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Abstract. This paper generalises the well known structural stability theorem which
says that a diffeomorphism is structurally stable if it is Axiom A and if all invariant
manifolds are transversal to each other.

If these transversality conditions are not satisfied then the diffeomorphism not
only fails to be stable, but also this gives rise to the appearance of moduli. That is,
one needs several real parameters to parameterise all conjugacy classes of nearby
diffeomorphisms. (The minimum number of parameters needed is called the number
of moduli).

Here we deal with diffeomorphisms on two dimensional manifolds, whose
asymptotic dynamics are well understood (the class of Axiom A diffeomorphisms).
The main result characterises those Axiom A diffeomorphisms which have a finite
number of moduli. This result can be regarded as a generalisation of the structural
stability theorem. From the proofs it follows that the dynamics of these diffeomorph-
isms can also be well understood.

In the proof of our main theorem we need certain invariant foliations to be quite
smooth. In an appendix we prove a differentiable version of the Lambda Lemma.

One of the purposes of the theory of Dynamical Systems is to understand the orbit
structure of diffeomorphisms. Here we say that two diffeomorphisms / and g have
the same orbit structure if they are conjugate that is, if there is a homeomorphism
h of the ambient manifold such that hf=gh. Clearly this defines an equivalence
relation ~ on the space of diffeomorphisms. Since the dynamics of many
diffeomorphisms is very complicated and sensitive to perturbations (of the
diffeomorphisms) we cannot hope to understand the space of conjugacy classes in
general. However this space is very neat in neighbourhoods of many conjugacy
classes. This paper is in the direction of characterising all diffeomorphisms represent-
ing these conjugacy classes. One may measure the degree of complexity of this local
structure by looking at the local dimensions of this space. This dimension we call
the number of moduli. This number is defined as follows. If a diffeomorphism / is
structurally stable or if there are at most a countable number of different conjugacy
classes in a neighbourhood U of f then we say that the number of moduli is zero.
If a sufficiently small neighbourhood U contains a countable number of k-parameter
C1 families of diffeomorphisms such that each diffeomorphism in U is conjugate
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to at least one diffeomorphism from these families, then / has a finite number of
moduli. The minimum number k of parameters needed is the number of moduli
(or the modality of /) .

Here we deal with diffeomorphisms on two dimensional manifolds whose
asymptotic dynamics is well understood. In fact we consider the set si of
diffeomorphisms satisfying Axiom A and the no cycle condition. Such diffeomorph-
isms are fl-stable, namely, the dynamics of the non-wandering set does not change
with small perturbations [Sml], [Sm2]. However the intersection pattern of invariant
manifolds is the same for conjugate diffeomorphisms. Transversality conditions of
stable and unstable manifolds are needed to have structural stability [R]. If these
transversality conditions are not satisfied then the diffeomorphism not only fails to
be stable but this also gives rise to the appearance of moduli [P2], [NPT], [MPS],
[SI], [S2]. However even in this case the diffeomorphism may still have finite
modality [Me2], [MP], [S2]. The purpose of this paper is to characterise the class
M of diffeomorphisms in si having finite modality.

Our results provide a much more precise description of the conjugacy classes in
a sufficiently small neighbourhood Jf of a diffeomorphism / in M. One has that Jf
is a countable union of submanifolds ^ . Each ^, has finite codimension and
contains a finite dimensional submanifold 5,. Moreover there exists a differentiate
fibration TT, : ^, -» S> so that all diffeomorphisms in the same fiber are conjugate.
Furthermore each 5, contains a dense subset T{ such that no two distinct diffeomorph-
isms in Tj are conjugate to each other. The codimension of &t is uniformly bounded
and the maximum of all the dimensions of St is the modality of/

1. Statement of results
From now on let M be a compact, C°°, two-dimensional manifold without boundary
and Diff00 (M) be the set of C°° diffeomorphisms on M with the C°° topology.

We denote by si c Diff °° (M) the set of diffeomorphisms satisfying Axiom A and
the no-cycle condition. Recall that fe Diff00 (M) satisfies Axiom A if the non-
wandering set il(f) is hyperbolic and the periodic orbits are dense in il(f), [Sml].
If/ satisfies Axiom A then O.(f) is a union of finitely many closed invariant sets
fi.'s, called basic sets, such that/ has an orbit dense in each ft,-. Finally we say that
/ satisfies the no-cycle condition if there are no basic sets f l , , . . . , fin, fln+1 = ft]
with r ( n , - ) n r ( f t i + 1 ) ^ 0 . Here W(n f ) (resp. Ws(a,)) is the set of points
whose a-limit set (resp. w-limit set) is contained in Q,-. We recall that if / e si then
/ is fl-stable [Sm2]. The main result of this paper is the characterisation of the set
M <=. si of diffeomorphisms having finite moduli. Here the notion of modulus is
defined as in the introduction. Remark that if/ has k moduli then/ has a neighbour-
hood U such that each g in U has modality at most fc. In particular the set of
diffeomorphisms in si with finite modality is open.

Let M <= si be the set of diffeomorphisms satisfying the conditions below:
(1) if x, y e il(f) are such that W(x) is not transversal to Ws{y) then the basic

sets containing x and y are trivial (i.e. consist of periodic orbits);
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(2) there is only a finite number of orbits of non-transversal intersections between
stable and unstable manifolds and the contact between these manifolds along each
of these orbits is of finite order;

(3) if p, q e Per (/) are such that W(p) has an orbit of non-transversal intersec-
tion with Ws{q) then the number of orbits in Ws(p) (resp. in W"(q)) belonging
to some unstable (resp. stable) manifolds of periodic saddle points of/ is finite;

(4) if x is a point of non-transversal intersection of W(p) and Ws(q) then there
exists an arc 2 transversal to W(p) at x such that no connected component of
£-{x} contains points of both stable and unstable manifolds of saddles;

(5) if W(p) has a point of non-transversal intersection with Ws(q), and W"(q)
has a point of non-transversal intersection with Ws(r), then there is no saddle point
of/whose unstable manifold (resp. stable manifold) intersects Ws(p) (resp. W"(r)).

Remark. It is well known that every diffeomorphism in si which satisfies the
transversality conditions on invariant manifolds is structurally stable [Rbl]. The
class M relaxes these conditions. The following theorem generalizes this structural
stability result.

MAIN THEOREM. Iffe Diff°° (M2) is in si then f has finite modality if and only iffe M.

Remark. As in [PI] it is not hard to show that if fe Diff°° (M2) satisfies the Axiom
A condition and / has cycles then / has infinite modality.

2. Existence of moduli
Let M be a compact C00 manifold of dimension two and f:M^M be a C00

diffeomorphism having a pair of periodic points p and q such that the unstable
manifold of p has an orbit of non-transversal intersection with the stable manifold
of q. In this section we will construct all conjugacy invariants generated by the
existence of these tangencies. We will use these conjugacy invariants to prove the
following.

THEOREM. Iffe si has finite modality then fe Ji.

Later in §§ 3, 4 and 5 we will prove that two diffeomorphisms in M, having an
equivalent intersection pattern of stable and unstable manifolds, are conjugate if
they have the same conjugacy invariants.

2(a). Some technical lemmas. In order to show the existence of moduli we will have
to compare metrics induced on M by two C1 coordinate systems. So we start by
describing some properties of Cr metrics. By this we mean metrics which are induced
by C Riemannian structures. We say that d:MxM->Uis&C metric, 0 < r < oo,
on M if there exists a C Riemannian structure g on M such that d(x, y) is given
by the infimum of the lengths of all paths that connect x and y. In formulae:

d(x,y) = inf {/g(y); y:[0, l]-» M is apiecewise

C1 curve with y(0) = x and y(l) = y}.
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Here

"i"lg(y)= Vg(y'(O, yV)) dt.
Jo

The distance from a point x to a set 5 will be denoted by d(x, S) = inf {d(x, y); y e S}.
It will be convenient to use the following notation. For sequences at, pt of real
numbers we will write

i ~ j8, if is bounded and bounded away from zero,
Pi

a, = /3, if —converges to 1.

LEMMA 2.1. Let d :W xR"^R be a C° metric on W induced by the Riemannian
structure g. Let d0 be the metric induced by the constant Riemannian structure g0 which
coincides with g at 0. If S<=U" contains 0 and x , eR" -S converges to zero, then
d(jcf,S) = </„(*„ S).

Proof. Since g is continuous, for every p > 0 there are positive constants cp, c'p such
that

cPVg((0, v), (0, «)) < Vg((x, v), (x, v)) s <Vg((0, v), (0, «)) (2.1)
for every ueR" and every xeU" with ||x||<p. Clearly we can take cp and cj,
arbitrarily near 1 by taking p sufficiently small. From (2.1) we have that if y is a
piecewise C1 curve contained in the ball with centre 0 and radius p then

cplgo(y)^lg{y)^c'plgo{y),

where g0 is the constant Riemannian structure, i.e. go((x, v), (x, w)) = g((0, v), (0, w))
for all x,v,weW. Hence, if p > 0 is sufficiently small then

cpd0(x, y) < d(x, y) < c'pd0(x, y)

for all x, y 6 U" with ||x||, ||_v|| < p. Therefore for p > 0 sufficiently small we have that

cpd0(x, S) < d(x, S) < c'pd0(x, S)

for all xeR" with ||x|| <p. This proves the lemma. •

LEMMA 2.2. Let ScR" be a codimension one C1 submanifold containing 0 and dh

j = l,2 fee C° metrics on U". Then there exists a positive real number A such that
d,(Xi, S) — Ad2(Xj, S) for any sequence xf e W -S converging to OeU".

Proof. By taking C1 coordinates on W we may assume that 5 is a hyperplane. By
lemma 2.1 we can assume that d, and d2 are induced by Riemannian structures
which are constant with respect to this coordinate system. From these observations
the lemma follows easily. •

Remark. If S is another C1 codimension one submanifold tangent to S at 0 and
x, e R " - S converges to 0 then d^Xj, S)- Ac/2(x,, 5), where A is the same constant
as for S. This follows from the proof of the lemma and the fact that we can find a
pair of C1 diffeomorphisms <px,<p2- (R", 0) £D such that <pi(S) = <p2(S) is a hyperplane
and the derivative of <px ° tpl1 at 0 is the identity.
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Using C° metrics we can introduce the notion of contact of C1 submanifolds.

Definition. Let x be a point of tangency of two C' submanifolds S,, S2<^ M. We
say that S, has a contact of order n with S2 at x if for some metric d on M the limit:

exists and is positive. If this limit is infinite we say that the contact is less than n.
If the limit is zero for all n we say that the contact is infinite.

Remark. From lemmas 2.1 and 2.2 it follows that the above definition is independent
of the metric. Notice also that the contact may not exist. However if there is a C1

coordinate system <p on a neighbourhood of x such that (p(Sx) and <p(S2) are both
C°° submanifolds of R2 then the contact is either defined or it is infinite.

Definition. Let p be a hyperbolic fixed point of a C°° diffeomorphism/: M-> M. By
a linearising metric at p we mean a C° metric d on a neighbourhood U of Ws(/>) u
W(p) such that in a C1 coordinate system in £/ linearising/ d coincides with the
Euclidean metric.

Remark. If Ws(p)n W(p) = {p}, such a linearising metric always exists. In fact
by a theorem of Hartman [Ha] (see also the appendix) there is a C1 coordinate
system in a neighbourhood of p linearising/ If W(p) n W"(p) = {/?}, this coordin-
ate system can be extended to a full neighbourhood of Ws(p)u W(p). Thus we
obtain a linearising metric at p. These metrics are not unique. However, since any
C1 diffeomorphism commuting with a linear contraction /: R -» R is linear, it is easy
to see that if d is another linearising metric then the restrictions of d and d to each
connected component of W(p) u W"(p) — {p} differ only by a multiplicative con-
stant.

The following two lemmas will be used repeatedly.

LEMMA 2.3. Let p be a hyperbolic fixed point of saddle type of a C2 diffeomorphism
f:M->M. Let xe W"(p)-{p}, d be a C° metric on M and a be the contracting
eigenvalue of dfp. For any sequence x, ->xwe have:

(i) if there exists a sequence n{i) ->oo such that f~nU)(xt) converges to a point
ze Ws(p), then d(xt, Wu(p))-cd(z,p)\a\"u) for some constant c which depends on
x, z and d but not on the sequence; if d is a linearising metric then c is independent of
x and z;

(ii) ifd(Xj, W(p))~c\a\"u) for some constant c>0 and some sequence n(i)->oo
then the sequence /~n<l)(Xi) has precisely one limit point ifa>0 and two limit points
ifa<0. These limit points are contained in Ws(p).

Proof. It is clear that both statements hold for a linearising metric. Therefore the
lemma follows from lemma 2.2. •

Definition. Let x be a one sided tangency (for example a quadratic tangency or a
tangency of even order) between Wu(p) and Ws(q), where p and q are hyperbolic
fixed points of/ Let ye W{q). We say that a sequence x,->x is nice with respect
to the pair (x, y) if (i)/''(xf) converges to y; (ii) d(xt, Wu(p))^d(xiy Ws(q)).
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We will now prove that the property of being a nice sequence is preserved under
a topological conjugacy.

LEMMA 2.4. Let h be a conjugacy between f and f. Then x,->x is a nice sequence with
respect to (x,y) if and only ifh(Xi) is a nice sequence with respect to (h(x), h(y)).

Proof. We have two cases to consider: (a) y is accumulated by the iterates of any
small interval in W(p) which contains x; (b) case (a) does not occur. In both
cases it is easy to see that we have the following characterisation of nice sequences.
The sequence x,->x is nice with respect to (x, y) if (\) fl(xt)-> y; (ii) given sequences
of integers n(j) -* oo and i(j) -> oo such that/~"0)(x,0)) converges to z e Ws(p) then
for any other sequence xj-»x such that/'(xJ)->y we have:

lim sup d(f-niJ)(x'iU)), p) < d(z, p) in case (a),]
HmM d(f-"U)(x'iU)),p)>d(z,p) incase(b).] (*)

In fact let x, be nice with respect to (x,y). Then d(x{, W(p))=-d(xi, Ws(q)) and
f'(Xi)->y. If for some other sequence x\ we also have /'(x\) -> y, then by lemma 2.3
one has d(x,, Ws(q))^ d(x\. Ws(q)). Moreover since W"(p) and Ws(q) have
one-sided tangencies

d(x[, W"(p)) < d(x\, Ws(q)) in case (a),
d(x\, W"(p)) > d(x\, W'(q)) in case (b).

Hence the limit points of {d(x'h W"(p))/d(x,, W(p))} are at most 1 in case (a),
and at least 1 in case (b). From this and lemma 2.3 one deduces (*). Similarly (*)
implies that x, is a nice sequence. Since Ws(p) has dimension one, it follows easily
that these characterisations are preserved under conjugacy. D

2(b). Construction of moduli. Now we will construct all conjugacy invariants arising
from non-transversal intersection of invariant manifolds of periodic points. To
simplify the exposition we will assume that all periodic points involved are in fact
fixed points. The general case is treated in the same way by looking at appropriate
iterates of the diffeomorphism. The next lemma introduces the first conjugacy
invariant found in [P2] and shows the rigidity of the conjugacy if this invariant is
irrational as in [Me2].

LEMMA 2.5. Let x (resp. x) be a tangency of even order between W"(p) and Ws(q)
(resp. W(p) and Ws(q)) where p and q (resp. p and q) are hyperbolic fixed points
of the C2 diffeomorphism f (resp. / ) . Let a (resp. a) be the contracting eigenvalue of
dfp (resp. dfp) and )3 (resp. /•}) be the expanding eigenvalue of dfq (resp. df9). Let h
be a conjugacy between f and f with h(p)= p, h(q) = q and h(x) = x. Then we have
the following properties:

(1)

(2) Let dp be a linearising metric atp and dq be a linearising metric atq.If log | a |/log |j81
is irrational then

dp(h(z),p)
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is constant in each connected component of Ws(p) — {p}, and

d,(h(w),q)

K(w,<z)] l o g l / 3~ l / l o g"'
15 constant in each connected component of W"(q) — {q}.

Proof (1) Let x,-»x be a nice sequence with respect to (x,y) where ye W(q).
Hence by lemma 2.4 x,•, = h(xt) is a nice sequence with respect to (h(x),h(y)).
Choose subsequence i(j) and n(j) such that /~n0)(Xi0)) converges to a point
ze Ws(p). From lemma 2.3 it follows that

Hence i(j)/n(j) — log |a|/log |/3|. Since /i is a conjugacy it follows also that
0) = log|a|/log|/3|. Thus

log[q| log|a|

(2) Let x, be nice with respect to (x, y). From the first part of the proof it follows
that for any i(j), n(j')->oo,

dP(rnlJ\xtU)),P)~*x-dq{y, q) • |0|'O) • \a\~nu\

where Ax = c'/c. It follows that for any z in one component of Ws(p)-{p} there
exists i{j), n(j) such that/~"0)(xl0))-»z, since log |a|/log |/3| is irrational. Because
the same holds for / one has

df(h(z),p)_ A, dq(y, q)
(dp(z,p))s (AJ6 (dq(y,q)r

where 5 = log |« | / log | « | = log |/S|/log |j3|. Since the right hand side of this equation

is independent of z, the result follows. HI

Remarks. (1) From the second part of lemma 2.5 it follows that the restriction of h

to Ws(p)-{p} and to W"(q)-{q} is a C1 diffeomorphism.
(2) The restriction of h to each component of Ws(p)-{p} and W"(q)-{q} is

determined by the image of one point. This is the rigidity of the conjugacy we have
mentioned before.

COROLLARY 1. Each orbit of tangency between stable and unstable manifolds of periodic
orbits gives rise to at least one modulus condition.

Proof. If/has k orbits of tangency, then arbitrarily near/there is a diffeomorphism
/ with at least k orbits of tangency of even order. Let Wu(p) and Ws(q) have
tangencies of even order along r orbits CKx,),..., O(xr). Then from the proof of
lemma 2.5 (using the same notation) one obtains the following r conditions:

log|a|_log|q| (Ax,)8_(Ax/

log 1/3] log|)8| 3 n A,, ~(A*,)'

From this corollary 1 follows. •

COROLLARY 2. IffeM has finite moduli then satisfies conditions (1), (2), (3) and
(5 )o /§ l .
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Proof. If fe si does not satisfy (1), (2), (3) or (5) then for any fceN there exists a
diffeomorphism / arbitrarily near / satisfying one of the following properties:

(a) / has at least k orbits of tangency between stable and unstable manifolds of
periodic orbits;

(b) there exist saddles p, q so that Wu(p) and Ws{q) are tangent and so that
there exist an infinite number of orbits of intersections of invariant manifolds of
saddles with Ws(p) or W"(q). In the latter case / has modality at least k because
of remark 2 above. In the former case / has modality oo because of corollary 1.
Since this holds for any k the modality of/ is oo. •

LEMMA 2.6. Let f and f be as in lemma 2.5 with log |a|/log |/3| irrational. Let r
(resp. f) be a hyperbolic fixed point off (resp.f) of saddle type whose stable manifold
intersects transversally the unstable manifold ofq (resp. q). Ifh is a conjugacy between
f and f then the expanding eigenvalue of df(r) is equal to the expanding eigenvalue
ofdf(f).

Proof. Let d (resp, d) be C° metrics as before. Let y,;e W(q) be a sequence
converging to ye W(q)n Ws(r) and such that f'(yt) converges to a point we
W"(r). Since h\Wu(q)-{q} is C\ there exists a constant c,>0 such that
d(h(y{), h(y)) — Cjd{yt, y). If y is the expanding eigenvalue of df(r) we have, by
lemma 2.3,

d(y,, Ws(r))^c2d(w,r)\y\-

for some constant c2>0. Similarly

d{h(y,),Ws(r))^c2d(w,f)\y\-'.

From these equations we have |y| = |y|. Clearly this implies y = y. •

Remark. Similarly to the above situation we have that the contracting eigenvalue at
each saddle point whose unstable manifold intersects W(p) transversally is a
conjugacy invariant.

Now we will introduce some other conjugacy invariants which arise in the following
situation: there are three fixed points p, q, r such that W"(p) has a point x of
tangency with Ws(q) of order 2n and W"(q) has a point y of tangency with W$(r)
of order 2m. Take C1 curves 2x ,Sy at x, y, transversal to W*(q) and W{q)
respectively. Take a neighbourhood R of q which contains x and y, and on which
/ has a linearising coordinate system. Let £n x be the component of / " ( I J n f i
containing f"(x), and similarly £n>, the component of f~"(2.y)nR containing
f~"(y). There are four cases to consider: (see figure 2.1).

Case A. 2n>xn Ws(r) and 2n>>n W(p) do not accumulate to y respectively x as

Case B. S n x n Ws{r) does accumulate to y, but £„_,,n W"{p) does not accumulate
to x;

Case C. S n x n Ws(r) does not accumulate to y, but Sny n W"(p) does accumulate
tox;

Case D. 2n,xn Ws(r) and S n y n W"{p) do accumulate to y respectively x.
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case A

n
case C

ill:

case B case D
FIGURE 2.1

LEMMA 2.7. Let f: M -> M be a diffeomorphism having the same intersection pattern
of stable and unstable manifolds as f. Consider the following equations:

(Ml) a = d

(M2) /? = /?

(M3) a = a

(M4) b = b

Qx[d(x,q)]2n_Qi[d(x,q)]2"

d(y, q) d(y, q)

Qy[d(y,q)]2m_Q9[d(y,q)]2m

d(x, q) d(x, q)

(M5)

(M6)

where a, a are contracting eigenvalues of dfp and dfq; (1, b are expanding eigenvalues
ofdfq, df; d is a linearising metric at q\

Qx= lim
d(w,

[d(w, X)] 2n > Qy = lim
d(w,

[d(w,y)]2"'-

If log |a|/log |j8| and log |a|/log |fc| are irrational and h is a conjugacy between f and
f such that h(p) = p, h(q) = q, h(r) = r, h(x) = x and h(y) = y then the following
conditions are satisfied:

Case A. Conditions (Ml) to (M6).

Case B. Conditions (Ml) to (M4) plus condition (M5).

Case C. Conditions (Ml) to (M4) plus condition (M6).

Case D. Conditions (Ml) to (M4).
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Proof. From lemma 2.5 we have that

log|a| log |a|
(1)

(2)

log 101 log 1̂1
and

log |a| log |q|
log|b|~log|51"

Furthermore if these numbers are irrational we have that h\Ws(q)-{q} and
h\ Wu(q)-{q} are C1 maps. We will show now that in all cases equalities (Ml) to
(M4) are satisfied. Take a sequence xte Ws(q) converging to the point of tangency
x and such that /~n(l)(x,-) converges to some point ze Ws(p). By lemma 2.3 we
have that

d(xu W"(p))^cd(z,p)\a\n{'\ (3)

where c is a positive constant independent of the sequence. Now W{p) and W'iq)
have a tangency of order 2n at x. Therefore if we consider a C°° metric d' induced
by a C°° coordinate system in which W(p) is a straight line and Ws(q) is the
graph of a homogeneous polynomial of degree 2M then

d'(xlt W(p))
[d'(Xi,x)f" *Q» ( 4 )

where Q'x is a positive number. But since d is a C° metric, lemma 2.2 tells us that
d{x,, W"(p))/d'(Xj, W"(p)) converges to a positive constant which does not depend
on the metric. Clearly the sequence d(x,, x)/d'(x,, x) also converges to a positive
constant because xr e Ws(q). This and (4) imply that

d(x,, W(p))

[<*(*,,*)]'" *Q' ( 5 )

and Qx>0. Now fi| Ws(g)-{p} is C1 so that

d(x,-,x)~J(h(x,),x). (6)

Equations (3), (5) and (6) imply that \a\ = \a\. Hence a = a. Similarly we prove that
b = b and from (1) and (2) it follows that /3 = y3 and a = a. If we are in case D then
we are finished. So let us show that there are additional moduli in cases A, B, C.
Let us prove that (M5) is satisfied in cases A and B. For that, take a sequence x, -» x
nice with respect to (x, y). Choose subsequences i(j) and n(j) such that/~"0)(x,0))
converges to a point ze Ws(p). Since we are in case A or in case B we can take a
sequence z, e W*(q) such that/~"(j)(z/)-*z. Since {x,} is nice with respect to (x,y)
and d is a linearizing metric we have

d(xlU),W
u(p))^d(xl(j},W

s(q)).
So we have

Hj>. (7)

Since / " 0 ) (x , 0 ) ) and /~"0)(z,) both converge to z we have from lemma 2.3 that
d{xiU),W

u(p))^d(Zj,Wu(p)). Finally we have equation (5): d{zj,
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Qx{d(zj,x)}2n. This and (7) imply:

QAd(x, q)}2n

d(y,q)
Since h\ Ws(q)-{q} is linear and d is a linearising metric we have

d(zj,x) d(x,q)
d(h(Zj),h(x))~ d(h(x),h(q)Y

From this, /3 = /3, and (9) it follows that
Qx-{d(x,q)}2"

d(y, q)
is a topological invariant.

Similarly, we prove that in cases A and C condition (M6) is satisfied. •
Remark. It is not obvious that the numbers which appear in the modulus conditions
(M5) and (M6) are independent of the choices made for the metric d. That these
numbers are independent of the metrics is proved in § 3(b). (In case A this also
follows from the conclusion of lemma (2.6)).
In § 5 we shall show that the equations from lemma (2.6) are the only obstructions
for constructing conjugacies between two diffeomorphisms as above.

Proof of the theorem. It remains to prove that if fe s4 has finite modality then
conditions 4 and 5 of § 1 are satisfied. Notice that if/ has finite modality then the
modality of any g sufficiently near/ is at most equal to the modality of/ So we
will prove that if/e si does not satisfy condition 4 of § 1 then/can be approximated
by diffeomorphisms with arbitrarily high modality. So let /e si be a diffeomorphism
having an orbit of non transversal intersection between Ws(q) and W"{p). We may
assume that all periodic points are in fact fixed points by considering a sufficiently
high iterate of/ By taking a small perturbation of/ we may assume that W"{p)
has a point x of quasi-transversal (i.e. quadratic contact) intersection with Ws{q).
Now assume that condition 4 of § 1 does not hold. Then any arbitrarily small arc
2 at x transversal to Wu(p) contains unstable (stable) manifolds of saddles. Then,
by taking a small perturbation of / one can find a saddle P (resp. Q) such that
W(P) (resp. WS(Q)) has an intersection with Ws(p) (resp. Wu(q)). We also may
assume that W(P) (respectively WS(Q)) contains a small interval / (resp. J)
which intersects transversally Ws(p) (resp. W(q)) in a unique point (see figure
2.2). Now assume that condition 4 of § 1 does not hold. Then//c( /) has an intersection
with J for any k sufficiently big.

From the appendix it follows that we can construct an invariant C1 unstable (resp.
stable) foliation 3^p (resp. 2Fs

q), with a C1 tangent line field, having / (resp. J) as a
leaf.

Claim. If log |a|/log |/3| is irrational then the points of tangency of fk(J) with cFu
p

accumulate at In Ws(p).
The theorem then follows easily from this claim. In fact, if the claim is correct then
by a C°° small perturbation of/with support in a small neighbourhood of / n Ws(p)

https://doi.org/10.1017/S0143385700004120 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004120


426 W. de Melo and SJ. van Strien

FIGURE 2.2

we can create an arbitrary number of orbits of tangency between W(P) and WS{Q).
Since by corollary 1 each orbit of tangency gives rise to a conjugacy invariant we
have that/ has infinite modality. So it remains to prove the claim. Since x is a point
of quasi-transversal intersection of W"(p) with W(q) and the tangent line fields
to the foliations 9U

P and ^s
q are C1 it follows, from the implicit function theorem,

that in a neighbourhood of x, ?FU
V is transversal to &\ except along a C1 curve 2

which is transversal to Wu(p) at x (see [Me2]). Let

an = /"( / ) n 2 and bn = / - ( / ) n J .
If d is a C° metric on M then we have

where Ci, c2 are positive constants. This follows from lemma 2.2, the transversality
of 2 with W"(p) and the fact that (*) is obviously true for appropriate linearising
metrics. Now since log |a|/log |/3| is irrational we can find sequences n(k), m(/c)-»oo
such that \/3\~n{k)/\a\m{k)^cJc2. From (*) therefore follows

im(fc)

and therefore:

Hence/ m(k\bMk)) converges to Ws(p)r^I as fc^oo. This proves the claim. •

3. A few techniques for constructing conjugacies
In this section we will develop a few techniques for constructing conjugacies. In
§§4 and 5 we will employ these techniques in order to construct conjugacies between
two nearby maps in si which satisfy the relevant moduli conditions.

Let us start with making a general comment. It is well known that every
diffeomorphism in si which satisfies certain transversality conditions on invariant
manifolds is structurally stable, see [Rbl]. In order to prove these results one has
to construct conjugacies between two nearby diffeomorphisms. Basically there are
two ways of doing this. One method is functional analytic. Here one defines an
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operator on an appropriate space of homeomorphisms and shows this operator has
a hyperbolic fixed point, see [Rbl]. The other method is a geometric proof using
invariant foliations, see [PI], [PS], [Mel], [Me2]. (For Axiom A diffeomorphisms
this geometric method has only been developed in dimension two, see [Mel]). In
any case it is probably difficult to use the functional analytic methods since all the
operators will be non-hyperbolic, see [Rb2]. Therefore we will give geometric
constructions using invariant foliations. These methods also enable U9 to keep track
of all the freedom one has in constructing the conjugacies. Let us now define these
invariant foliations and explain how they are used.

Take a hyperbolic periodic point p (of saddle type) of a diffeomorphism / An
unstable foliation tFp1 (tubular family) for p is a continuous retraction vu:V"-*
Ws(€(p)), where €(p) is the orbit of p and V is a neighbourhood of W"(O(p))
with: (i) (iru)~

1(p)= W(p); (ii) the foliation whose leaves are fibers of nu is
/-invariant. Similarly we define the stable foliation 9>s

p for p. Using the A-Lemma
it is easy to construct invariant unstable foliations, see [PI]. The leaves in fact can
be chosen differentiably (Ck if / is Ck) but the field of tangent lines to the leaves
is only continuous in general (however see the appendix where we prove this foliation
is sometimes more smooth). The use of this foliation is explained by the following
lemma whose proof is straightforward.

LEMMA. Let p, p be hyperbolic fixed points of f and f with unstable foliations &"p, 5FU
P.

Let h be a map from a neighbourhood Jfp of W"(p) to a neighbourhood of W"(p)
with the following properties: (i) hf = fh; (ii) (h\ Ws(p)): Ws(/>)-> Ws(p) is con-
tinuous; (iii) h\(Jfp— Ws(p)) is continuous; (iv) h preserves the unstable foliations.
Then h is continuous.

In order to construct global conjugacies it is necessary that all unstable foliations
fit together nicely. So let p, q be hyperbolic periodic points of/ with W"(p)r\
Ws(q) # 0 . We say that the unstable foliations &p and 2Fu

q are compatible if each
leaf of ^ contains a leaf of &"q. In order to construct a conjugacy h between two
nearby Morse- Smale diffeomorphisms one first constructs conjugacies on the stable
manifolds of periodic orbits of saddle type preserving the unstable foliations. Here
one proceeds inductively using the natural dynamical ordering of periodic orbits
starting at sources and ending up at sinks. Then we extend h to fundamental domains
of the sinks again preserving these foliations. The conjugacy equation (hf = fh)
gives a unique extension of h to the whole manifold. From the lemma above it
follows that h is continuous. In this approach the compatibility of the foliations is
essential.

In our case we have tangencies of invariant manifolds. Therefore some leaves of
unstable foliations do not have a unique intersection with stable manifolds. Hence
it is impossible to construct a compatible system of unstable foliations. So we will
have to use both the unstable and the stable foliations. In the Morse-Smale case
these foliations are transversal but here they can be tangent. The geometry of their
intersection is extremely complicated (especially when higher order tangencies are
involved). So we are forced to make careful adjustments of these foliations in order

https://doi.org/10.1017/S0143385700004120 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004120


428 W. de Melo and S.J. van Strien

to get a good control of their intersection. These modifications near the tangencies
must be globalised in order to keep the foliations invariant. For that we need some
careful estimates which we will make in § 3(a) using a generalised A-Lemma proved
in the appendix.

There is another difference with the Morse-Smale case. Here we will have to
define the conjugacy in a whole neighbourhood of the tangency points first. Then
we have the problem of extending h continuously to the closure of the orbit of this
neighbourhood. This is done in § 3(b).

3(a). Construction of foliations. Let p be a hyperbolic fixed point (of saddle type)
of a C°° diffeomorphism / As usual we say that D is a fundamental domain of
Ws(p) if each orbit in W*(p) has exactly one intersection with D. Similarly N is
called a fundamental neighbourhood of Ws(p) if each orbit sufficiently near Ws(p)
has precisely one intersection with N. Take a point x e W(p) — {p} and a small
neighbourhood Vx of x. Let Cxn be a cone-like region which has a tangency of
order n with W"(p) at x:

Cx = Cx,n={weVx;d(w, Wu(p))>c(d(w,x))"}.
Here d is a C° metric on M and c is .a positive constant. Let f b e a C' invariant
foliation on Vx whose leaf through x is W"(p). For each a e Vx let La denote the
leaf of 3F through a.

LEMMA 3.1 (Extension of foliations defined on cones). / /

.. sup {d(w,Wu(p));w€LanCx}
inf{d( w, Wu(p));w 6 LanCx}

_

then there exists an invariant unstable C° foliation 3F"p whose restriction to Cxn coincides
with &.

FIGURE 3.1

Remark. If d is a linearizing metric then lemma 3.1 remains true if we take for Cx

a whole neighbourhood of x, provided Vx is contained in a fundamental domain.

Proof Take any invariant unstable foliation 9"p of p. We will modify 3FU
P so that

restricted to Cx it will coincide with &. Let Nx be the connected component
containing x of a fundamental neighbourhood of W"(p) such that Nx - Cx consists
of two components as in figure 3.2. For Nx sufficiently small ^u

pr\ NxndCx has
precisely two intersections.

Define the new foliation i¥u
p in Nx by taking this foliation identical to &u

p on Nx - Cx

and identical to & on Cx. Clearly ZFp extends uniquely into an invariant foliation
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p ,,

FIGURE 3.2

on a neighbourhood of W"(p) — {p}. We must show that the closure of each leaf
of 9U

P has exactly one intersection with W(p). More precisely, we must check that
there is a continuous projection irp on Ws(p) along the leaves of &%. In order to
show this it suffices to prove that for any sequence a(i)e Nx such that f~'(a(i))-> ye
Ws(p) as <'-»ooonehas/~'(La(1))-»>>. Here La(l) denotes the leaf of ^ n Nx through
a(i). Now if a(i) and x(i)eLa(i) are both contained in the same component of
Nx - Cx it follows from the fact that 9*"p is identical to the unstable foliation 3>"p

(on Nx-Cx) that f~'(x(i))^> y. So it suffices to consider sequences a(i)e Nxn Cx

and show that for x(i)e Laii)n Cx one has / " ' (* ( ' ) ) ^.F- But from equation (3.1) it
follows that

d(x(i), Wu(p)). (3.2)

From equation (3.2) and lemma 2.3 it follows that f~'(a(i))->y if and only if
f~'(x(i))-* y. This finishes the proof of the lemma. •

It will be convenient to give a general way of constructing foliations & which satisfy
equation (3.1), in terms of some C'-coordinate systems near x. In fact take a
C1-coordinate system (w, v) near x so that

In these coordinates the leaves of 3F are in the form

La = {v = g(u, a)},

with g(0, a) = a. Write ga{u) = g(u, a).

LEMMA 3.2 (Construction of foliations in cases which can be extended to tubular
families). Let n be the order oftangency of the cone Cx>n with W(p) and let g: R2 -»IR
be so that:

(1) the n-jet j"ga{u) varies C' or, in other words, ai->j"ga{u) is C1.
(2) u^ga(u) isCx.
(3) jngo(u) = 0.

Then the conclusion of lemma 3.1 holds, i.e. the foliation 3F on Cxn (corresponding to
g as above) can be extended to an unstable foliation.

Proof. According to the theorem of Taylor one has

g(u, a) = a + <p2(a) • u + - • - + <pn{a) • u" + R(u, a) • u", (3.3)

with R(u, a)->0 as (u, a)-*(0, 0), and with <pt C
1 so that ^(0) = 0. Now for (i, v) e
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Cx „ one has for some constant c,,

(3-4)

Now let (M, V) = (u, g(u, a)). Since <pt is C1 and <p,(0) = 0 one has from (3.3) and
(3.4) that:

\v\ = \g(u, a)\< c2 • \a\ + c, • \v\ • \R(u, a)\

for some constant c2. From this it follows that

| u | s c , | a | and | u | " s c 4 - | a | (3.5)

for some constants c3 and c4. Therefore

V

a a

a

1

+ • • • +
a> (a)

a
• u" +

u"
a

— -\R(u,a)\

From this it follows that
v

1
a

g(u,a)
- 1 (3.6)

as (x, a)-»(0,0). Obviously equation (3.6) implies equation (3.1) in lemma 3.1.
D

We will use lemma 3.2 in order to modify foliations near certain parts of the manifold.
Let / be a diffeomorphism with a non-transversal saddle-connection as in figures
(3.3) and (3.4).

P,

FIGURE 3.3. Tangency of even order

P m

FIGURE 3.4. Tangency of odd order
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Assume that W(p) and Ws(q) have a tangency of order n at x. Let 3^ and &*q

be respectively the unstable foliation at p and the stable foliation at q. According
to the theorem in the appendix one can choose these foliations C1 so that the fields
of tangent lines are C1 and so that the leaves of these foliations are C°°. We first
show that 3fU

p and &s
q can only be tangent in a certain cone Cxn.

LEMMA 3.3. Let 3F, SF' be C1 foliations on a neighbourhood of the origin of R2 such
that the leaves are Cr + 1, r > 1, the fields of tangent lines are C1 and the leaf&'{0) of
9' through 0 has contact r+ 1 with 9>(Q). Let Tbe the set of points where 2F is tangent
to 3*'. Then the contact of T with ^(0) at 0 is less than r+\, that is more precisely,
either T - {0} = 0 or

where d is some C° metric.

Proof. Choose a Cr + 1 coordinate system (u, v) in a neighbourhood of 0 such that
&(0,0) = {(u, U)|U = 0} and ^ '(0,0) = {(w, V)\ V = wr+1}. Denote by <p(«, w) the
tangent of the angle of ^'{u, v) with the horizontal line through (w, v) and by <p(u, v)
the tangent of the angle between 9{u, v) and 2F'{u, v). Hence <p and </> are C1,
i/f(u,0) = <p(u,0), <p(w, ur+1) = ( r + l ) • ur and T={(u, u)|iA(w, y) = 0}. By the mean
value theorem we have

and

3<A
d/(u, v) = tli(u, 0)H (w, v) • v,

dV

(u, 0) = <p(u, 0) = <p{u, ur+l) - — {u, v) • ur+\
dV

for some t; between 0 and v and some v between 0 and ur+1. Thus

*(u,v) = (r+l) • w r - —(M, 5) • ur+1 + ^ ( « , v) • v,
dV dV

and
I/»(M, v) r+l dcp dip v

If (u, DJeTwe have \jj(u, v) = 0 and since d\p/dv and 8<p/dv are bounded, we have

ID!
lim

(u D ) E T UY ' '
u->0

This clearly proves the lemma. •

Now we will put lemma 3.2 and lemma 3.3 together and show how to modify the
foliations 3FU

P and SFs
q so that they are tangent only along a curve.

Consider any C° metric d. Since Wu(p) and Ws(q) have a tangency of order n
one has (as in lemma (2.6)) that

for some positive number Qx. Now let T be the set where SFU
P and ^ are tangent,

and let as before
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According to lemma 3.3, for any c > 0 there is a neighbourhood Vx of x so that

TnVx^Cx_n.

So take c> Qx, and Vx so small that Q n n Ws(q) = {*} = Cxn n Wu(/>). In other
words, outside the set Cxn the foliations 2F"P and &q have no tangencies (in Vx), so
we will modify these foliations in Cx n. We can modify either 3^ or &\ according
to whichever is more convenient. Let us change &s

q. In order to do this take
C1-coordinates (u, v) near x so that {v = 0} = W"(p), and so that the leaves of S'p
are of the form {v = c}, i.e. parallel to the {v = 0} line. From the appendix it follows
that this is possible. Clearly we can write Ws(q) in the form Ws(q) = {v = q(u)}
where q is some C1 function and q(0) = 0. From the remark above lemma 2.3 it
follows that q(u)/u" converges to a number Q^O as u-»0. We will treat the case
that n is even and the case that n is odd separately.

Case 1: n is even. Consider the foliation { v = g(u, a)}, a eU, where g(u, a) = Qu" + a.
According to lemma 3.2 we can change the foliation 2Fs

q so that inside Cxn the
leaves of this foliation are of the form {v = g(u, a)}. From this and lemma 3.3 it
follows that then &u

p and 9\ are tangent exactly along the line {« = 0}.

Case 2: n is odd. In this case change the foliation $F\ so that inside Cx „ the leaves
of this foliation are of the form {v = g(u, a)}, where g(u, a) = Qu" + a2 • u + a. From
this it follows that then 9^ and &q are tangent only at the point x.

Remark. The set Cxn\{x} consists of two components. Sometimes it will be necessary
to modify ^ in one component and &q in the other component.

3(b). Construction of conjugacies. Now we give a lemma which will show us how to
use these foliations in the construction of conjugacies. As before let Vx be a
neighbourhood of a point xe W{p)-{p} and let,

Qn={wE Vx;d(w, W"(p))>c-{d(w,x)}n}.

(Here d is a C° metric as before).
We consider the following situation. Let p, p be hyperbolic fixed points of C2

diffeomorphisms ff. Let the contracting eigenvalue of / (resp. / ) be a (resp. a) ,
and let

log I a |

Let 5*p (resp. &u
p) be the unstable foliation for / ( resp. / ) . Let d, d be two C°

metrics. We have the following.

LEMMA 3.4. Let h : Vx ^> Vx be a homeomorphism satisfying the properties:

(1) hm ——: g exists and is positive.

(ii) The restriction ofh to each connected component of Vx — Cx maps leaves of the
restriction of the foliation 3Fu

p to this connected component into leaves of !¥p.
Then h extends to a homeomorphism of a neighbourhood of p, conjugating f and f.
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Proof. Let a" and d' be metrics induced by C1-linearising coordinates for/ (resp. / ) .
From lemma 2.2 in § 2 it follows that

Furthermore since d' and d' are induced by linearising coordinates one has for
sequences xt-*x that/~"(l)(x,) converges to some point ze Ws(p) if and only if

d'(xh W"{p))^d\p,z)-\a\n(i\

and a similar statement holds for / From this, equation (3.6), and the fact that
|a|a = |a|, it follows that h extends to a homeomorphism of the closure of
U?=of~k(Cx,n) conjugating / and /

Now assume Vx is sufficiently small so that /(Vx) n Vx = 0 . We can extend h to
Vx by taking any extension of h\ Cxn which maps leaves of 2Fp to leaves of J% It
follows that h extends to the closure of \J7=of~k( vx)-

Let us now extend h to a neighbourhood of W"(p). Take a leaf F of 9>u
p. For

simplicity we can assume that Vx is chosen so that if F intersects Vx, then F\( Vx u
/~'(Vx)) consists of three components, see figure 3.5. Consider the component of
F\(Vx\jf-\Vx)) with boundary points x,e Vx and x2ef'l(Vx).

FIGURE 3.5

Consider h(x,) and h{x2). In general h(xt) and h(x2) need not lie on one leaf of
S'p. Therefore we will modify 3^. In fact take two curves 2 i ,S 2 transversal to
W(p) between h(Vx) and f~\h(Vx)) as in figure 3.5. The leaf Ft of ̂  through
h{Xj) has an intersection vt with Sj. Take a leaf LUi in the strip between 2, and 12

which is piecewise linear with respect to the linearising coordinates for / such that
LV|n£, = i),, LVir\l.2= v2. Do this for every t ^ e ^ . Now define a new foliation
'&p' which is identical to &"p outside the strip between Sj and ~L2 and identical to
the piecewise linear one inside this strip. It is easy to see that ' ^ ' is an honest
invariant unstable foliation for p, using lemma 3.1.

Now define a conjugacy Ziona neighbourhood of W"(p) by taking any extension
of h | Vx which maps leaves of ̂ JJ onto leaves of '^jj ' . From the construction above
it follows that this is possible. •

Now we consider the situation that a homeomorphism h is only defined on a
cone-like set Cx. More specifically consider the situation that / has hyperbolic
saddle-points p, q such that W(p) and Ws(q), have a tangency of (even) order n
at a point x.
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p

I /

9
X

FIGURE 3.6

Let Cx be the cone-like set as in figure 3.6, and let / be a diffeomorphism so that
W"(p) and Ws{q) also have a tangency of order n at x. Assume h: Cx -» Cx is a
homeomorphism. When can we extend /i to a conjugacy on a neighbourhood of p?
In order to investigate this question take a C°-metric d near x and define

w e W ( < 7 ) < £ 1 ( W X ) f

As we have shown before, Qx is well defined and Qx # 0. Define Qx similarly. Let
/ be a C°° curve through x transversal to W(p) and take a similar curve T for /
We assume that h(l) = T and that the following limits exist and are positive:

d(h(w), M
C\ = lim d(w, I) and C? = lim

d(w,Ws(q))

Also assume the contracting eigenvalue of/at p is equal to the contracting eigenvalue
of / at p. The numbers Qx, Cl5 C2 do depend on the choice made for the metrics
d, d. However we have the following result.

LEMMA 3.5. Let h be a homeomorphism as above. Then:

(1) the equality QX = (C"/C2)QX does not depend on the metric d,d; (i.e. if the
equality holds for some C° metrics d, d then it holds for all C° metrics);

(2) if Qx = (C"/C2)QX then the homeomorphism h can be extended to a conjugacy
on a neighbourhood of p.

Proof. (1) Let d' be another C° metric instead of d. From lemma 2.2 and the remark
below this lemma we have that there exists A > 0 so that

d(w, W(p)) d(w, V\
= A = lim

d'(w,W(p)) " ;•;" d'(w, W'(q)Y
we W (q) W(ECX—W(P)

Furthermore if we Ws(q) converges to x then from lemma 2.1 it follows that
d(w, x)/d'(w, x) converges to a positive constant fi. On the other hand one has
d(w, l) — d(w, x), d'(w,l) = d'(w,x) for we Ws(q) converging to x since Ws(g)
and W(p) are tangent to each other and transversal to /. Hence for some /x>0

d(w, x) d(w I)
hm — : = u= limd'(\V, X) d'(\V,
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It follows immediately that the equality QX = (C"/ C2)QX does not depend on the
choice of d. Similarly it does not depend on the choice of d.

(2) Take C°° coordinates (u,v) at x so that W"(p) = {v = 0}, Ws{q) = {v = Qxu"}
and / = {« = 0}. From (1) we can take for d the usual Euclidean metric in this
coordinate system. Take weCx and let w have coordinates (u, v). Then

d(w, W(p)) = v = Qx(d(w, l))n + v - Qx(d(w, /))-.

Furthermore

v-Qx(d(w,l))n^d(w, Ws(q))

as w~* x (see the arguments used in the remark below lemma 2.2). Now we use the
following elementary fact. Take sequences a,, b,, cf, dt of positive numbers such
that ai-bi + q and cjd{ converges to 1. Then a, = b, + 4 . It follows that

d(w, W"{p))= Qx(d(w, l))n + d(w, Ws(q))

and similarly

d(h(w), Wu(p))^Qz(d(h(W), T))" + d(h(w), W'(q)).

Using a similar elementary computation as above one concludes that

d(h(w), W(p))

d(w, W"(p))

converges for weCx converging to x if and only if

C
Q* = -^QX.

(In this case the limit is C2). Using lemma 3.4 it follows that we can extend h to a
conjugacy near p. •

4. Construction of conjugacies when all invariant manifolds except W"(p) and Ws(q)
intersect each other transversally
Suppose that p and q are hyperbolic saddle-points and that W"(p) and Ws(q)
have fc-orbits of non-transversal intersection.

In order to state the next theorem we need some notation. Let a (resp. /3) be the
contracting (resp. expanding) eigenvalue of/ at p (resp. q). Choose a fundamental
domain Dp in W"(p) and let z , , . . . ,z k be the points in Dp where W"(p) and
Ws(q) are tangent. Order these points so that z, is between p and zi+1 on the curve
W(p). Then take a C1 curve 2, at z, transversal to W"(p) and Ws(q) and take
linearising metrics dp, dq at p and q respectively. Define

Az. = lim
dp(w,Zj)

dq(w,Zi)'

Let P ] , . . . , pn(p) (resp. q1,..., qn(q)) be the saddles whose unstable (resp. stable)
manifolds intersect W'(p) (resp. W(q)). Denote the contracting (resp. expanding)
eigenvalue of/ at pt (resp qt) by At (resp. B,), and the linearising metrics by respec-
tively dp. and dqr Choose fundamental domains Dp in W(p) and Dq in W(q).
Let xh . . . , x,(p) (resp. yl,..., yl(q)) be the intersections of the unstable (resp. stable)
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manifolds of the saddles p.'s (resp. q/s) with Ds

p (resp. D"q) ordered as above. Let 

/ = {/1 W(p) and W(q) have a tangency of even order at z,}, 

Ip={j;xje W(Pi)nDp} 
and 

Define 
Iqt={J;y}eW{q,)nDu

q}. 

U m (>v,x) , f Wu{ ) n D , 

A, 

,5. 

FIGURE 4.1 

Let^ / e M be as above and C 1 near each other. Assume that all invariant manifolds 
(except W(p) and Ws(q)) are transversal to each other. Furthermore suppose that 
/ has points z,-, x,-, yh P i , q{ corresponding to zh xit v,, p,, which are ordered in the 
same way, such that W"(p), Ws(q) have a tangency of even order at z, if and only 
if W"(p), Ws{q) have a tangency of even order at z,. 

THEOREM 4.1. The diffeomorphisms f f e M as above are conjugate if conditions 
(M1)-(M5) hold. Here (Mi) is given by: 

( M , l o g | a | _ l o g | a | 
' log |/S| log|/J|* 

i.e. there exists 8>0 such that \a\s = |a| and \B\S = \f}\; 

( A 2 , ) S ( A J S 

(M2) 

(M3) 

(M4) 

for alii, je I; 

Ai = Ai i = l,...,n(p), 

B^Bj j = \,...,n(q); 

dp(Xi,p) 
dp(xj,p) ldp(Xj,p)_ 

dp{Xi,p) 

dq(yi, q) 
dq{yj, q) 

dq(yi, q) 
-dq{yj, q). 

( = 1 , . . . , l(p), 

j = l , . . . , / ( q ) ; 
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(M5) • A ' " I L ' W * ; . / ' ) ] 8 " ^ i /* '%-! ' W**,?) ] 8 " 1 foraUj,keIPl,

forallj,kelqi;

/ / log |a|/log |/3| is irrational these conditions are also necessary for the existence of
a conjugacy.

Remark. Only tangencies of even order lead to conjugacy invariants. However the
presence of tangencies of odd order causes the modality to increase because they
generate, by perturbations of the diffeomorphism, new tangencies of even order.

Proof. The necessity of the moduli conditions follows from lemma 2.5 and its
corollaries. In order to show the sufficiency of these conditions we have to construct
conjugacies. We have subdivided the proof in a few cases.

Case 1. Suppose that there is no periodic saddle point P with W"(P) n Ws(p)y*0
and similarly no periodic saddle-point Q with W"(q) n WS(Q) # 0 . As before let
W(p) and Ws(q) be tangent at k orbits C(z,),. . . , €{zk). It will turn out that the
number of conjugacy invariants is equal to the cardinality of /. In particular if
#1 = 0 then there are no conjugacy invariants. Let us now construct a conjugacy
between/and / First we define h: Ws(p)^> Ws(p) so that

dp(h(v),p) = c[dp(v,p)]s, (4.1)

where c is a positive constant and

log | a |
From (4.1), (4.2) and the fact that dp is a linearising metric it follows that h°f = f°h
restricted to Ws(p).

Case l(a): All tangencies are of odd order (i.e. #7 = 0). Take an unstable family &"p

for p and a stable family ^q for q. Using the construction at the end of § 3(a) one
can modify &"p and 9\ so that, near zt, ̂  and SFs

q are tangent only in z,. Define
h: W{q)^> W"(q) to be any homeomorphism so that h°f = f°h. The homeo-
morphisms h: Ws(p)-> Ws(p) and h: W(q)^- W"{q) induce maps on the space
of leaves of 3FU

P and !Fs
q. This defines h:Vz.-> Vf. uniquely, where Vz. is a neighbour-

hood of z,. Now we show how to extend h globally. Take a system of invariant
foliations S5^,, S'a, for all basic sets £lt in Cl{f), so that &'n. and &*nj (and similarly
S'n, and &Q.) are compatible for all basic sets ft,-, Clj except where Clj = {p} and
H; = {<?}. In [PI], [MP] and [Me2] it is shown how to do this when il(f) is
finite. If Cl(f) is infinite then one has to use the methods of [Mel]. Remark that
/ e M implies that there is no point x which is part of a non-trivial basic set (i.e.
which is not a periodic orbit) such that W"(x) or Ws{x) has intersection with
Ws(p) or W(q). As in [Pal] and [Mel] we proceed by defining h:W(£l,)-*
W(fti) for any basic set fl; such that W ^ n ^ n W(p)*0. This induces a map
on the space of leaves of ^n, and from the transversality of Ws(x), XEQ, , with
W(p) this gives a map h: W"{p) n V-» W(p) n V, where V is a neighbourhood
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of Wu(p)n W'(il,). Extend these maps to a conjugacy h: W(p)-+ W(p). Since
&p and &g intersect transversally, except at z,, the conjugacies h:W'(p)-*W'(p)
and h: W(p) -> Wu(p) can be extended to a unique conjugacy on a neighbourhood
of p which respects all invariant foliations. As in [PI], [MP], [Mel] and [Me2]
one extends h globally.

Case l(b): One even tangency, i.e. #1=1. Let z = zt be a tangency of W(p) and
W*(q) of even order. Using the construction of the end of § 3(a) one can modify
&P and &s

q so that, near z, 9^ and &q are tangent along a C1-curve 2. The
homeomorphism h: Ws{p)^> Ws(p) induces a map on the fibers of 9Uj, and &"$,
and we get a homeomorphism h :£-»£. From equation (4.1) we get

dp(h(v),z)^c[dp(v,z)]B forueS. (4.3)

Hence

(4.4)

Using the conjugacy equation h°f=f°h we can extend h to U_,-ez/7'(^)- '^n*s s e t

accumulates on W"(g). From (4.4) it follows that h extends continuously to a
homeomorphism h: W{q)-* W{q) defined by

dq{h{v),q) = c^[dq(v,q)f. (4.5)

From (M1) we have that h | W (q) is a conjugacy. Of course the map l i :2u W (q)->
£ u W(q) may not map leaves of 9\ into leaves of 9\, but as in the proof of
lemma 3.4 one can modify SF\ in the complement of a neighbourhood of the orbit
of z so this is the case. As before we can use these foliations to extend h.
Case l(c): More tangencies of even order, i.e. #I>\. As before we can induce
homeomorphisms /i:2,->S, for iel and we can define h on Uj/ J (2.) using
h°f = f°h. If (Ml) holds, then each map fc: 2, -> S, induces a conjugacy h: Wu{q) ->
W(q) satisfying:

These conjugacies only coincide if (M2) holds. As before one needs to modify 3>\
so that h maps leaves of &s

q into leaves of fF*q. Extend h as before.

Case 2. Suppose we are in the same situation as before except that there is exactly
one saddle-point P with W(P) n Ws(p) ̂  0 and exactly one saddle point Q with
WS(Q) n Wu(q) * 0. Assume also that W(P) n Ws(p) (resp. WS(Q) n W(q)) is
a unique orbit 6(x) (resp. €(y)). Suppose that all intersections of invariant manifolds
(except of W(p) and Ws(q)) are transversal, see figure 4.2.

We will now show how to construct conjugacies in this case. Take C1 foliations SF'p
and &Q. According to the first theorem in the appendix this is possible. Now in the
constructions we made in cases l(b) and l(c) we had to modify the foliation &\.
But since we do not wish to modify the foliation S'Q we will have to be careful. In
fact here we need condition 4 in the definition in the class M, see § 1. Consider the
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FIGURE 4.2

cone-like sets Cz. as in § 3(a). Let C*. be the component of CZ.\{ZJ} such that C^
is disjoint from W"(P), and C~ be the other component. From condition 4 in § 1
it follows that CZi is non-empty and C~ is disjoint from WS(Q). Let Ws

z+(p) be
the component of Ws(p)-{p} on to which/"(C^) accumulates and Ws

z-(p) the
other component of W5(p)-{p}. Condition 4 implies that Wz*(p) does not depend
on the tangency point z,. We also denote this set by Wl (p). Similarly define W"+(q)
and Wsr(q). Clearly the foliation @U

P is disjoint from C% and the foliation SFS
Q is

disjoint from C~. So we can modify 9^ in C+
z. and &\ in C~ as in § 3(a), without

changing &"P or 9S
Q. In this way we get foliations &"p and &\ which either are

tangent along a curve X, (if the tangency at z, is of even order) or only at z, (if the
tangency of W"(p) and Ws(q) is of odd order). Let us now construct conjugacies.

Case 2(a): #1 = 0. The construction is basically the same as in case l(a). We start
now by defining conjugacies h: WS(P)^ WS(P) and h:Wu(Q)-+ W"(Q). Via the
leaves of 9P and 3>S

Q this induces homeomorphisms on subsets of Ws(p) into
Ws(p) and on subsets of W(q) into Wu(q). Extend these homeomorphisms to
conjugacies h: Ws(p)-> Ws(p) and h: W(q)^> W(q). Now proceed as before.

Case 2(b): # / = 1. Let 2 be the curve of tangency of 9U
P and 9\, and let 2_ be the

component of 2-{z} such that /v(2_) accumulates on Wt(p) (=Ws
z-(p)). Now

define /i: Wi(p)-» Wl(p) as in equation (4.1) where we choose c>0 such that
/i(x) = x, where xe Ws(p)n IV"(P) andxe Ws(p)n WU(P). That is:

(4.6)

The map h induces a map on the space of leaves of ^ and therefore a map
/i:!_-»£_. As in case l(b) this induces a map ft: Wl(q)-* Wl(q), which is a
conjugacy if and only if condition (Ml) is satisfied. So up to now we have defined
h on one side only: starting in WL(p) and ending in W_(q). Similarly one can start
in Wl(q) and end in W+(p). It follows now from the construction and equation
(4.1) that h: Ws(p)^ Ws(p) and h: W(q)^ W(q) are C1 outside p and q. From
this it follows that h extends to h: WS(P) -* WS(P) and h: W"(Q) -» W(Q) if and
only if

(M3) A = A, B = B,
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see lemma 3.4. As in the proof of lemma 3.4 one has to change the foliations 3Fp
(resp. SF'Q) in order to make sure that h maps leaves of &U

P (resp. S'Q) into leaves
of 2F"p (resp. &Q). AS before one extends h.

Case 2(c): # / > 1. One can construct conjugacies in this case in the same way as
in cases 2(b) and l(c). As in case l(c) one needs the additional modulus conditions
(M2).

Proof of theorem 4.1: Remaining cases. Suppose now that / and / are again as in
case 2, but that there is more than one saddle-point P, with W(Pi) n Ws(p) # 0 .
Let us first treat the case that there is no saddle-point Q with WS(Q) n W"(q) ^ 0 .
Then one can modify 9\ so that 5PU

P and &'q are tangent only in curves 2, or at the
points z,. Now construct h as in case 2. There is one problem left. There are several
orbits of intersections €(xt)c Wu(Pi)nWs(p). But in the construction of
h: Ws(p)-+ Ws(p) one has to choose a constant c>0 as in equation (4.5) so that
h(Xj) = Xj for all i. This is possible if and only if

(M4)

Since h\ Ws(p) is differentiable we need (M3) in order to extend h to W"(P,). As
before h\Ws(P,) must be a linear map (because A, = A,). If W(Pj)nW5(p)
contains more than one orbit we will need (M5) because each orbit will induce a
linear map W'(Pi)-* Ws(Pi) and these maps must coincide. If all these modulus
conditions are satisfied one can extend h as before.

The general case goes similarly. If there are also saddle-points Q, with

Ws{Qj)nW"(q)*0

then it follows from/e.i< that W1(q)* W"(q), W'+(p)* W*(p) and either
(i) W"fP i )nW:(p)^0and Ws(Qj)n Wu

+(q)*0; or
(ii) WiP^n Wl(p) * 0 and W'(Qj) n W"_(q) * 0.

In this case one modifies ^ on one side of z, and &*q on the other side, see case
2(b). The construction of a conjugacy goes exactly as before. This finishes the proof
of theorem (4.1). •

5. Construction of conjugacies: general case

First we consider the case that:

5(a). W(p), Ws(q) and Wu(q), Ws(r) have non-transversal intersections. All other
invariant manifolds intersect transversally. Assume that there are three hyperbolic
periodic points p, q, r so that both W(p) and Ws(q) as well as W(q) and Ws{r)
have exactly one orbit of non-transversal intersections. As in lemma 2.7 there are
exactly four cases A, B, C and D to consider. Let (M1)-(M6) be the modulus
conditions from lemma 2.7. We will prove:

THEOREM 5.1. LetffeM be as above and C°° near each other. Assume that no other
invariant manifold of saddle point intersects Ws(q)\j W{q). The diffeomorphisms f
and f are conjugate if and only if the modulus conditions (Mi) from lemma 2.7. (i.e.
6,5 or 4 conditions depending on the case we are looking at from lemma 2.7) are satisfied.
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Proof of theorem 5.1. In figure 5.1 we have drawn the situations A, B, C and D.
The necessity of the modulus conditions (Mi) are proved in lemma 2.6. As before
the numbers a, )3, a, b denote the eigenvalues at p, q, r as indicated in this figure.
We will assume that a, (3 a, b are positive. The general case can be dealt with similarly.

Also we can assume that the tangency of W"(p) and Ws{q) and the tangency of
Wu(q) and Ws(r) are of even order, because if one of these tangencies is of odd
order, then one can construct the conjugacy as in the proof of theorem 4.1. Finally
we will assume that W(p)n Ws(q) and W(q)n Ws(r) both consist of only one
orbit. The general case is treated similarly.
Case A: Denote by R the upper right hand quadrant near q, bounded by W"(q)
and Ws(q). That is, let Uq be a rectangular region on which/ is linearisable. Then
R is the connected component of Uq - Ws(q) u W(q) having the orbits of tangen-
cies in its boundary. First choose C1 invariant foliations &\ and &"q having C1

tangent line fields. These foliations &\ and ^ induce a C1-linearising system for
/ Let d be the metric induced by this coordinate system.

(a) Let W(p), Ws{q) (resp. W"(q) and Ws{r)) have a tangency of order n
(resp. m), with n and m even numbers. Define

d{z,

and define Qy similarly. In lemma 2.6 it is shown that the numbers

Qx-[d(x,q)r Qy-{d{y,g)}m ^ ^ fe

d(y, <?) ' d(x,q)

are topological invariants. Let us show that these invariants are sufficient.

(5.1)

a

t 1'1 -
a •
Q

case A

X

y

r

i

case B

T\

case C
r b

case D

FIGURE 5.1
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(b) So we need to define a conjugacy between/ and / . First we define a conjugacy
h on the quadrant R. We do this so that h is linear with respect to the linearising
coordinates and so that h(x) = x, h(y) = y. Since

a = a, p = 0 (5.2)
then h indeed defines a conjugacy on R near q.

(c) Let us now show that we can extend h to a neighbourhood of p, provided
a = a and the modulus condition on Qx and Qy is satisfied.

Let / be the line through x which is horizontal with respect to the linearising
coordinates, and let The similar. Clearly h(l)= Tand for x,-*x,

d(h(Xi), W(q) d(y, q)
d(xt, Ws(q))

d(h{Xi), I) d(x, q)

(5.3)

(5.4)
d(xt, I) d(x, q)'

where d, d are induced by linearising coordinates at q and q. Take any unstable
invariant foliations SFj, and 3*"p. We claim that we can modify 9U

P so that &"t agrees
with hi&p1) inside R. In fact from lemma 3.5, § 3(b), it follows that h extends to a
conjugacy near p if and only if

a = a, Qx = -— • Qx,

where Cu C2 are respectively the limits in equations (5.4) and (5.3). Clearly this
corresponds to two equations from (5.1). From lemma 3.5 it follows that one can
extend h to a neighbourhood of/?, and after a slight modification of ^ , the conjugacy
h maps leaves of ?FU

P onto ?F"P.
(d) In the same way one can extend h to a conjugacy near r, provided b = b and

the conjugacy condition on Qy and Qp is satisfied.
(e) Now one can extend h as in § 4.

FIGURE 5.2.
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Remark. If there are invariant manifolds intersecting with Ws(q) and W"(q)
then one has new necessary moduli conditions, see § 2 and theorem 4.1. As in
§ 4 one can extend h to M provided all these additional moduli conditions are
satisfied.

Cases B and C. Cases B and C are dual since one obtains case B out of case C by
taking / " ' . Therefore we will just treat case B. In lemma 2.6 it is shown that the
numbers

{d(x, q)}»
Qx • —r, r-, «, P, a, b

d(y, q)

are topological invariants. Since we do not have any moduli conditions on Qy

and Qp the construction of a conjugacy is more complicated than in the previous
case.

(a) As in the previous case choose C1-invariant foliations &\ and 2Fu
q having C1

tangent line fields. Let / be the leaf of &"q through x and m the leaf of &'q through
y, see figure 5.2.

(b) We want to change &\ so that 3>\ and 3F"q have only tangencies at m. So
consider a cone-like set Cy near y as in lemma 3.3, § 3(a). From this lemma and
the first theorem in the appendix it follows that &s

r and 3^ can only have tangencies
inside the sets f'(Cy). Now modify &\ inside Cy so that $F\ restricted to Cy is given
by homogeneous polynomials (+constants) in terms of the coordinates induced by
&\ and 9u

q. From lemma 3.2 this is possible. It follows that &\ and &"q have only
tangencies along f'(m).

(c) Let R be as before. Take a leaf F of &\ as in figure 5.2 and let Dy (resp. D*)
be the region bounded by F and dR (resp. W'(r) and dR). Take F and R so that
the sets f'(Dy) are mutually disjoint. Now let 3>s be an invariant foliation on R
which is identical to ®\ in \Jf'(Dy) and identical to 9\ away from \Jf'(Dy). By
lemma 3.3 one can choose the rectangle R and 3** so that all its leaves are transversal
to &q outside the cones f'(Cy). From the construction of &' and since 9s coincides
with ^ inside Dy, &s and 8Fu

q are tangent precisely along iterates of m.

(d) Now we define the conjugacy on R. First define linear conjugacies h: W*(q) -*
Ws(q) and h:W(q)-> W(q) so that h(x) = x and h(y) = y, see equation (4.2).
Since /3 = /3 and a = a this is possible. These maps induce maps on the space of
leaves of &"q and of SP outside iterates of D*. Therefore these maps induce
homeomorphisms h.m^m and h: l\D+^> T\D+, where D+ = \Jf'(D*) and D+ =
\Jf\D*). Since 3^ and 3^ are precisely tangent along (iterates of) m, the homeo-
morphism h: m -> m induces also a homeomorphism h: I n D+ -» / n D+, via the
leaves of &s. Hence there is a unique homeomorphism h on int(R) which preserves
?Fu

q and ^ s . Let us check that h is a continuous conjugacy. In order to do this we
want to apply lemma 3.5 as in the previous case, A. We have to make some estimates
similar to (5.3) and (5.4).

LEMMA 5.2. Take metrics d, d corresponding to the linearising coordinates for f and f

https://doi.org/10.1017/S0143385700004120 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004120


444 W. de Melo and S.J. van Strien

near q and q. Then one has for a sequence xt -* x,

d(h(xt), I) J(x,q)

d(h(Xi), Ws(q)) d(y, q) '

d(Xi,W
s(q)) \

Proof. The first limit follows from the fact that h preserves &n
q and from the fact

that h | Ws(q) is linear with h(x) = x. The second limit is proved as follows. If xt -» x
and/J'(i)U-)-» we W(q), then

|/3P <*(",«),
(5.0)

d(h(xi),W'{q))~\P\"»-d(Kw),q).
Since h \ W(q) is linear and h(y) = y the second equation in (5.5) follows by taking
the ratio of the two equations in (5.6). •

Now it follows from equations (5.5) and the modulus conditions on a, Qx, that h
can be extended to a conjugacy near p. This is done exactly as in case A.

(e) As before one can extend h to M In fact since h maps 9s into # s it follows
from lemma 3.4 in § 3(b), and from b = b that h extends to conjugacy near r. The
extension to M goes as before.

Case D. In lemma 2.6 it is shown that in this case the numbers

a, p, a, b
are topological invariants. Now we show that there are no modulus conditions on
Qx and Qy in this case. It follows that any conjugacy h between / and / will be
highly non-linear in this case. We construct the conjugacy in a number of steps:

(a) As before take C'-unstable and stable foliations &q and 2Fs
q.

(b) Take a region Dy as in the previous case. Here the boundary of Dy is a leaf
of 3Fs

r (or is a piece of dR). Let Ny be a neighbourhood of Dy. By lemma 3.3 all
the leaves of &*, are transversal to the leaves of 2F\ and ^ inside Ny\Cy. Hence,
using the implicit function theorem we can take a new invariant foliation &\' for q
(which is C1 except possibly at iterates of y and identical to &\ outside iterates of
Ny\Cy) so that each leaf of &\ in Dy\Cy is the graph of a homogeneous polynomial
function (+constants) with respect to the coordinates induced by &'q and 9"q. Take
a similar set Dx and a similar foliation 9u

q related to ^£.
(c) Modify the foliations &u

p and &*T as before. That is, modify ^ inside Cy so
that the leaves are given by homogeneous polynomials with respect to the C1

linearising coordinates induced by &q and fFq. Do the corresponding modification
for $\.

(d) Now take an invariant foliation 9s as before which is identical to 3>\ inside
Dy and identical to &*q away from iterates of Dy. Take a similar foliation &".
According to lemma 3.3 and the last theorem in the appendix all tangencies of ?FS

and ^" are contained in/ ' (Cx)u/ J (Cy) . Let us study these tangencies.
(e) First we study the tangencies of &s and 9U in f'(Cx) r\fj(Cy). Since &s and

3F" are given by polynomial functions it suffices to prove the following lemma.

https://doi.org/10.1017/S0143385700004120 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004120


Diffeomorphisms on certain surfaces

a leaf from Fs

445

a leaf from F"

FIGURE 5.3

LEMMA 5.3. Consider the following two foliations in R2:

Fu = {(u,v)\u = Q1- v" + a, ae

where n, m are even. Then:
(1) Fs and Fu are tangent along a curve c consisting of two components;
(ii) there is a unique point c0 where Fs and Fu have a tangency of odd order. Fs

and F" are transversal to c except at cQ.

Proof. If F5 and F" are tangent at (u, v) then the tangency vector (1, mQ2u
m~i) to

Fs at (w, v) and the tangency vector (nO^"'1,1) to F" are proportional. Hence Fs

and F" are tangent along the curve:

n- m- Q, • Q2- u""1 • v"~1 = l.

Statement (ii) follows similarly. D

We have drawn the curve c as a union of the curves A, B, C, D, E in figure (5.3).
We can also make the following:

Observations. (1) Each leaf of Fs and each leaf of F" intersects the curve c at least
once and at most three times.

(2) There is a curve A in c, as drawn in figure 5.3, so that if a leaf in Fs or a
leaf in F" intersects A then this leaf has no other intersections with c.

Let A, B, C, D, E be the curves in c as is shown in figure 5.3.
From the lemma it follows that all the tangencies of 3FU, !fs inside/'(Cx) nf~J(Cy)

are subsets of (scaled down) copies ctj of the curve c as above. The last theorem in
the appendix implies that the leaves of 5FU (respectively 9s) outside Cy(Cx)
accumulate in a C1 sense to Ws(q) (W"(q)). Hence the set c,-, consists of two
components, and contains the point c0 and the arc A.

(f) Since &"q is equal to &"q in Cx it follows that inside f{Cx)nf^(Dy) the
foliations 9s, &" are polynomial with respect to ^ and 3Fs

q. Hence inside these
sets the tangencies of &" and 9s are as in (e). Furthermore 9s is identical to !¥q

outside the iterates of a neighbourhood Ny of Dy. Hence all tangencies of 9s with
ZFU outside fJ(Ny) are contained in the lines/'(/). Now choose 9s on Ny\Dy so
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fJ(x)U-

FIGURE 5.4
f'(y)

FIGURE 5.5
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that SF* has only tangencies with SF" in (Ny\Dy)r\f'(Cx) along line segments.
Similarly inside f'j(Cy)nf(Dx) the foliations &', &" are polynomial w.r.t. 9u

q

and &*q. Now choose 3?* or NX\DX similarly as above. Since all tangencies of SFS

and &" are contained in f'(Cx)vf~J(Dy) it follows that 9s and &" are tangent
along a curve c (with a countable number of components), as drawn in figure 5.4.

(g) Now one can decompose the tangency curve c in curves Ay, By, Cy, Dv, Fy,
Hv, Vjj as is shown in figure 5.4. Here Atj etc. are contained in f{Cx)nf~j(Cy).
The curves Hih Vy are bounded by Ws(r) and W(p), and the curves Ay, By, Cy,
Dtj, Ey, are as in figure 5.3. Let /, = / ' ( 0 and m} =f~i(m). Using the leaves of these
foliations we can define a diagram of maps between those intervals as is shown in
figure 5.5. More precisely: to each point z on the tangency curve c we associate a
new point il*(z)e c. We do this as follows.

(i) For zeAy, let iA(z) = z.
(ii) For z e Bi} take the leaf F of &' through z. Follow F downward and let ip(z)

be the first intersection of F with the curve c in one of the components CKr, Vur,
Eif, or Ay, see the diagram in figure 5.5.

(iii) For z e Cy- follow a leaf F of F" to the left and let ip(z) be the first intersection
of F with c in a component Brj, Hvj, Drj or Arj.

(iv) ze Do. Then follow F downwards as in case (ii).
(v) zeEy as (iii).
(vi) ze Vy, then let i/>(z) be the intersection oftheleafof ^" through z with Ws(q).
(vii) ze Hy, then i/>(z) is the intersection of the leaf of 2FS through z with W"(q).
Clearly if h is a conjugacy between two diffeomorphisms /, / as above and if h

preserves the foliations &\ 5FU, then one must have h(c) = c and h° \p = ip ° h. From
this it follows that we have very little freedom in choosing a conjugacy h.

For example i/T1 maps By u Ci} into Q u Bv. We will show shortly that this map
in fact is a contraction. Clearly for the point ctj e Ctj (1 By where ?FU and 3F" are
tangent with c, one has i/Kcy) = Cy. Since /i must respect all foliations, it must map
the end-points of By u Q onto end-points of By u Q since these points belong to
stable and unstable manifolds. Hence h is completely fixed in a sequence of points
in By \j Cy converging to a fixed point cv of </>.

Clearly tyk{z) is either contained in Ws(q), W{q) or Ay for some sufficiently
big k or the sequence {i//k(z)} is infinite. If this sequence is infinite assign to it a
symbol-sequence {Sk}, where Sk is the component By, Cv, Dtj or Etj of c which
contains il/k(z).

L E M M A 5.4(i). If the sequence {ipk(z)} is infinite then no other point z'ec has the

same symbol sequence as z.

(ii) If this sequence is finite it must end with an interval Ay, Ws(q) or W"(q).

Moreover in this case there is a small interval (in the curve c) of points having the

same sequence.

Proof. The second statement is obvious from the definitions and by continuity. So
suppose the sequence {il/k(z)} is infinite. Then for each fcef^J, ipk(z) is contained in
intervals By, Cy, Dtj, Ey for some i,j. Let TT; be the projection from By u Dy onf'(l)
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defined as follows. Take ze Btju Dtj, and the leaf F of 9s through z. Let ir,(z) be
the intersection of F with / ' ( /) (near z). Similarly define a projection irm:
Cy-u Ey-*f~J(m). Then define

o \U o Tj-. (2) for z € ITABIJ u Du),

Now /''(/) and f~'{m) are all copies of R+ so we can consider 6 as a map from
0:R+-»R+ (which is not defined everywhere). We claim that 0 is an expansion:

|«'(z)l>l- (5-7)
From this claim the lemma follows. In fact take a point z'ec near z. If <pk(z") is
an infinite sequence for every z" e c between z and z', then it follows that the length
of ipk (segment on c between z and z') has finite length. Since 0 is an expansion,
this is impossible.

So let us prove (5.7). From the construction above it follows that Ay, By, Cih Dih Etj

are contained in the set

{/ ' (Cx)n/- ' (D,)}u{/ ' (Dx)nr ' (C,)} . (5.8)

Inside f'J{Dy) nf(Cx) the foliations 9', 9" are given by polynomials (+constants)
w.r.t. &\ and 9s

q. Similarly inside/'(Dx)n/-J'(C,) the foliations 9\ 9" are poly-
nomial w.r.t. 9"q and &\. It follows that it is sufficient to prove the following lemma.

LEMMA 5.5. Consider the following two foliations:

Fs = {(u,v);v = Q2-u
m + b,

where n, m are even. Let F"a (F
s
b) be the leaf of F" {F") through (a, 0) {resp. (0, b)).

Let 6(b) be the number aeU so that Fu
a is tangent to Fs

b in the intervals C<oE, see
figure 5.3. Then 0:R-»R is an expansion, i.e. \0'\> 1. A similar result holds in Bu D,
if we change the role of Fu and Fs.
Proof. The foliations F" and Fs are tangent in the curve

t> = c ( " ) = ( f i - m - Q 1 - Q 2 ) l / " " 1 - « m " 1 / " " 1 "

So

b = c(u)-Q2- um = B{u),

a = u-Q1-(c(u)T=A(u).

Now a is related to b by.

Hence since nQ, • (c{u))"~l • m • Q2u
m~i = 1 one has

A'(u) l -Q1-n-(c(«))"-1-c ' («
6'(b) = -B\u) c'{u)-Q2-m-um-1 m-Q2u

m-1'
Here the last equality follows by using the definition of c(u) explicitly. For the
point where the curve c is tangent to F" and Fs one has m • Q2- u

m~x = 1. Since
by assumption Fu

a and Fs
b are tangent in C u E it follows that \d'{b)\> 1. •

https://doi.org/10.1017/S0143385700004120 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004120


Diffeomorphisms on certain surfaces 449

(h) Up to now we have investigated the set of tangencies of 3*u and &', and a
diagram related to these tangencies. Now we can define the conjugacy h as follows.

Take conjugacies h: W*(q)^> Ws(q), h: W(q)^ Wu(q) which are linear and so
that h(x) = x. Since

a = a, 0 = 0
this is possible. Then take a homeomorphism

Here we have freedom. Extend h to U,> Ay by forcing the conjugacy h°f=f°h.
From lemma 5.4 it follows that there is a unique extension of h to the tangency
curve c so that iji°h = h°tli, i.e. so that h respects the diagram in figure 5.5. It
follows that there is a unique extension of h to R which respects the foliations 9'
and &". From the way h is constructed it follows that h is monotone. By interchanging
the role of / and / it follows that h has a monotone inverse. Hence h: c -* c is a
homeomorphism. Since &*q is a C1 foliation, except possibly in y, it follows as in
lemma 5.2 that

.. d(h(z),x)
hm— —
Z-* d(z, x)

converges. Here d, d are C°-metrics. It follows from lemma 3.4 that h extends to
a conjugacy near p, since

a = a.

Similarly h can be extended to a conjugacy near r, since

b = b.

5(b). Construction of conjugacies: remaining cases. Leiffe M be as in theorem 5.1
except that there are finitely many saddle-points whose invariant manifolds intersect
W*(q)u W(q) transversally in a finite number of orbits. To define a conjugacy h
in this case we start by constructing stable and unstable foliations for these saddle
points and then we construct the foliations 9s and 3?" compatible with these
foliations. We then perform the construction of the proof of theorem 5.1. In order
to extend this conjugacy to a neighbourhood of the saddle points whose invariants
manifolds intersect Ws(q)Kj W(p) we need more moduli conditions as in §4. If
these extra moduli conditions are satisfied we extend the conjugacy using the same
arguments of the proof of theorem 4.1.

Another situation that may occur for a diffeomorphism / e M having a cascade
of tangencies is a combination of the four cases treated in § 5(a). In fact we may
have a finite number of saddle points P\,...,pq such that W (pt) has a finite number
of orbits of non-transversal intersection with Ws(q) and also a finite number of
saddles qu ... ,qs whose stable manifolds have orbits of non-transversal intersection
with W"(q). If / is a nearby diffeomorphism having the same intersection pattern
of stable and unstable manifolds we can construct a conjugacy between / and / by
putting the previous techniques together provided the appropriate moduli conditions
are satisfied.
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6. A bound for the number oftangencies
In § 4 and § 5 we proved that two nearby diffeomorphisms in M, having the same
intersection pattern of stable and unstable manifolds, are conjugate provided a finite
number of moduli conditions are satisfied. In order to conclude the proof of the
main theorem it remains to show that every difleomorphism/e M has a neighbour-
hood M which contains a countable number of k-parameter families of diffeomorph-
isms such that any difEeomorphism in Jf has the same intersection pattern of stable
and unstable manifolds as some diffeomorphism in one of these families. In this
section we will achieve this by proving the following result.

THEOREM 6.1. IffeM then there exists a neighbourhood Jf off and a number K>0
such that / c Jl and the number of orbits of non-transversal intersection of stable and
unstable manifolds of every geJf is at most K.

Proof. Since sd is an open set [Sml], it is easy to see that every feM has a
neighbourhood Jf^si such that every geN satisfies conditions (1), (3), (4) and
(5) of the definition of M in § 1. Now we prove that if Jf is small enough then
condition (2) is also satisfied and we get a bound for the number of orbits of
tangencies. Let V<= M be a small open set such that each orbit of tangency of/
has a unique point in V. So, in order to prove the theorem it is enough to show
that for each g e Jf, the number of tangencies of g in V is at most K and these
tangencies are of finite order. Let x e V be a point of tangency of order r of W(p)
and Ws(q) where p and q are saddle points of / For each geJf let U(g) =
Wu(p(g))n V and S(g)= Ws(q(g))n V where p(g) (resp. q(g)) is the periodic
point of g near p (resp. q). If P(g) is a saddle point of g whose unstable manifold
intersect W*(p(g)) then, by the A-Lemma [PI], W"(P(g))n V is a sequence of
submanifolds Un(g) which converges to U(g) in the C°° topology. Similarly if Q{g)
is a saddle point whose stable manifold intersects W(q(g)) then Ws(Q(g))n V is
a sequence of submanifolds Sm(g) converging to S(g) in the C°° topology. Since
/ e Ji we have that Sm(f) is transversal to Un(f) for all m, n e N and U(f) n S(f) =
{x}. Hence if Jf and V are small enough and ze Un(g)nSm(g) then the contact
between Un(g) and Sm(g) at z is at most r. So we need to prove that

#{meN; Um(g) is not transversal to Sn(g) for some neN)

is uniformly bounded.
For each ge Jf let ^ ( g ) be a C1 unstable foliation at p(g) such that each Un(g)

is contained in a leaf of ^p(g> and the r-jet of ^JJ(g) is C and varies continuously
with g (see the appendix). Similarly we consider a stable foliation ^(g> compatible
with W(Q(g)). Let (u, v) be a C°° coordinate system in a neighbourhood Vx of x
such that U(f) = {(u,0);ue(-a,a)} and S(f) = {(u,v); v = ur,ue(-a,a)}. We
may take V and N so that for each g € V̂
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where <pg
m, tp%>, >l/g, ip^,:[-a, a]->R are C°° functions satisfying the following

properties:
(a) The maps g^>DJ<pg

m, DJ<pi, Dj<pg, D>|>, from Jf to C\[-a,a],R) are
continuous for j = 0 , 1 , . . . , r.

(b) <pg
m(u)-cps

x(u)>0, lp
g
n(u)-lpUu)<0 for all « e [-a,a].

(c) There exists 1 < C < oo such that

(i) ^i8p|<P«(«)-ff5)(ii) |s |^+ m(M)-^(tt) |<Cj8;

(ii) \D(<p'm-<pZ0)(u)\^C\<pfH(u)-<p*B(u)

where ag is the contracting eigenvalue of Dg(p(g)) and /6g is the expanding
eigenvalue of Dg{q(g)).

(d) Each Un(g) (resp. 5m(g)) has at most r— 1 points of tangencies with leaves
of the foliation 9\(t) (resp. ^p( g ) ) .
Conditions (a) and (d) follow from the continuity of the r-jet of the foliations ZFp(g)
and ^ ( g ) ; (b) follows from condition (4) of the definition of Ji in § 1; (c) follows
from the differentiability of the foliations 9"p(g), ^ ( g ) and its 1-jet. We need some
lemmas.

LEMMA 6.2. If D<pg
n(u) = D<l>g

m(u) and <pg
n(u) = ip8

m(u) for some ue(-a,a) and
m, n € N then

Proof. From (b) it follows that

0 < <pg(u) - q>Uu) =

Hence (using (c(ii))):

\D<pg(u)-D<pUu)\^

Therefore using D<pg
n(u) = D4>g

m{u) and the inequalities above:

M ) - ^ ( U ) | . D

LEMMA 6.3. Let Jg = {ue (-a, a); <pS,(u)< ^ ( u ) and |DIA£,(U)-D(P*(M)|<

2C|</fJ,(M) — ^ ^ ( M ) ! } . If Mis small enough then Jg has at most 2r connected components.

Proof. Consider the functions 0* : [ - a , a]->R,

Since the map g^Ol from Jf to Cr([-a,a],U) is continuous and d{(u) =
rurl±2Cur it follows that for Jf small enough the set
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has at most 2r points. This proves the lemma because the boundary of Jg is contained
in this set. •

LEMMA 6.4. If' N is small enough there exists an integer m such that for each geJf
and each connected component J'g ofjg there are integers m0 = mo(g, i) and n0 = no(g, i)
such that

and

for every u e J'g.

Proof. Let <pg, tj/f,: Jg-»R be the maps <pg(w) = -Log (I^S>(M)-?£>(«)) and i£g(") =
-Log (i/'go(w) - ipg(u)). From the definition of Jg and from property (c(ii)) one has
|Dt£f,(")l- C, and \D<pg(u)\<2C for every ueJg. If we take Vand I s m a i l enough
so that a < l / ( 2 C ) we have that | £ g (w , ) -£* (« 2 ) |< l and k!i(M,)-^J!(M2)|<i, if
U i , u 2 e J ' g . M o r e o v e r , f r o m ( c ( i ) ) , \ij/n+m(u) - tj/n(u)\> 2 f o r e v e r y n e N a n d u e J g

if m is such that -m Log a g - L o g C>2. Hence, if there exist noeN and uoeJ'g
such that <Ag

n(u0) = <Pg("o) then

for every ueJ'g If this is not the case then there is an integer M0 such that

^«,_m(ii) < & » < vg(u) < < + 1 ( u ) < 4>g
no+m(u) for u e Jg.

This proves the first inequality of the lemma. The proof of the second one is similar.

•
LEMMA 6.5. Let J'g be a connected component of Jg and no= no(g, i) be an integer
such that iAf,0_m(u)<?«(«)<<Ag

no+m(") M every ueJ'g.Ifl- C2a™>0 then

Pg

Proof. Since -iA?0_m(u)> -<pg
o(w)> -<plo+m(u) we have that

Log {te{u) - tp&u)) - Log (>Pg
0+2m(u) - <pl(u))

< Log (</4(u) - < _ „ ( « ) ) - Log « + 2 m ( u ) - ^g
0+

Let m ^ N be such that ^p*, (u)< i/»g
o(M)s ^^, , (« ) . If fceN is such that
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<pl>x+k(u)> K0+2m(u) then

-Log (^2«?{\ - C 2 < ) ) > Log WUu) - <pUu)) ~ Log « + 2 m ( « ) - <pi>{u))

• k Log (lg.
Hence

Log /3g
This proves the lemma. D

LEMMA 6.6. Let J'g be a connected component ofJg. The cardinality of the set {n e N;
the graph of(pn\J'g has a tangency with the graph of <pk\J'g for some k) is at most

( r - l ) \5m+
Log/3g

Proof. Let ufeJ'g,j = 1 , . . . , / , be such that (uj, IAI(M})) are all the points where the
graph of ipl\Jf is tangent to the foliation ^ ( g ) . Clearly / < r - l . If n> mo+m is
such that the graph of (pg

n \ J'g is tangent to the graph of ipl for some k > no + 2m then

for some j = 1 , . . . , I. By lemma 6.5 there are at most

such integers. To finish the proof we notice that for each k there are at most / < r - 1
integers n such that the graph of <pg has a tangency with the graph of ipg and that
(pg(u)> <AI(M) for every u e / g if fc< no-m and (?*(«)> ipg{u) for every w e / g if
n<mo-m. A simple combinatorial argument finishes the proof of the Lemma. •

End of the proof of theorem 6.1. If the graph of <p* has a tangency with the graph
of ty\ then, by lemma 6.2, there exists an integer i such that the graph of <p*|^g has
a tangency with the graph of ipi- Since Jg has at most 2r connected components
we have that the number of integers n such that the graph of (pf, is tangent to the
graph of ipi for some k e N is at most

/ -Log(-U2/-(1-C2<)
2 r - ( r - l ) - \ 5 m +

\ Log pg

The graph of tpl has at most r - l points of tangency with the foliation 9u
p(gy Hence

the total number of tangencies is at most

Log j8g

and this is clearly bounded by some K > 0 in a small neighbourhood of / •
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1. Appendix: Smoothness of Invariant Foliations
In this appendix we will prove that certain invariant foliations are highly differenti-
able in some sense. More specifically, let/be a C°° diffeomorphism on a neighbour-
hood of p in W, with f(p)=p and p a hyperbolic saddle-point. Take a point
xe Ws(p), a C°° disc 2 at x transversal to Ws{p) (with dim2 = dim W(p)) and
let V be a compact neighbourhood of p. According to the A-Lemma the discs
fk(L) n V converge in the Cr sense to W(p) n V as k -> oo. Here r e N. For a proof
of the A-Lemma see [PI], [MP].

In this way one can construct invariant foliations. Fill a strip N between 2 and
/(£) with Cr-discs which are all transversal to Ws(p). Iterating this foliation on
N, one obtains an invariant unstable foliation & on V. According to the A-Lemma
the r-jet along leaves varies continuously, (we shall make this statement more precise
below). But in many applications this is not sufficient. One needs to have that the
r-jet along leaves varies 'in a C1 sense'.

In this appendix we want to extend the A-Lemma in two ways.
(a) Let / i , , . . . , /JLU (A,, . . . , As) be the expanding (contracting) eigenvalues of

Df(p) and order these eigenvalues as follows:

Assume that

Then the r-jet varies C1 along leaves of &, see theorem 7.3. Here reN is arbitrary.
For r= 1 this result is already contained in [HP, theorem (6.3)].

(b) Even if the disc 1 has a tangency with Ws(p) of polynomial type the result
from above still holds under appropriate conditions, see theorem 7.4 below.

Clearly if |A,| = |AS| (i.e. all contracting eigenvalues of Df(p) have the same norm)
then the condition |A, |<|/A, | • \\s\ is automatically satisfied. In particular if W"{p)
has codimension 1 then this condition can be dropped. From this one easily deduces
that one can find C1 linearising coordinates near a hyperbolic saddle-point p if we
are in the two-dimensional case. This result is not new, see [Ha]. The additional
smoothness we obtain here is new and turns out to be essential in the estimates in
this paper.

7.1. A fiber-contraction on a jet-bundle. Take a neighbourhood V of p. Using local
coordinates we can assume that V is of the form V= £,(r)x £2(r), where E{(r)

W(p)

,2

• W(p)

W'(p)

FIGURE 7.1
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(E2(r)) is a u(s)-dimensional ball with radius r. Assume Wu(p)n V = E^{r) and
Ws(p)nV=E2(r).

Now let %k(x0,y0) be the space of germs of Ck functions (£, , xo)-»(E2,j;o). We
say that gi, g2e £fc(x0, _y0) are fc-equivalent, i.e. g^~kg2 if the Taylor jet of gt and
g2 at x0 agree up to fc-th order (i.e. if jkgt(x0) =jkg2{x0)). Now define

Jk(x0,y0)=%k(x0,y0)/~

a n d Jk(V)= U Jk(x0,y0)-

Jk(V) is a smooth manifold. In fact one has the natural identification Dk:J
k(V)-*

VxR((1)x- • -xUl(k) which identifies the fc-jet with the coefficients in the Taylor
expansion. Here l(j) is the dimension of the space of homogeneous polynomials
from R" to Rs of degree/ Similarly one has the map 7rM_, : / k ( V)-» Jk~\ V) which
maps the fc-jet of a function to its (k — l)-jet. In this way one gets the commutative
diagram

Jk(V) - ^ VxR'( 1 )x- • -xUl(k)

J2(V) -^-* VxR'( 1 )xR; < 2 )

'(1)J'(V) - ^ * VxR

v JU v.
Here ^•J-_1: VxR( ( 1 )x • • • xUlU)-* VxR' ( 1 ) x • • • xR ' 0 " 1 ' is the projection
(x, ( t>, , . . . , Vj))-> (x, ( « , , . . . , D;-j)). It will also be useful to work with jet spaces of
functions with bounded derivatives. So let B} = {ueR' ( 1 )x • • • xR ' 0 ) ; V =
( » , , . . . , « , ) , u^eR" 0 and \v,\sl,i = l,2,...J}. Define Xj{ V) = Dj\ Vx Bj). As

before we have a commutative diagram.
Now assume that / : V->Rm is a diffeomorphism with 0 as a hyperbolic fixed

point. Let Ah . . . , As (/x,,. . . , ixu) be the contracting (expanding) eigenvalues of
D/(0). Assume that they are ordered as follows:

| M u | > - - - > | M l | > l > | A 1 | > - - - > | A s | .

Forxe V= £,(r)x E2(r) one can write Df(x), Df~1(x): ExxE2-+ Exx E2 as follows:

A(x) B(x)

DM)'
 Df

Since Wu(/?)n V= E^r) and Ws(p)n V= E2(r) the matrices B(x), B(x), C(x)
and C(x) vanish for x = 0. Moreover for each 8 > 0 one can choose r > 0 so small
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that for x e V,

Similarly

u| + 5,

x)[|<|A1| + 5.

\\B(x)\\<z8,

(7.1)

(7.2)

Furthermore take a neighbourhood U of 0, [/<= V, such that/(£/)<= V. In other
words if (xo,.Vo)e U, then f(xo,yo) = (fl(xo,yo), f2(x0,y0)) = (x1,yl)e V. Further-
more take %k(x0, y0) = {ge %k(x0,y0): \Dg(xo)\ < 1}. Suppose / is C". Then define
for k s n,

by defining F(^>,o)(g):(£1, x1)-»(£2,>'i) to be the germ of the function

^ (/2ad, g))° (/'(id, gjr 'o,
see figure 7.2.

(xo,yo),

= {x,r(g)(x)}

FIGURE 7.2

Let V be so small that ||A(x)||> ||B(x)||, for all x in V. Since for ge
%k(xo,yo), |£>g(xo)|<l, the map t^f1 ° (id, g)(t) is invertible at t = x0, for (xo,yo)
in V. Hence F(^)),o) is a well defined map for (xo,yo) in V. (This also follows from
the A-Lemma). Clearly F induces a map on the fc-jet level: This map Tk:X

k(U)-*
Jk(V) is defined by

Presently we will show that the map Ffc contracts the fibers of 7rKk-1:J
k ->Jk~\ So

define for ge %k{x0,y0),

\g\k= max \Dg'(xo)\.

LEMMA 7.1. Let ksn and e>0 be given. Then we can choose V so small that for
any gi,g2eJk{V) with Tr^.^g,) = irKk-t{g2) one has

(a)
(b)

|gl-g2U;

Proof. Statement (b) is obvious from equations (7.2) so let us prove (a). Here we
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are going to use the following formulae: if 4>, i/»,, i//2 are Ck and \4>i — i/^U-i = 0 then

Now by assumption the (fc-l)-jets of rkg{ and Fkg2 are equal. Therefore
|rkg1-r''g2|(c can be estimated (using the equalities from above) by:

\f«(id, g)|, • | ( / ' - (id, g,))"1 - ( / ' ° (id, g2))'
l\k

+1/2 ° (id, g.) - / 2 o (id, g 2) |k • (K/1 o (id, g))"1!,}".

Here we can take for g either g, or g2. For V sufficiently small this is majorised by
(see equations (7.1), (7.2)).

So for V sufficiently small, inequality (a) holds. •

COROLLARY. Tk(X
k( U)) c X k ( V).

7.2. Differentiability of invariant foliations; a differentiable version of the \-Lemma.
As before let V = Et(r) x. E2(r) and / be a C" diffeomorphism with a saddle-point
at 0. Let U be a neighbourhood of 0 so that rfc(X'c( [/)) <= Xfc( V) (and in particular
/(t/)<= V). Such a neighbourhood exists, see the corollary above.

Let 2F be some foliation on U, not necessarily invariant, whose leaves are graphs
of C" functions El(r)-*E2(r). For fc< n, this defines a section ak: U^Jk(U) where
<7fc(*i..)'i) is the fc-jet at Xjg £i(r) of the function whose graph is the leaf of 9
through the point (x^y^eU. Suppose that the foliation 9 is chosen so that
ck(U)c Xk(U). In particular this implies that the leaves of 9 are transversal to
Ws(p). This foliation 9 is invariant precisely when the following diagram commutes:

Xk(f-\U)nU) -±> Xk(U)

f~\U)nU -U U.
Let us now show how to construct such invariant foliations. In order to do this take
a foliation 9 so that for each leaf S in U - / (U) the image /(Z) n U is also a leaf
of 9. We claim that we can find a new invariant foliation 5F* which coincides with
^ o n U-f(U). In fact:

LEMMA 7.2. Let 9 be as above and such that for the corresponding section o-k one has
crk( U)cz Xk(U), /c<n. Then there exists an invariant foliation 9* which coincides
with 9 on U-f(U). The sections af: U^Xk(U) corresponding to 9* are C° for

Proof. Follows from the A-Lemma [PI].

Remark that if we assume that an_x: U^»X"~\U) is C1 on U-f(U), then the
restriction of <r*_,: U^X"~\U) is also C1 on U- W"(0). Let us show that in fact
a*^:U^X"-l(U) is C1 on U.
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THEOREM 7.3 ((^-version of the A-Lemma). Let 3F* be an invariant foliation inducing
a continuous section er*: U^X"(U) so that the restriction of o-*_x: U-* X"~\U) to
U- Wu(0) is C\ Then a*^:U^X"-\U) is C\ provided |A, |< | /A, | • |AS|.

Proof. Let <§k be the space of sections crk: U^Jk{U) such that <rk restricted to
U-f(U) coincides with cr* (the section corresponding to 3?*). Endow this space
with the supremum norm ||cr||fc = sup {|er(x)|fc, x e U}. ^Sk is a complete metric space.
Let ®fc(l) be the unit ball in (Sk.

Using the graph transformation Tk we define <j>k:
(Sk{\)^cSk(\) as follows. Let

ere «k(l) . Then

erf(x) if x e £/ - / (£ / )

Tk(<r(r\x))) if xeUnf(U).

Since we had chosen U so that Tk(X
k(U))<= Xk(V) it follows that <f>k is well

defined. Remark that ere ^k(l) is an invariant section precisely when the diagram
above commutes, i.e. when er = r(t(cr °/~'). This is equivalent to 4>k(o-) = a. From
the A-Lemma, see lemma 7.2, it follows that 4>k has a unique attracting fixed point
a (for k-^ n). We will prove that er is C1 (for fcs n — 1) by induction on k.

The idea will be the following. Suppose we can show that for some er£ ^fc(l)
one has that D((<j>k)

m(a)) converges as m-*oo. (Here (<f>k)
m is the mth iterate of

<t>k.) Since ((j>k)
m{cr) converges to the fixed point erf it follows that erf is C1. So it

suffices to show that D((e6fc)
m(cr)) converges as m-»oo. We will do this using the

fibre contraction theorem.
We start by noting that Jk{ U) is homeomorphic to U x Fib1 x • • • x Fib\ where

1/-R", Fib(0 = R'(0. Let pi:J
k(U)^Fibii) be the projection on the ith fiber. Now

define Wk to be the space of continuous maps H: U x Rm -» Fibk with H(x, v) =
Hx(v), where Hx: U

m -* Fib*1 is linear and Hx coincides with the derivative of pk ° cr*
at x for x in U-f(U). Endow ^€k with the norm ||H|| =supx e U ||WX||.

Let us now prove the first induction step that erf is C\ In order to do this fix
er e ^ ( 1 ) . For this er we define a transformation ipla.: $fl -» X1 by

^fL(^ ifxeU-f{U)
r . ^ w . H ^ w ) ) ifxet/n/(£/).

Here w = (d/x)~
1(u) and y=y^'(x). Remark that for x£ Unf(U) one has y =

and hence (w, Hy(w))e T^y)X
l(Unf'\U)). Therefore for

xe Unf(U), (4ila^H)x(v) is the derivative of

/ J l ° r i : X 1 ( t / n / - 1 ( L / ) ) ^ F i b 1

at <r{y) in the direction (w, Hy(w)), and therefore <pXcr{Dcr) = D(c6t ° er) if cr is C1.
Let us show that i/r1>(T is a contraction. Indeed take H, Ke $f\ Then

forxe U-f(U)

r,)o.(j,)(0, (Hy — Ky)(w)) otherwise,
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where w = (Dfx)~\v). From lemma 7.1 it follows that

• \\(Hy-Ky)(w)\\

Hence
| | > P ^ H - ^K|| < A -\\H-K||,

where A = ((|A1|/|/u.,|) + e) • (1/|AS|) + e) can be chosen smaller than one, by taking
e > 0 sufficiently small. Hence

IliA^H-^KHsA-llH-jq,

i.e. 4*\,cr is a contraction. Now we are in the position to prove that a* is C1. In fact
let 0, : V x %> ^ <gl x W1 be denned by

0,(cr, tf ) = (*,(*) , ^ ( H ) ) .

Remark that cr* is the unique attracting fixed point of 4>\ a n d since f,, is a
contraction for every a, it follows from the Fiber Contraction Theorem (see [HP])
that #! has a unique attracting fixed point (<xf, Hf) . So let a- be C1. Then

0,(<r, Dcr) = (<£,(<>•), ^^{Dv)) = (0,(o-), D0,o-)

and therefore (0,)'(o-, Do-) = (^>'1(cr), D^l(o-)). Hence D(<^i)(o-) converges to Hf
and 0'i(o-) to erf as /-»oo. It follows that of is C1 and Daf = //f. This finishes the
first induction step.

Let us now prove that of: U ̂  X2(U) is C . Let ae <S2 and Hlz.'M\ Define

J ( p 2 c r * ) x ( t ; ) ifx€ U-f(U),

Here W = ( D / J ~ 1 ( D ) a n d j = / " ' ( x ) . As before take H2, K2e ~M2. Then

TO i fx6L/ - / (L7)

(p2 ° r2)triy)(0,0, (H2.y - K2,v)(w)) otherwise,

where _y = / '(^) and w = (Dfx)~
i(v). As before one deduces that I/̂ .CT.H, is a contrac-

tion, using lemma 7.1. Now define a map 0 2 : (^ 2 x Sif^x dK2<=> by

((cr, / / , ) , H2)^((^2(<r) , ^ ( H , ) ) , ^2,C T,H,(H2)).

As before the Fiber Contraction Theorem implies that 62 has a unique attracting
fixed point (of, Hf, H^). If ere «2 is C1, then

02(cr, D(Pl o o-), D(/>2 - cr)) = ((/>2(cr), D(pi ° 02 o cr), D(p2 ° </>2 « cr)).

As before it follows that D(p2° crf) = H*. From the previous induction step

D(pi ° a*) = D(af) = H*. Hence erf is C1. Similarly one proves by induction that

the fixed point a\ e ^k of 4>k is C1 for k < n - 1. •
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COROLLARY 1. Let f;M^>M be a diffeomorphism with a saddle-point p and let
codim (W(p)) = 1. Then there exists an invariant unstable foliation !¥* for p, such
that the k-jet along leaves is a C1 function.

Proof. This follows from theorem 7.3 because in this case the condition | Ai| < |/u.i| • | As|
is trivially satisfied. •

Remark. Let 9 be an invariant foliation on V — W (p), where Visa neighbourhood
of W"(p). If 9 satisfies the conclusion of corollary 1, then the foliation &* = 9\j
W(p) on V also satisfies the conclusion of corollary 1. In other words the foliation
&* can be found as the extension of a given one on V - W(p).

COROLLARY 2. If the diffeomorphism f and the foliation 3F depend Cs on parameters,
then the corresponding invariant foliation 3>*{f, 3F) also depends Cs on this parameter.

Proof. This can be proved with the same methods as used in [HP] for showing that
the unstable manifolds depend continuously on / •

7.3. C1-linearisability near saddle-points in the two-dimensional case. Let f:M->M
be a diffeomorphism with a hyperbolic saddle-point p. Assume dim (M) = 2. From
corollary 1 of theorem 7.3 one can obtain invariant stable and unstable foliations
for p, 3>s and &", which are C1. From this one obtains a C1 invariant projection
TTS (T7U) from a neighbourhood V of p onto Ws(p) (W(p)) by projecting along
the leaves of &u (^ s) . By construction one has

irS°f=f°irs, TTu°f=f°TTu-

Then take C1 coordinates on Ws(p) and on W(p) so that / | Ws(p) and / | W(p)
are linear with respect to these coordinates. (This is not hard to do, since Ws(p)
and W(p) are 1-dimensional). Using these coordinates and TTS, ttu one obtains a
C1 -linearising coordinate system for / near p. This result was already known, see
[Ha] and [HP, theorem (6.1)]. The fact that there is additional smoothness i.e. that
a*_x:V^X"~\V) is C\ is new.

7.4. Differentiability of invariant foliations with polynomial tangencies. In § 7.2 we
have extended foliations which were smooth and transversal to Ws(p). In this
section we will consider foliations with leaves which have a tangencyof finite order
with Ws(p), see figure 7.3.

More precisely take a neighbourhood V of p. Using local coordinates we can assume
that V= £,(r) x E2(r) where Ex(r) (resp. E2(r)) is a «(resp. ,s)-dimensional ball of

FIGURE 7.3
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radius r. Assume W(p)n V = £ , ( r ) , Ws(p)n V= E2(r). As before define the space
of germs %k(x0,y0). For g e %k(x0, y0) and 0 < S< 1 define a new norm

Furthermore let

(We could also introduce extra coefficients a, > 0 and consider \D'g(xo)\ • jJC0|'~
s • ah

but this would have no essential effect on the sequel.)
Now consider some foliation !¥" on V whose leaves are graphs of functions

£,(/•)-> £2(r) which are Ck on Ei(r)-0. This defines a section <rk: V- Ws(p)^>
Jk(V- Ws(p)) as before. We assume now that

for some 8 > 0. In other words we allow the foliation 9U to have tangencies with
Ws(p) of order at most 1/(1 — 8). We have now the following generalization of the
A-Lemma and of theorem 7.3.

THEOREM 7.4. Assume that crk is as above and that for the corresponding 8 one has,

A n \k~s

Aj /Xu|
A s \t*l\k

(a) Ifk< n, where n is the degree of differentiability off, then 9 can be extended
to an invariant foliation 9* on V such that a: V— Ws(p)-> X^i V) is continuous.

(b) If a: V-(WS(P)KJ Wu(p))-* Xk-s(V) is C\ then in fact a:V-Ws(p)^>
XKS(V) isC\

Proof. One cannot deduce (a) from the A-Lemma because 3FU has tangencies with
Ws(p). So define as in theorem 7.3:

<gk-s = {o-: V\Ws(p)^ XKS{V), a = a* on U-f(U)}.

For ae^ define 4>k{o-) exactly as before. Let us show that cf>k maps *^M into $ M .
Let (x0, y0) e V\ Ws(p), i.e. assume x0 ^ 0. Then take g, E %k(x0, y0) with Tr^fc-^g,) =
Tk,k-i(gi) and let (x, ,^,) =f(xo,yo). From Iemma7.1(a) for any e > 0 we can choose
V so small that:

|rk(g,)-rfc(g2)|MHrt(g,)-rt(g2)|k-||*.ir~8

(IA'I \ 8i g2 M' viix0n;

Furthermore HD/^II <((l/ |As |) + e). Now one can estimate the Lipschitz expansion:
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Since 8 > 0 this last number is smaller than one, provided
(|Ai|/|As|) • (|ju.u|

fc~s/|/u.1|
k)< 1 and provided we take e > 0 small enough. It follows

that 4>k maps CSKS into <$Kb and moreover that this map is a contraction. Hence
there is a unique fixed point erf which extends ak. Statement (a) follows.

The proof of statement (b) goes exactly as the proof of theorem 7.3 if we replace
I' U by I • ks a n d use the estimates from above. •

COROLLARY. Letf: M -» M be a diffeomorphism with a saddle-point p and let dim M =
2. Then one can extend a foliation & with tangencies along Ws(p) (as above) to an
invariant unstable foliation &* for p, such that the k-jet along leaves is a C1 function
away from Ws(p).

Proof For the two-dimensional case the condition (|Axj/1As|) • (|/iu|'t~s/l/*i|fc)< 1 is
trivially satisfied. Therefore apply theorem 7.4. •

Remark. As before 9* depends continuously on / and 9.

Finally we wish to thank Freddy Dumortier and Anthony Manning for making
many detailed suggestions after reading an earlier version of this paper.
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