an isometric fundamental domain for a zonal cofinite Fuchsian
group Γ. Assume that the sides õ and õ0 of D meet at a vertex v which is a fixed point of
Γ of order q. If v is an odd vertex of order q, then

k(v) = 2
 

1 +
�

1 � cos
ô
q

�2
!1Û2

ht (õ)

If v is an even vertex or a cusp, then k(v) = 2ht (õ).

PROOF. Let ck = c(Wk). The radius of Qk equals 1Û(hc2
k). In particular, the radius of

Q(WÒ ho) 1Û(hoc2
1) = hoÛ4 since it is tangent to y = hoÛ2 at the summit of õ. Hence

c0 = 0Ò c1 = 2Ûho(8)
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FIGURE 1

Since the trace of W is 2 cosí, where í = ôÛq, W satisfies the equation W2�2 cos íW+I =
0, where I is the identity matrix. Thus, ck satisfy the finite difference equation

ck+1 � 2(cos í)ck + ck�1 = 0

Solving this equation subject to the initial conditions (8) we get

ck =
2
ho

sin(kí)
sin í (9)

Notice that when v is a cusp of D, then, taking the limit in (9) as í ! 0, we obtain

ck =
2
ho

k(10)

Let h�k (h+
k ) be the smallest value of h for which there is a geodesic which cuts both B0

(Bq�1) and Bk without cutting a horocyclic side of N(vÒ h). It is clear from the geometry
that the radius of a geodesic L(h) which is internally tangent to one of the horocycles
Q(WmÒ h) and Q(Wm+1Ò h) and externally to the other is a decreasing function of h. Hence
L(h�k ) and L(h+

k ) are tangent to Q0, Qk, and Qk+1.
Let L be the geodesic which passes through s and sk and is tangent to Q0. Since s is

the midpoint of B0, L is also tangent to Q1. Let R be the reflection in H2 with respect
to the geodesic which passes through v and perpendicular to L. Then R(Qk+1) = Q0,
R(Qk) = Q1, and R(s) = sk. Hence L is tangent to Qk, and Qk+1. Thus, L = L(h�k ).
Similarly, L(h+

k ) passes through s0 and sk and is tangent to Q0, Qq�1, Qk, and Qk+1 (see
Figure 1 [12] where Γ is the Hecke group G4). Notice that L(h+

0) = L(h�q�1).
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The center of Qk is xk + iÛ(hck) where xk = Wk1. The centers ê and the radii hÛ2 of
the geodesics L(h�k ) and L(h+

k ) satisfy the system

þþþþê � xk +
i

hc2
k

þþþþ =
h
2
š 1

hc2
kþþþþê � xk+1 +

i
hc2

k

þþþþ =
h
2
Ý 1

hc2
k

(11)

where

jxk+1 � xkj =
2

jhockck+1j

since horocycles Qk and Qk+1 are tangent to each other when h = ho. Solving system (11)
we get

h = ho

 
1 +

�c2
k � c2

k+1 š 4h�2
o

2ckck+1

�2
!1Û2



from which, by (9), we obtain

h�k = ho

�
1 + cot2(kí) sin2 í

�1Û2Ò(12)

and

h+
k = h�k+1(13)

(k = 1Ò    Ò q � 1). When q = 2m + 1 is odd, the smallest value of h+
k (and h�k ) is

k(v) = h+
m = h�m = ï(v)ho where ï(v) is defined by (4), and the centers of L(h�m) and L(h+

m)
are Re vÝ hoÛ2. When q = 2m, k(v) = h�m = ho. If v is a cusp of D, then, taking the limit
in (12) as í ! 0, we obtain

h�k = ho(1 + k�2)1Û2Ò(14)

and (13) also holds for k = 1Ò 2Ò    . Thus, k(v) = 2ht (õ) in that case. The lemma is
proved.

Now, from (5), (7), and Lemma 3 we get

hΓ � inf k(v)Ò(15)

the infimum being taken over all the vertices and cusps v 6= 1 of D.

PROOF OF THEOREM 1. Let h Ú hΓ. Assume that Theorem 1 is false. Then there exists
an integer n such that Ln ² N (hΓ). Assume that Ln passes through N(vÒ h) in N (hΓ).
Since, by (15), h Ú hΓ � k(v), Ln cuts a horocyclic face of N(vÒ h) in contradiction with
the assumption.
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3. The disc model. In this section, the unit disc ∆ = fz 2 C : jzj Ú 1g with
a metric derived from the differential ds = 2(1 � jzj2)�1jdzj is used as a model for
the hyperbolic plane. An orientation-preserving isometry of ∆ can be identified with

T =
 

a c̄
c ā

!
2 PSL(2ÒC). Let Γ be a cofinite Fuchsian group acting in ∆. The unit

circle Λ is the limit set of Γ. Let ã 2 Λ � P . (Now P can be empty). We consider the
approximation of ã by the elements of the orbit Γ0. It is shown in [12] how the general
case of approximation of ã by the orbit Γw where w 2 ∆ can be reduced to the case of
w = 0. It is also shown that the Hurwitz constant for the orbit Γ0 coincides with that for
Γ1.

Let D be the Dirichlet polygon for Γ with center 0. For a geodesic L in ∆, the point
of L which is closest to the origin is the summit of L. Let ë and ë0 be the endpoints
of L. Denote by r and R the Euclidean and hyperbolic distances from the origin to L
respectively. Let h = jë � ë0j. Then we have

h = 2
1� r2

1 + r2
=

2
cosh R



Let v be a vertex or cusp of D. Denote K = fz 2 C : jzj = rg. We define h-neighborhoods
N(vÒ h) as in Section 2, replacing the horocycles Q(TÒ h) and vertical rays through the
summits in H2 by hyperbolic circles T(K), T 2 Γ, and radii through the summits in
∆. We intend to derive an analogue of formula (12) and then to obtain an analogue of
Theorem 1 for the disc model. Let õ be a side of D whose summit s belongs to the closure
of D. Assume that an endpoint v of õ is an elliptic fixed point of order q. Denote by W a
generator of Stab(vÒΓ). Let sk = Wks, k = 1Ò    Ò q � 1. Denote by L(h�k ) and L(h+

k ) the
geodesics passing through s and sk and sq�1 and sk respectively. Denote by Ro and R�k
the hyperbolic distances from the origin to s and to L(h�k ) respectively. Let u and u0 be
the feet of perpendiculars from the origin and v to L(h�k ) respectively (see Figure 2).
Denote A = ö(vÒ u0), B = ö(sÒ u0), and C = ö(sÒ v) where ö(zÒ z0) is the hyperbolic distance
between two points zÒ z0 2 ∆. Let é be the angle at s in the triangle with vertices O, s,
and u. In the triangle Osv, the angles at v and s are í = ôÛq and ôÛ2, and we denote by
û the angle at the origin. In the triangle vsu0, the angles at v, s, and u0 are kí, ôÛ2 � é,
and ôÛ2 respectively. Then we have (see [1], pp. 146–147)

sinh R�k = sinh Ro sin éÒ(16)
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and

cosh C = cosh A cosh BÒ sinh A = sinh C cos éÒ sinh B = sinh C sin(kí)

Eliminate A and B, substitute cosh C = (cosû)Û(sin í), and solve this system for sin é, to
obtain, by (16),

sinh R�k = sinh Ro

 
1 +

sin2 í cot2(kí)
cos2 û

!�1Û2

Ò(17)

R+
k = R�k+1

If v is a cusp of D, then, as í ! 0 in (17), we obtain

sinh R�k = sinh Ro

�
1 +

1
k2 cos2 û

��1Û2
(18)

We define k0(v) as in Section 2. The following statement is an analogue of Lemma 3.

LEMMA 4. Let D be an isometric fundamental domain for a cofinite Fuchsian group
Γ which acts in ∆. Assume that the sides õ and õ0 of D meet at vertex v which is a fixed
point of Γ of order q. If v is an odd vertex of order q, then

sinh R(v) = sinh Ro

 
1 +

�1 � cos ô
q

cosû
�2
!1Û2

where k0(v) = 2Û cosh R(v). If v is an even vertex or a cusp, then k0(v) = 2Û cosh Ro.

Let v be an endpoint of a side õ of D. Define ï0(v) = 1 unless v is an odd vertex of D
of order q and the summit of õ belongs õ when

ï0(v) =
 

1 +
�1 � cos í

cosû
�2
!1Û2

Ò í =
ô
q
(19)

Let w 2 D. Suppose that v = v1 belongs to the cycle of vertices C = fv1Ò    Ò vng of D.
Let õi and õ0i , ö(wÒ õi) ½ ö(wÒ õ0i), be the sides of D which meet at vi, i = 1Ò    Ò n. Denote

K(wÒ v) = maxfö(wÒ õ1)Ò    Ò ö(wÒ õn)g(20)

Assume that the orbit Γw is used to approximate ã 2 Λ� P . Let

sinh RΓ = supï0(v)K(wÒ v)Ò(21)

where K(wÒ v) is defined by (20) and the supremum being taken over all the vertices and

cusps v 6= 1 of D. Denote V = (1 � jwj2)�1Û2
 

1 w
w̄ 1

!
and

TV =
 

a00 c00

c00 a00

!
(22)

For a fixed w 2 ∆, we define the approximation constant h(ã), the Lagrange spectrum,
and the Hurwitz constant for the group Γ as in Section 1. The first part of the following
theorem can now be proved as in [12].
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THEOREM 5. Suppose that Γ is a cofinite Fuchsian group acting on the unit disc ∆.
Let w 2 ∆ and D(w) be the Dirichlet polygon with center w. Let Λ be the limit set and
P the set of parabolic fixed points of Γ. Let ã 2 Λ � P . Then there are infinitely many
T 2 Γ satisfying

jã � Twj Ú cosh RΓ

2jc00j2

where c00 is defined by (22) and RΓ by (19) and (21).
Assume that the endpoints v and v0 of a critical side of D are fixed points of Γ. Let the

summit s of õ be an elliptic fixed point of order two. Then the Hurwitz constant

C(Γ) =
1
2

cosh RΓï0(v)Ò

where ï0(v) is defined by (19). Moreover, if v is a cusp, then C(Γ) is an accumulation
point in the Lagrange spectrum for Γ.

The second part of Theorem 5 is an analogue of Theorem 2 for the disc model.

4. Applications. In this section we first prove Theorem 2 and then apply it to Hecke
groups and some other groups. We shall say that a geodesic L with endpoints ë and ë0 is
extremal if

h(ë) = jë0 � ëj

Suppose that L is the axis of a hyperbolic element S 2 Γ. Then ë and ë0 are the fixed
points of S. It is known (see e.g. [4]) that

h(ë) = sup jT(ë0) � T(ë)j

where the supremum is taken over all T 2 Γ. It follows that the Hurwitz constant
C(Γ) ½ 1Ûh(ë).

LEMMA 6. Let L be an axis of a hyperbolic element S 2 Γ. Let ë and ë0 be the fixed
points of S. Suppose that L passes through N(vÒ h), where h = jë0 � ëj, but does not cut
a horocyclic side of N(vÒ h). If L \ N(vÒ h) contains a fundamental domain of Stab(LÒΓ)
on L then L is extremal.

PROOF. Assume that L is not extremal. Then, for some T 2 Γ, there is L0 = T(L)
such that ht (L0) Ù ht (L). Since L\N(vÒ h) contains a fundamental domain of Stab(LÒΓ)
on L and N(vÒ h) is covered by images of the regions T (v), v 2 C, for some cycle C of
vertices of D, Im z � hÛ2 for z 2 V(L) for any V 2 Γ which contradicts the assumption
that ht (L0) Ù ht (L).

COROLLARY 7. Let a vertex v of D be a fixed point of Γ. Let õ and õ0 be the sides of
D that meet at v. Assume that the summit s of õ is an elliptic fixed point of order two. Let
W be a generator of Stab(vÒΓ). Then the geodesic passing through the points s and Wks
is extremal.
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PROOF. Assume that As = s, A2 = id. Then S = AWkAW�k 2 Γ is a hyperbolic
element, and L is the axis of S. The arc [sÒ sk), sk = Wks, of L is a fundamental region of
Stab(LÒΓ) on L. It was shown above that L = L(h�k ) does not intersect a horocyclic side
of N(vÒ h�k ). Hence the arc [sÒ sk) belongs to N(vÒ h�k ) and by Lemma 6 L is extremal.

It is clear that Lemma 6 and Corollary 7 hold for the disc model too. Corollary 7
implies that all the geodesics L(h�k ) and L(h+

k ) are extremal. When v is an elliptic vertex
of order q, by (12), (13),

�
1 + cot2(kí) sin2 í

��1Û2Ûho 2 L(Γ)Ò k = 1Ò    Ò q � 1Ò

where í = ôÛq. In particular, 1ÛhΓ 2 L(Γ) and therefore C(Γ) = 1ÛhΓ. This proves case
a) and the first part of case b) of Theorem 2. Similarly the second part of Theorem 5 can
be proved.

If v is a cusp of D, then, by (14),

(1 + k�2)�1Û2Ûho 2 L(Γ)Ò k = 1Ò 2Ò   

which implies that C(Γ) = 1ÛhΓ is an accumulation point of L(Γ). This completes the
proof of case c) of Theorem 2.

EXAMPLE 1. Let q Ù 2 be an integer. Let Γ = Gq = hAÒBi where

A =
 

1 2 cos(ôÛq)
0 1

!
Ò B =

 
0 �1
1 0

!


It is a triangular group with signature (0 : 2Ò qÒ1) known as a Hecke group. A funda-
mental domain of this group is bounded by the unit circle jzj = 1 and two vertical lines

x = š cos(ôÛq). Thus ho = 2 and, hΓ = 2ï(v) = 2
�
1 + (1 � cos ô

q )2
�1Û2

if q is odd, and

hΓ = 2 if q is even. Theorem 2, where õ lies on jzj = 1, v = eiôÛq, and s = i, is applicable
since Bs = s. Hence C(Γ) = 1ÛhΓ.

Now let v be an even vertex of D of order q = 2m. We shall find the second point in
the Lagrange spectrum of Gq. The notation established in Section 2 is maintained in this
example. Assume that h Ù 2. The vertex v is the fixed point of involution R = Wm and
it lies on the geodesic L = L(h�m). Hence L is the axis of the hyperbolic element T = RB,
T(Bo) = Bm, and the geodesic interval [sÒ sm) is a fundamental domain on L of the cyclic
group generated by T. Thus L cuts only geodesic faces Ti(Bo), i = 0Ò š1Ò š2Ò    .

Assume that an extremal geodesic L0 passes through N(vÒ h). If L0 cuts only the
same geodesic faces as L, then L0 = L. Assume that L0 passes through TiN(vÒ h) and
that it cuts Ti(Bo) and Ti(Bk), k 6= m. Then geodesic T�i(L0) passes through N(vÒ h)
and cuts Bo and Bk, k 6= m. Hence 2ht (L0) ½ 2ht

�
T�i(L0)

�
½ h�k , k 6= m. By (12),

2ht (L0) ½ h+
m = h�m+1 = 2(1 + sin2 ô

q tan2 ô
q )1Û2. The case when the Γ-orbit of geodesic L0

does not contain an extremal geodesic can be dealt with as it is done in [2], Chapter II.
In that case one has to use an analogue of the isolation theorem (see [2], p. 25) for a
zonal cofinite Fuchsian group. Thus 1Ûh�m+1 is the second minimum in the L(Gq). It is
attained at the endpoints of the geodesic L(h�m+1) (In Figure 1, q = 4). These results were
first obtained by Haas and Series [4] (see also [8]).
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EXAMPLE 2. Let Γ be the limit of the Hecke groups as q !1. The pointsš1 are the
cusps of D. By Theorem 2, the Hurwitz constant C(Γ) = 1Û2 is an accumulation point
in the Lagrange spectrum for Γ.

EXAMPLE 3. Let Γ = Γ(2), the principal congruence group of level 2 consisting of
matrices T � šI (mod 2) (cf. [10]). We choose the fundamental domain D as follows.
It is bounded by x = �1Û2, x = 3Û2, j2z š 1j = 1, and j2z � 3j = 1. Then Theorem 2,
where õ lies on j2z � 1j = 1, v = 0 and v0 = 1 are cusps of D, and s = (1 + i)Û2 is the
summit of õ, is applicable since D is symmetrical with respect to x = 1Û2. It implies that
C(Γ) = 1 is an accumulation point in L(Γ).

EXAMPLE 4. Let now û = ôÛp and í = ôÛq where p and q are positive integers such
that 1Ûp + 1Ûq Ú 1Û2. Let ö = (cos2 í � sin2 û)1Û2. Then (see [9], p. 87–88) the group

Γ =
*

i
sinû

 
cos í ö
�ö � cos í

!
Ò
 

eiû 0
0 e�iû

!+

is a triangular group with signature (0 : 2Ò pÒ q) which maps the unit disc ∆ onto itself.
Let w = 0. A Dirichlet polygon D(0) of this group is bounded by the straight Euclidean
lines joining the origin 0 with P = cos(û+ í)eiûÛö and P̄, and the circle jz� (cos í)Ûöj =
(sinû)Ûö.

If q is even then, by Theorem 5, the Hurwitz constant for Γ equals (cos í)Û(2 sin û)
(cf. [12]). Similar results can be obtained for an arbitrary triangular groups using their
matrix representation given in [9], p. 105.

When q is odd, by (19), we have

sinh RΓ =
ö

sinû

 
1 +

�1 � cos í
cosû

�2
!1Û2

Ò

since sinh Ro = öÛ sinû, and the Hurwitz constant for Γ equals (cosh RΓ)Û2.

EXAMPLE 5. Let q = 1 in Example 4. By Theorem 5, C(Γ) = 1Û(2 sinû) and it is
an accumulation point in the Lagrange spectrum for Γ. When p = 3, Γ is conjugate in
SL(2ÒC) to the modular group and C(Γ) = 3�1Û2.

REFERENCES

1. A. F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, New York, 1983.
2. J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Univ. Press, 1957.
3. L. R. Ford, A geometric proof of a theorem of Hurwitz, Proc. Edinburgh Math. Soc. 35(1917), 59–65.
4. A. Haas and C. Series, The Hurwitz constant and Diophantine approximation on Hecke groups, J. London

Math. Soc. (2) 34(1986), 219–234.
5. A. Hurwitz, Über die angenaherte Darstellungen der Irrationalzahlen durch rationale Brüche’, Math.
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