
POLYTOPES WITH AN AXIS OF SYMMETRY 

p. MCMULLEN AND G. C. SHEPHARD 

1. Introduction. During the last few years, Branko Griinbaum, Micha 
Perles, and others have made extensive use of Gale transforms and Gale dia­
grams in investigating the properties of convex polytopes. Up to the present, 
this technique has been applied almost entirely in connection with combina­
torial and enumeration problems. In this paper we begin by showing that Gale 
transforms are also useful in investigating properties of an essentially metrical 
nature, namely the symmetries of a convex polytope. Our main result here 
(Theorem (10)) is that, in a manner that will be made precise later, the sym­
metry group of a polytope can be represented faithfully by the symmetry 
group of a Gale transform of its vertices. If a d-polytope P C Ed has an axis 
of symmetry A (that is, A is a linear subspace of Ed such that the reflection in A 
is a symmetry of P), then it is called axi-symmetric. Using Gale transforms we 
are able to determine, in a simple manner, the possible numbers and dimensions 
of axes of symmetry of axi-symmetric polytopes. 

The last part of the paper (§§ 5-9) is concerned with enumeration problems. 
Apart from Perles' recent determination of the number of simplicial J-polytopes 
with d + 3 vertices, no major enumeration problems have been solved within 
the last fifty years (see [2, 6.6] for a short history of the subject). It was there­
fore surprising to discover that if we restrict our attention to axi-symmetric 
polytopes with no vertices on the axis, then in many cases the determination 
of the number of combinatorial types becomes tractable. 

Following the notation of [2], c(v, d) will be used for the number of combina­
torial types of d-polytopes with v vertices, and cs(v, d) for the corresponding 
number of simplicial polytopes. We write c*(v, d, a) for the number of com­
binatorial types of ^-polytopes with an a-dimensional axis of symmetry, the 
star signifying that none of the vertices lies on the axis, so that v = 2n is an 
even integer. Again the suffix 5 will be used to signify that only simplicial 
polytopes are to be considered. 

In §§ 5, 6, and 7, c*(v, d, a) will be determined for certain values of v,d, and a, 
the results being tabulated at the end of the paper. It is not unexpected that the 
case of simplicial polytopes is easier, and in § 8 (Theorem (29)) we shall give 
a general expression for cs^{2n1 d, a) for all d and a in the case 

n — max(d — a, a + 1), 

that is, as we shall show in § 2, in the case of polytopes with a minimum number 
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of vertices. This general expression is in terms of cs(v', a) (v' S d — a), and 
therefore the explicit numerical value can be determined only in a few cases. 

In the course of this investigation, we have accidentally discovered a number 
of curious identities, the simplest being 

c*(2(d - 1), d, 1) = c(d + 1, d - 1) (d ^ 3). 

Although this is easily proved (it is an immediate consequence of [2, 6.1] and 
(23)), we can find no adequate "geometrical" explanation for this identity. 

We wish to thank Keith Lloyd for his assistance in connection with the 
applications of Polya's Theorem to the enumeration problems, and also Gunter 
Ewald, whose discussions with one of us at an early stage in the investigation 
proved very helpful. 

2. Gale transforms. Let P be a J-polytope (that is, a d-dimensional convex 
polytope) in Ed. Then a subspace A of Ed is called an axis of symmetry of P if 
reflection in A is a symmetry of P. In other words, to every vertex w of P , 
which does not lie on A, corresponds another vertex wr of P which is the 
reflection of w in A. The vertices w and w' are said to form a pair with respect 
to the axis A, and the line segment joining w to wf is bisected orthogonally by 
A. We write a = dim A, and i f O ^ a ^ d — 1, then P is called an axi-
symmetric polytope. If a = 0, then it is also called centrally symmetric. 

In this section we investigate the special properties of the Gale transforms 
of the sets of vertices of axi-symmetric polytopes. For the most part we shall 
follow the notation and terminology of [2, 5.4; 3, Chapter 2]. 

Let P be an axi-symmetric d-polytope in Ed, and choose the coordinate 
system in Ed so that the origin o £ A, and each point can be written in the 
form (x, y), with x £ A and y Ç A±

1 the (d — a)-dimensional orthogonal comple­
ment of A passing through o. Then the vertices of P may be written 

ut = (zt, o), i = 1, . . . , m, 

, , v ( yi 9^ o, j = 1, . . . , n, 

so that P has m + 2n vertices, namely m lying on A, and the remaining 2n 
forming n pairs with respect to A. The set of points 

(2) VA = [zi, . . . , zm, xi, . . . , xn] C A 

will be called the axis figure of P with respect to A, and the centrally symmetric 
set of points 

(3) Vc= {±yu . . . , ±yn} CA-

will be called the coaxis figure. It should be noted that neither the axis figure 
nor the coaxis figure is, in general, the set of vertices of a (convex) polytope. 
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Clearly the poly tope P is completely determined by VA, Vc, and the one-to-one 
correspondence ±3^ <-» Xj between the pairs of Vc and a subset of VA. 

Since A is a-dimensional, VA must contain at least a + 1 points, and so 
m + n ^ a + 1. Since 4̂ is (J — a)-dimensional, F c must contain at least 
2(d — a) points, and so n è d — a. These lead to the relation 

(4) n è max(a + 1 — m, a7 — a), 

an inequality to which we shall frequently refer throughout the paper. 
Any Gale transform of V = vert P (the set of vertices of P) is 

(m + 2n — d — 1)-dimensional, and the first theorem describes its special 
properties. 

(5) THEOREM. Let P be a d-polytope with an a-dimensional axis of symmetry 
A, and with m + 2n vertices: 111, . . . , um on A, and wu w\, . . . , wn, wn' paired 
with respect to A. Then there is a Gale transform V of vert P which has an 
(m + n — a — 1)-dimensional axis of symmetry A containing the transforms 
Hi, . . . , ûm of the vertices U\, . . . , um. The set of points 

{ûi, . . . ,ûm,wi + wi, . . . , wn + Wn} C Â 

is a Gale transform of the axis figure VA of P, and the centrally symmetric set of 
points 

{±(wi - wi), . . . , ±(wn - wn')} C Ï 1 

is a c.s. transform (see [3] for definition) of the coaxis figure Vc of P. (Here Â± 
is the (n + a — d)-dimensional orthogonal complement of Â in Em+2n~d~1 = lin F, 
the linear hull of V.) 

Proof. Let 

(Au, • • • , XmA;, MU, • • • , »nk), k = 1, . . . , m + n — a ~ 1, 

be a basis of the set of affine dependences of VA, as given in (2), and let 

(vtm • • • , vnh), h = 1, . . . ,n + a — d, 

be a basis for the set of linear dependences of Vc
+ = {yi, . . . , yn}> Then 

X) ^«z« + X Pi&i = °i 
3=1 

(6) ]C ^ik + X) Mi* = 0, 
i = i 

Z) ^ i = 0, 
3=1 

k = 1, . . . ,rn + n — a — 1, 

& = 1, . . . , n + a — d, 

from which it follows that 

m n 

X) 2\ikui + X) M#(w, + «//) = 0, 
J = I 

X) 2^vc + X) (Mi* + Mi*) = 0, 
r è = l , . . . , m + w — a—• 1, 
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and 
n 

X) Vjh(Wj - W/) = 0, I 
JZl ) h = 1, . . . ,n + a - d. 

X ) (yjn — Vjh) = 0> I 
3=1 ) 

Since (m + n — a — 1) + (n + a — d) = m + 2n — d — 1, we conclude t h a t 
the linearly independent vectors 

(2AU., . . . , 2Xmk} flik, fJLUy . . . , Hnk, Hnk), k = 1, . . . , ?H + U — d — 1, 

(0, . . . , 0, ^ , — vih, . . . , ^ , — vnh), h = 1, . . . , n + a — d, 

form a basis for the set of affine dependences of 

ver t P = {uh . . . , um, wi, Wi, . . . , wn, wn'}. 

T h u s a Gale transform of ver t P is given by 

i = 1, . . . , m, 

j = 1, . . . , n, 

where 

%>i = \^ih • • • > hi,m+n—a—l)i Î = 1, . . . , W, 

*̂ J K^jl) • • • > f* j,m+n—a—l) i 

J3 = \vjli • ' ' » vj,n+a-d)i ^ 

Since, from (6), {zi, . . . , zm, Xi, . . . , xwj is a Gale transform of VA, and 
{dbji, . . . , ±yw} is a c.s. t ransform of F c , the assertions of the theorem follow 
immediately. 

In the theorem it should be noted t h a t Wj may (exceptionally) lie on Â, and 
then Wj and w/ coincide. In this case we may regard Wj and w/ as being inter­
changed by the reflection in A. 

T h e relationship between a set of points and its Gale transform is symmetr i ­
cal, as is clear from the geometrical in terpreta t ion [3, Chapte r 4]. However, 
the Gale transform is only defined to within linear equivalence, and affinely 
equivalent sets of points have the same Gale transforms. This introduces 
complications in discussing properties of polytopes deduced from corresponding 
properties of their Gale transforms. T h e problem can be deal t with in one of two 
ways. One way is to generalize the concept of an axis of symmet ry by allowing 
affine reflections, t h a t is, involutory affine t ransformations which preserve the 
polytope, a l though, as we shall see in the next section, this approach introduces 
no significant generalization. T h e second way is to adop t the convention tha t , 
whenever we say t h a t a polytope P has a certain proper ty , then we mean t h a t 
some polytope affinely equivalent to P has the s ta ted proper ty . Since it is 
slightly more simple, we shall follow the second approach here. T h u s we are 
able to s ta te the converse of Theorem (5) as follows. 

ût = (2zu o), 

w/ = (XJ, -Jj),) 

j = 1, . . . , n. 
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(7) CONVERSE. / / a Gale transform V of the set of vertices of a d-polytope P 
with v vertices has a b-dimensional axis of symmetry Â (O^b^v — d — 1) 
containing m points ûi, . . . , ûm of V, then the polytope P has an axis of symmetry 
A of dimension a = \{v + m) — b — 1 containing exactly m vertices of P. 

Notice that [uu . . . , ûm] may be a proper subset of the set of points of V 
on Â, but when this happens, the remaining points of V on Â must occur in 
coincident pairs. We regard the points of these pairs as being interchanged 
by the reflection in Â. Thus each axis of symmetry of a Gale transform may 
correspond to a number of distinct axes (of various dimensions) of the polytope 
P . This will be investigated in more detail in the next section. 

As a special example, consider the octahedron in Ez. This, along with a Gale 
transform of its set of vertices, is illustrated in Figure 1. It is easily verified 

FIGURE 1 

that the assertions of Theorem (5) hold. For the converse, let us consider the 
axis of symmetry Â of V marked in the figure. If we take m = 0, so that the 
points vi and Vi are regarded as being interchanged by the reflection in Â, then 
Â corresponds to an axis of symmetry A of P , of dimension J(6 + 0) — 1 — 1 = 1, 
namely the line joining the mid-points of the edges [ZJ3, VS] and [A4, v&] of P 
(or equally, the line joining the mid-points of the edges [vz, v&] and [ZJ4, ^5]). If 
we take m = 2, so that V\ and v2 are each fixed under the reflection in A, then A 
will correspond to an axis of dimension ^(6 + 2) — 1 — 1 = 2 o f P containing 
the vertices Vi and V2, namely either of the two planes spanned by Vi, Vi, and one 
of the lines of symmetry just mentioned. 

Two extreme cases of the theorem and its converse are of interest. 
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First suppose that a ^ \(m + d — 1) (in which case we shall say that the 
dimension of the axis is large). Then, by (4), n ^ a + 1 — m. Un takes its 
minimal value n = a + 1 — m (a case with which we shall be particularly 
concerned later), then the axis figure VA is the set of vertices of a simplex, and 
its Gale transform consists of a + 1 points coincident at the origin. Hence we 
have the following. 

(8) COROLLARY. / / a ^ \(m + d — 1) and n = a + 1 — m, then every Gale 
transform of the set ofv = m + 2n vertices of P is centrally symmetric. Conversely, 
if a Gale transform of vert P is centrally symmetric about the origin o, and m 
points lie at o, then P has an axis of symmetry A of dimension \(v + m) — 1, and 
the axis figure VA is the set of vertices of a simplex. 

As before, in applying the corollary, a point of the Gale transform V of 
multiplicity r may be counted as 5 single points and t double points, where s and 
t are any positive integers satisfying s + 2t = r. Thus, for example, the m 
points mentioned in Corollary (8) need not be the only points of V at the 
origin. 

In the second case, suppose that P has an axis of symmetry of dimension 
a ^ \{m + d — 1) (when we shall say that the dimension of the axis is small). 
From (4) we deduce that n ^ d — a. If n takes its minimal value n = d — a, 
then the coaxis figure Vc consists of the set of vertices of a cross-polytope, and 
its c.s. transform consists of 2(d — a) points at the origin. We thus deduce the 
following. 

(9) COROLLARY. If a ^\(m -\- d — 1) and n = d — a, then every Gale 
transform of vert P consists of m single points and n double points (pairs of 
coincident points), with further coincidences between these points being allowed. 
Conversely, if a Gale transform of vert P consists of m single points and n double 
points (possibly with further coincidences), then P has an axis of symmetry of 
dimension d — n, and the coaxis figure Vc is the set of vertices of a cross-polytope. 

We remark that in both the cases covered by the corollaries the one-to-one 
correspondence between the pairs of points of the coaxis figure Vc and the 
subset of the axis figure VA is irrelevant, in the sense that every such corres­
pondence leads to the same combinatorial type of polytope. In fact, it is 
obvious that the various polytopes obtained are affinely equivalent, for the 
Gale transforms of their sets of vertices are identical. 

3. Symmetry groups of polytopes. In § 2 we showed how an axi-symmetric 
polytope P could be represented by a Gale transform with an axis of symmetry, 
and conversely. Here we show that the whole group of symmetries of P can 
be represented simultaneously by symmetries of a Gale transform. 

As indicated in the last section, it is convenient to set everything initially 
in a slightly more general context; we consider affine symmetries of the 
polytope P, that is, (non-singular) affine transformations which preserve P. If 
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7 is an affine symmetry of P , then P' = P7 coincides with (and so is affinely 
equivalent to) P . Thus a Gale transform V of vert P is also a Gale transform of 
vert P ' . But 7 induces a permutation of vert P . Writing 7 for the corresponding 
permutation of the points of V, we see that Vy is also a Gale transform of 
vert P (and of vert P ' ) , which shows that 7 is induced by a (non-singular) 
linear transformation of lin V. Conversely, if a permutation 7 of F is induced 
by a linear transformation of lin V, then, because of the symmetry between a 
set of points and its Gale transform, the corresponding permutation 7 of 
vert P induces an affine symmetry of P . 

From these facts we deduce that there is a one-to-one correspondence 
between the affine symmetries of P and the permutations of V which induce 
linear transformations of lin V. Now each affine symmetry of P leaves fixed 
the centroid of the vertices of P , and so, after a suitable translation, the affine 
symmetry group of P is equivalent to a finite linear group. As is wTell-known 
[7], such a finite group of linear transformations is linearly equivalent to an 
orthogonal group, and we conclude that there is a polytope P i affinely equiva­
lent to P , such that every affine symmetry of P i is a congruent transformation, 
that is, a symmetry of Pi . In an exactly similar way, there is a (new) Gale 
transform V\ of vert P (and hence of vert P i also) such that every linear trans­
formation induced by a permutation of Vi is orthogonal. We have, in a sense, 
maximized the symmetry groups of both the polytope P and the Gale transform 
V. Thus we have proved the following. 

(10) THEOREM. Let P be any convex polytope. Then there exists a Gale trans­
form V of V = vert P such that every symmetry 7 of P corresponds to a symmetry 
7 of V, in the sense that 7 and 7 induce the same permutations of V and V, 
respectively. 

From now on we shall adopt the convention that whenever a Gale transform 
of vert P has the property stated in the theorem, we shall refer to it as the Gale 
transform of vert P (even though it is not, in general, unique). Notice that 
several elements of S(P), the symmetry group of P , may correspond to the 
same element of S(V), the symmetry group of V. For example, in the case of 
the octahedron illustrated in Figure 1, both the identity and reflection in the 
plane containing the vertices z/3, i/4, v5, and vQ (corresponding to the transposition 
v\ <-> V2 in V) induce the identity transformation of lin V. This motivates the 
following definition. 

(11) Definition. If a permutation of the points of V induced by a symmetry of 
P corresponds to the identity transformation of lin V, then this permutation is 
called an intrinsic symmetry of V. 

The set of intrinsic symmetries of V forms a group isomorphic to a normal 
subgroup I(P) of 5(P) , and 

S(P)/I(P)^S(V). 
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In words, if S(V) is the group of symmetries of the set of points of V (each 
point being counted with appropriate multiplicity), then every symmetry of P 
is represented by an element of S( V) modulo an intrinsic symmetry of V. 

The symmetries of I(P) are easily characterized using the Converse (7) of 
Theorem (5). For suppose that V contains v points in v — d — 1 dimensions, 
and that two of these points w and w' coincide. Then the intrinsic symmetry of 
V which transposes w and wr corresponds to an axis of symmetry Â of dimen­
sion v — d — 1 containing v — 2 points of V. This, in turn, corresponds to an 
axis of symmetry A of P of dimension 

\{v + v - 2) - (v - d - 1) - 1 = d - 1, 

and so P has a hyperplane of symmetry containing all but two of the vertices 
of P. It is clear also that to the reflection in such a hyperplane of symmetry of 
P corresponds an intrinsic symmetry of V, and therefore I{P) is generated by 
the reflections in such hyperplanes. 

Referring to the example of the octahedron, I(P) is generated by the reflec­
tions in three planes, each of which contains four vertices. In this case, I(P) 
is an abelian group of order 8, S(P) is a group of order 48, and S(V) is the di­
hedral group of order 6. We also remark that the axis of symmetry I of F 
marked in Figure 1 corresponds to four axes of symmetry of P. The reflections 
in these axes differ by elements of I{P) ; this situation occurs generally, and 
it is not a particular feature of the example. 

4. The number of axes of symmetry of a polytope. In enumerating 
axi-symmetric polytopes, it is necessary to determine the number of axes of 
symmetry a polytope can have. We shall investigate this problem here. 

Let A i and A2 be two axes of symmetry of a ^-polytope P. If there exists no 
symmetry y of P such that A17 = A2, then Ai and A2 will be called essentially 
distinct. More generally, the word essentially will be used in this context to 
mean "to within a symmetry of P " . For example, an axis of symmetry A of P 
of dimension a is called essentially unique if any other a-dimensional axis of 
symmetry of P is equivalent to A under a symmetry of P. The remarks of the 
last section show that to each axis of symmetry Â of V, containing points of V 
only in coincident pairs, corresponds essentially one axis of symmetry of P 
containing no vertices of P (for such axes differ by, at most, symmetries of 

i(p)). 
We begin with some easy results that can be obtained directly, without the 

use of Gale transforms. Let P be a ^-polytope. It is obvious that P can have at 
most one centre of symmetry. If P has hyperplanes of symmetry, then the 
finite group generated by the corresponding reflections must, in fact, be 
generated by at most d of them [1]. Thus we have proved the following. 

(12) THEOREM. A d-polytope has at most d essentially distinct hyperplanes of 
symmetry. 
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If P has lines of symmetry, then an analogous result holds. The finite group 
G generated by the reflections in these lines may or may not contain the central 
reflection — 1. If it does, put G* = G, and if it does not, then write G* for the 
direct product of G with the cyclic group of order 2 generated by — 1. Now G* 
contains a subgroup H generated by reflections in hyperplanes, namely, the 
products of the reflections in the lines of symmetry of P with — 1 . These 
reflections are in hyperplanes perpendicular to the lines of symmetry. As before, 
H is generated by at most d of the reflections, and so there are at most d lines of 
symmetry which are essentially distinct with respect to the group G*. As these 
will also be distinct with respect to G, we have proved the following. 

(13) THEOREM. A d-polytope P has at most d essentially distinct lines of 
symmetry. 

In our enumeration of axi-symmetric polytopes, we shall be particularly 
interested in the cases where no vertices of the polytope lie on the axes. Here 
we can obtain rather stronger results. The first of these refines Theorem (12). 
Suppose that the d-polytope P has hyperplanes of symmetry containing 
no vertices, and that the finite group generated by the reflections in these 
hyperplanes is generated by r of them. If a point w lies on none of these hyper­
planes, and so is not fixed by any operation of the group, then the orbit of w is 
r-dimensional, and, because the order of the group is at least 2r (with equality 
if and only if the generating reflections commute in pairs), the orbit contains 
at least 2r points. 

The different orbits into which the vertices of P fall thus give rise to parallel 
r-dimensional subspaces of Ed, each containing at least 2r points. Consider 
the orthogonal projection of these subspaces onto a (d — r)-dimensional 
subspace of Ed orthogonal to them. Since P is ^-dimensional, the projection of 
the different orbits must be (d — r)-dimensional, and so there are at least 
d — r + 1 distinct orbits. Thus, if P has v vertices, then 

v ^ v(d,r) = 2r(d - r + 1). 
Since 

v(d, r) - v(d, r - 1) = 2r~\d - r), r = 1, . . . , d, 

it follows that for 0 ^ r < s ^ d, 

v(d, r) ^ v(d, s), 

with strict inequality unless r = d — 1, s = d. 
This has the following implication. If d ^ 3, and we put r = 2, then the 

minimal number of vertices is 

v(d,2) = 4(d - 1). 

We may express this as follows. 

(14) THEOREM. A d-polytope (d ^ 3) with v < 4(d — 1) vertices has at most 
one hyperplane of symmetry containing no vertices. 
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Less obvious results of a similar nature can be obtained by considering Gale 
transforms. As in the last section, we choose the Gale transform V of the set of 
vertices of the polytope P in such a way that every symmetry of P corresponds 
to a symmetry of V (possibly intrinsic), and vice-versa. 

We restrict our attention to axes of symmetry A of P containing no vertices, 
so that all points of V on the corresponding axis of symmetry Â must occur 
in coincident pairs. If dim A = a and P has 2n vertices, then dim Â = b = 
n — a — 1. We now see what happens if b takes certain values; firstly, those 
corresponding to the special cases discussed in Corollaries (8) and (9) of 
Theorem (5). If b — 0 or 2n — d — 1 (the dimension of V), then Â is unique, 
and gives rise to an essentially unique axis of symmetry A of P. This proves the 
following. 

(15) THEOREM. Let P be a d-polytope with 2n vertices. If 

a = n — 1 or a = d — n, 

then P has essentially at most one a-dimensional axis of symmetry containing no 
vertices. 

Similarly, ii b = \ or 2n — d — 2 ( = dim V — 1), then (as in the case of 
polytopes discussed before Theorem (12)), there is a corresponding finite group 
generated by at most 2n — d — 1 reflections. The axes of symmetry of P 
corresponding to each line or hyperplane of symmetry of V again differ only 
by symmetries of P, and so we have proved the following. 

(16) THEOREM. Let P be a d-polytope with 2n vertices. If 

a = n — 2 or a = d — n + 1, 

then P has at most 2n — d — 1 essentially distinct a-dimensional axes of sym­
metry containing no vertices. 

To illustrate some of the ideas we have discussed in this section, let us con­
sider another example. Let P be the 5-polytope which is the join of two squares 
[4, p. 119]: it is constructed by taking the convex hull of two squares, one in 
each of two independent planes (2-dimensional subspaces) of Eb. The coordi­
nates of its eight vertices may be taken to be 

v±i± = ( ± 1 , ± 1 , 0, 0, 1), w±t± = (0, 0, ± 1 , ± 1 , - 1 ) , 

and the Gale transform V (whose dimension is 8 — 5 — 1 = 2) is depicted in 
Figure 2. It consists of eight points forming four coincident pairs, as shown. 

Since the origin o is the centroid of the vertices of P , any axis of symmetry of 
P must pass through o. The various axes of symmetry of P can be classified by 
considering the easier problem of finding the axes of symmetry of the Gale 
transform V, together with the possible sets of fixed points on these axes. V 
has four essentially distinct axes of symmetry: the origin {o} alone, the whole 
plane lin V, and the two lines Â and B marked in Figure 2. 
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FIGURE 2 

The central reflection in o leaves no points of V fixed, and so corresponds to 
an (essentially unique) 3-dimensional axis of symmetry of P , for example, 
#1 + #3 = 0. This contains no vertices of P . 

The whole plane lin V corresponds to four essentially distinct axes of 
symmetry of P , corresponding to the cases where we consider 0, 1, 2 or 3 of the 
coincident pairs of points to be fixed. These axes are of dimension 1, 2, 3, and 4, 
respectively, and the line of symmetry is unique. 

The axis of symmetry Â corresponds to three essentially distinct axes of 
symmetry of P , corresponding to the cases where we take 0, 1 or 2 of the coinci­
dent pairs of points on Â to be fixed. These axes are of dimension 2, 3, and 4, 
respectively. 

The axis of symmetry B contains no fixed points, and corresponds to essen­
tially one 2-dimensional axis of symmetry of P , which contains no vertices of P . 

Summarizing this information, we see that P has no centre of symmetry; 
a unique line of symmetry, which contains no vertices of P (Theorem (15) and 
also Theorem (13)) ; three essentially distinct 2-dimensional axes of symmetry, 
of which two contain no vertices of P (Theorem (16)) ; three essentially distinct 
3-dimensional axes of symmetry, of which just one contains no vertices of 
P (Theorem (15)), and two essentially distinct hyperplanes of symmetry, both 
containing vertices of P . 

5. Enumeration of poly topes with an axis of symmetry of large 
dimension. This, and the following three sections, are concerned with enumer­
ation problems, that is, the determination of the number c*(2n, d, a) defined 
in the introduction. We begin by discussing three cases in which the axes of 
the polytopes have dimension a = d — 1 or d — 2. 

(17) c*(2(a + l),a + l,a) = 1. 
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We need to consider poly topes with a hyperplane of symmetry, each of whose 
axis figures is the set of vertices of an a-simplex. Such a polytope therefore has 
a + 1 parallel edges bisected orthogonally by the hyperplane, and so is of the 
same combinatorial type as a simplicial prism. It is therefore unique, and we 
obtain the value 1 as stated. 

(18) c*{2(a + 2), a + 1, a) = [\a(Za + 2)]. 

Again we are considering polytopes with a hyperplane of symmetry, but 
here the number of vertices exceeds the minimum given by (4). (In fact, this 
is the only case in which we have been able to solve the enumeration problem 
with more than the minimum number of vertices.) The axis figure is a set of 
a + 2 distinct points in a dimensions. By Radon's Theorem [6], there is a 
unique partition of these a + 2 points into three disjoint sets, say {u0, . . . , ur), 
{̂ o, • • • > vs}, {wo, . . . , wt}, where r, s, and / are some non-negative integers 
with r -\- s -\- t = a — 1, with the properties: 

(i) convj^o, • • • , ur} C\ convf^o, • . . , vs} is a single point, which we shall 
denote by x, and 

(ii) the points w0l . . . , wt are affinely independent of u0, . . . , ur, v0, . . . , vs. 
Each of the two sets {u0j . . . , ur}, {v0, . . . , vs} is also affinely independent, 

and, since the a + 2 points are distinct, we cannot have r = s = 0. 
Since the subsets {u0, . . . , ur, v0, . . . , vs} and {w0f . . . , wt} of VA lie in 

independent affine subspaces of A, we are led to consider the following more 
general situation. Let Q and R be two polytopes in Ea+l having the same 
hyperplane A of Ea+1 as an axis of symmetry, and let the respective axis figures 
VA and WA lie in independent affine subspaces of A. Without loss of generality, 
we may assume that the polytope 5 = conv(<2 ^J R) has dimension a + 1. 
Clearly S has A as a hyperplane of symmetry and the corresponding axis 
figure SA is the union of the axis figures of Q and R. Let D be a face of 5, so 
that there is a hyperplane H of Ea+l such that D = H C\S. Then F = H C\Q 
and G = H C\ R are faces of Q and R, respectively, allowing the possibility 
that either F or G may be empty. If D = Df (the reflection of D in A), then H 
must contain a line perpendicular to A, and so F = F' and G = Gf. If D ^ D'', 
then D must lie in one of the closed half-spaces, A+ say, into which A divides 
Ea+1, and this implies that F and G also lie in A+. Conversely, if F and G are 
faces of Q and R such that F — Ff and G = G', then, since the axis figures of Q 
and R lie in independent subspaces, D = conv(7? U G) is a face of 5 such that 
Z) = £>'. On the other hand, if F and G are faces of Q and i? both lying in A+, 
then Z> = conv(F \J G) is again a face of 5. 

We have thus obtained a complete description of the faces of S = conv(<2 UR), 
and from this we deduce that the combinatorial type of 5 does not depend on 
the relative positions of the axis figures of Q and R in A (so long as they lie in 
independent affine subspaces), nor on the choices of Q and R in their respective 
combinatorial equivalence classes. In other words, the construction we have 
just described is one of combinatorial type. 
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Return ing to the particular problem with which we are concerned, let the 
vertices of P be denoted by u0

±
1 . . . , u^, Vo±

1 . . . , vs
±, w0

±
f . . . , wt± corre­

sponding to the points of the axis figure, where those points with superscript + 
lie in the half-space A+. T h e two poly topes 

Q = convj^o*, . . . , u^, v0
±y . . . , i ^ } and R = c o n v j ^ , . . . , wt±} 

satisfy the conditions described above, and so can be considered separately. 
Since the axis figure RA = {w0, . . . , wt) is the set of vertices of a /-simplex, 
as in (6), the poly tope R is combinatorially equivalent to a (/ + 1)-dimensional 
simplicial prism. 

Consider now the (r + s + l ) -polytope Q. As before, let x denote the com­
mon point of convj^o, . . . , uT\ and convj^o, . . . , vs}, and let the line through x 
perpendicular to A meet U+ = c o n v { u 0

+ , . . . , ur
+) in y, and V+ = {v0

+,... , vs
+} 

in z. Notice t ha t each of U+ and V+ is a simplex, so t ha t each of 

U = conv{u0
±, . . . , M^} and V = conv{^0

± , . • • , ^ ^ J 

is combinatorially equivalent to a simplicial prism. There are three 
possibilities: 

(a) y = z ; 
.(b) y is beyond z with respect to 4̂ ; 
(c) y is beneath z with respect to ^4. 

Reversing the rôles of U and V, we see t ha t (b) and (c) are equivalent, except 
t ha t if r = 0, only (b) (and not (a) or (c)) is possible. 

W e now investigate the set of faces of Q = conv( UU V) in order to show t h a t 
its combinatorial type depends only on r, s, and the relative positions of y and z 
as described by (a), (b), or (c). 

If (a) holds, then clearly Q is of the combinatorial type of the prism whose 
basis is the simplicial polytope Tr's = conv{^0 , • • • , uT, v0, . . . , vs}. T h e com­
binatorial type of r r , s , and therefore the combinatorial type of Q, depends only 
on the integers r and 5 [2, 6.1]. 

If (b) holds, so t ha t r H , ^ l , the faces of Q are of two types. If such a face 
meets the axis figure {u0, . . . , ur, v0l . . . , vs}, then it is a prism on one of the 
proper (simplicial) faces of Tr,s. If not, the face is a simplex, namely the convex 
hull of a face of U+ (or U~) and a proper face of V+ (or V~ respectively). Con­
versely, any proper face of Tr-\ of a face of U+ and a proper face of V+, give rise 
to a face of Q in this way. 

We deduce t ha t for given k ^ 1, the number of distinct combinatorial types 
with r + 5 = k is, in the various cases, 

(a) [ § H (b) and (c) £ 1 = k. 

T h u s the overall total (remembering tha t t = — 1 is possible) is 

Z [I*] = [M3a + 2)]. 
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Since, by Theorem (14), when a ^ 3 the polytope can have at most one hyper-
plane of symmetry, we see immediately that the above description of P , in 
terms of its axis figure, is unique, and so the total we have obtained is the number 
of possible combinatorial types. For a = 1 and 2, it is trivial to check the result 
numerically, and so the assertion (18) is true in all cases. 

(19) c*(2(a + 1), a + 2, a) = - ^ ^ V+(*±±) - 2 

J2 | a , a even, 
+ W ( a - 8 \ a odd, 

where the summation is over all positive integer divisors s of a + 1, and <t> is 
Euler's function: </>(r) is the number of positive integers less than r and prime to r. 

Let P be an (a + 2)-polytope with 2(a + 1) vertices and an a-dimensional 
axis of symmetry. The axis figure VA is the set of vertices of a simplex, and so P 
is completely determined by its coaxis figure Vc- Vc is a 2-dimensional centrally 
symmetric set of 2(a + 1) points, none of which coincide with o. We need to 
investigate which coaxis figures correspond to the same, or distinct, com­
binatorial types of polytope. 

It is convenient, and interesting, to discuss a more general problem: the 
relationship between the combinatorial type of an (a + k) -polytope P (with 
2 (a + 1) vertices and an a-dimensional axis of symmetry) and its ^-dimensional 
coaxis figure, where 1 ^ k ^ a + 1. The Gale transform F of the set of vertices 
of such a polytope P is, by Corollary (8) of § 2, a centrally symmetric set of 
2(a + 1) points in Ea+1~k. First we notice that the combinatorial type of P does 
not depend on the distance of the points of the coaxis figure Vc from the origin o. 
For, if we write the vertices of P in the form (1), and then replace ±3^ by i a ^ -
(<Xj > 0, j = 1, . . . , a + 1), remembering that the Gale transform is also a 
c.s. transform of Vc, we see that in V we must replace ±3^ by dzaf^j 
(j = 1, . . . , a + 1). This new Gale transform is isomorphic to V [2, 5.4.5] 
and so the corresponding polytopes are combinatorially equivalent. We may 
therefore assume, without loss of generality, that the points of the coaxis figure 
Vc lie on the unit sphere in lin Vc. 

Now let us consider which sets of vertices of P determine faces of P. If jj is 
any point of V, then 

0 Ç relint conv{yj, —jj] 

(the relative interior of the convex hull), from which it follows by [2, 5.4.1], 
that the subset vert P\{WJ, w/} of vert P is the set of vertices of a face of P . 
Since the intersection of any two faces of P is a face of P , the set of faces of P , 
and therefore the combinatorial type of P , is completely determined by those 
faces of P which contain at least one of every pair of vertices symmetrical about 
A. Let F be such a face, and for convenience of notation suppose that F contains 
all the vertices of P except W\, . . . , wT. By [2, 5.4.1] again, this implies that 

0 Ç relint convjji, . . . ,yr}, 
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that is, there are positive numbers Vi, . . . , vr such that 

v\J\ + . . . + vryr = o. 

Thus the vector (vi, . . . , VT1 0, . . . , 0) is a linear dependence of the points 
V+ = {yly. . . ,ya+i}. Because of the symmetry between a centrally symmetric 
set of points and a c.s. transform [3, Chapter 4], this implies that there is a vector 
c of lin Vc such that 

(c,yj) = VJ > 0, j = 1, . . . , r, 

(c,yj) = 0, j = r + 1, . . . , a + 1, 

(c, -yj) ^ 0, j = 1, . . . , a + 1. 

(Compare the proof of [2, 5.4.1] or [3, 2(13)].) In other words, all the points of Vc 

except yi, . . . , yr lie in the closed half-space {y\ (c, y) ^ 0} of lin Vc- This 
argument is reversible, leading to the following conclusion. 

(20) THEOREM. Let P be an (a + k)-polytope (1 ^ k ^ a + 1) in Ea+\ 
with an a-dimensional axis of symmetry A, and a + 1 pairs of vertices symmetric 
with respect to A. Then any set of vertices of P, which contains at least one vertex 
of every pair, is the set of vertices of a proper face of P if and only if it lies in some 
closed half-space of Ea+]c whose boundary contains A. 

We now return to the special case k = 2. As we have seen, we may suppose that 
the points of the coaxis figure Vc He at the ends of a number of diameters of the 
unit circle in E2 ; it is possible for each end of a diameter to contain more than 
one point of Vc. From the theorem, it follows that we may not separate or 
coalesce different diameters, nor move diameters with different end multi­
plicities across one another, without altering the combinatorial type. However, 
other modifications to Vc are permissible and these allow us to assume that the 
diameters of the figure are evenly spaced. In Figure 3 we give examples of 
coaxis figures corresponding to different combinatorial types in the cases 
a = 1,2, and 3. 

The above discussion shows that c*(2(a + 1), a + 2, a) is precisely the num­
ber of ways of arranging 2{a + 1) points, in a centrally symmetric manner, at 
the ends of r diameters of the unit circle (r ^ 2), each end carrying at least one 
point. Only essentially distinct arrangements are to be counted, that is, arrange­
ments which are not equivalent under the symmetry group of the unit circle. 
This number may be determined using Polya's Theorem [5]. We do not reproduce 
details of the calculation, but assert that we are led to the value of 

c*(2(a + I), a + 2, a) 
stated above. 

6. Enumeration of polytopes with an axis of symmetry of small 
dimension. Here we are concerned with the determination of c*(fl, d, a), where 
a ^ \{d — l)andz> = 2{d — a). We shall prove a general enumeration theorem 
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a = 1 
c*(4, 3, 1) = 1 e*(6, 4, 2) = 2 

a = 3 

c*(8, 5, 3) = 4 

FIGURE 3 

for poly topes of this type , from which explicit numerical values of c*(v, d} a) can 
be found in the cases a = 0 and a = 1. 

Le t P be a d-polytope with an a-dimensional axis of symmet ry 4̂ 
(a ^ ^(d — 1)), and v = 2(d — a) vertices paired with respect to A. T h e axis 
figure consists of d — a points in A, and PA = conv VA is an a-polytope in A. 
Every pair of vertices \w, w') of P with respect to A is associated with a point 
w" = \{w + 7*/) of F A . If w r / Ç relint P A , then it is clear t h a t P is a b ipyramid 
with opposite vertices w and w', and its basis is the (d — 1)-polytope Pi = 
c o n v ( F \ { ^ , w'}), where as usual we wri te V = ver t P. In this case the com­
binatorial type of P is completely determined by the combinatorial type of P i , 
and hence, by an obvious extension, it is completely determined by 

(I) the number t of points of VA lying in relint PAl and 
(II) the (d — t) -polytope whose a-dimensional axis figure is VA C\ bd PA 

(bd PA is the boundary of PA). 
For simplicity therefore, in the following, we may restr ict our a t t en t ion to 

those poly topes P for which VA C bd PA. Le t us consider the faces of such a 
polytope. Le t H be a support ing hyperplane of P , and write HA = H C\ A. 
I t is clear t h a t if HA contains a point w" of VA, then H contains both of the pair 
of vertices w and w' of P associated with w". T h u s the following possibilities 
arise: 

(i) HA supports PA, HA Pi PA — FA which is a j -d imensional face of PA, 
and H contains no vertices of P other than those pairs associated with points of 
VA C\ FA. 
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If card(FA P FA) = k, then the face F = H P P is easily seen to be the 
(J + k)-polytope with 2k vertices whose axis figure is VAC\ FA. Such a face we 
shall say is associated with the face FA of PA. 

(ii) HA does not support PA. 
If HA contains s vertices of P , then because these points are affinely indepen­

dent, H P P is an (s — 1)-simplex. Notice that, of these 5 vertices, at most one 
can belong to each pair of vertices of P , and conversely, if we are given any 5 
vertices of P with at most one belonging to each pair, then the convex hull of 
these vertices is a face of P . 

(iii) HA supports PA, HA P PA = FA which is aj-dimensional face of PAl and 
H contains 5 vertices of P other than those associated with the points VA P FA. 

In this case, H P P is an 5-fold pyramid whose basis is the (J + &)-face Foi P 
associated with the face FA of PA as described in (i). Again, of the s vertices, at 
most one can belong to any pair of vertices of P , and conversely, if we are given 
any such selection of 5 vertices which are not associated with the points VA P FAi 

then the convex hull of these vertices and F is a face of P . 
From this description of the set of faces of P it is clear that the combinatorial 

type of P is determined completely by the type and arrangement of the faces F 
of P that are associated with the faces FA of PA as described in (i). Since these 
have axis figures of dimension strictly less than a, we can use an obvious induc­
tive argument on a. 

If a = 1, the problem is particularly simple: the d — 1 points of VA lie on the 
line segment PA. If r points of VA coincide with one end point (vertex) of P A , 
and 5 points of VA with the other end, then d — r — s — 1 points of VA will 
lie in relint PA. In this case P i s a (d — r — s — 1)-fold bipyramid whose basis is 
the free join of an r-cross-polytope and s-cross-polytope, see [4, p. 119]. 

The above discussion motivates the introduction of the concept of a labelled 
polytope. An a-polytope Q is said to be labelled if, with every face of Q} including 
Q itself but excluding the empty face 0, is associated an integer, positive in the 
case of the vertices of Q, and non-negative in the case of the other faces. Q is said 
to be v-labelled if the sum of the integer labels is v. Two labelled polytopes Q\ and 
Q2 are combinatorially equivalent if there is a one-to-one inclusion preserving 
correspondence between the set of faces of Q\ and the set of faces of Q2, for which 
corresponding faces carry the same label. Otherwise, Q± and Q2 will be called 
distinct. Using this terminology, we can now state the main enumeration theorem 
for polytopes with axes of symmetry of small dimension. 

(21) THEOREM. The number of combinatorial types of d-polytopes with an 
a-dimensional axis of symmetry {a ^ \{d — 1)), and 2(d — a) vertices, none of 
which lie on the axis, is equal to the number of distinct (d — a)-labelled a-poly topes. 

The only cases in which we have been able to apply this theorem to yield 
numerical results are a = Oanda = 1. The former case is trivial, for there is only 
one type of centrally symmetric d-polytope with 2d vertices, namely the cross-
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polytope Xd. Hence: 

(22) c*(2d,d,0) = 1. 

If a = 1, then by the theorem, c*(2(d — 1), a7, 1) is the number of distinct 
(d — 1)-labelled 1-polytopes. This is, using r and 5 as above, the number of 
integer solutions of the inequalities 

1 g r ^ 5 , r + s ^ d — 1. 

It follows immediately that 

(23) c*(2(d - l ) , o \ l ) = [\{d - 1)2]. 

7. Enumeration of polytopes with an axis of symmetry of dimension 
near \d. If the axis of symmetry of a polytope P has dimension near \d, and the 
number of vertices is minimal, then the corresponding Gale transform will be of 
small dimension. When this dimension is 0, 1 or 2, the enumeration problem is 
soluble. 

(24) c*(2(a + l ) ,2a + 1, a) = 1. 

The axis figure is the set of vertices of an a-simplex, and the coaxis figure is the 
set of vertices of an (a + 1)-cross-polytope. Hence the Gale transform consists of 
2(a + 1) points coinciding with the origin, and the corresponding polytope is 
unique, namely, the (2a + l)-simplex. 

(25) c*(2(a + l ) ,2a , a) = a. 

Any Gale transform of the set of vertices of a 2a-polytope P with 2 (a + 1) 
vertices is 1-dimensional, and if P has an a-dimensional axis of symmetry con­
taining no vertices, then by Corollary (8) the Gale transform is centrally sym­
metric. Hence it consists of 2(a + 1) points on a line arranged symmetrically 
about the origin o. By [2, 5.4.2], there must be at least two points on each side of 
o, and so, to within isomorphism of the Gale transforms [2, 5.4.5], their number is 
a. Hence this is the value of c*(2(a + 1), 2a, a). 

(26) c*(2(a + 1), 2a - 1, a) = S ^ Z 2 ' * ( ; ) - 3a - § 

h • 2*a"\ a even, 
+ \ 5 . 2i(a-D) a 0 ( k L 

Any Gale transform of the set of vertices of a (2a — 1)-polytope P with 
2(a + 1) vertices is 2-dimensional, and in this case, by Corollary (8), it is also 
centrally symmetric. Thus c*(2(a + 1), 2a — 1, a) is the number of non-iso-
morphic, centrally symmetric, 2-dimensional Gale transforms. Some of the 
points may coincide with the origin (in pairs), and hence c* (2 (a + l ) ,2a — l ,a) 
is the number of essentially different ways of labelling the vertices of a 2n-gon 
(for each n ^ 2) in a centrally symmetric way, so that each label is at least 1, 
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and the sum of the labels is at most 2(a + 1). (If n = 2, then the labels must be 
at least 2, since otherwise the diagram does not represent a polytope [2, 5.4.2].) 
This, in turn, is equal to the number of essentially different ways of labelling the 
vertices of an n-gon (n ^ 2), so that each label is at least one and the sum of the 
labels is at most a + 1. (Again, each label must be at least 2 if n = 2.) The num­
ber of such arrangements can be found using Polya's Theorem [5]. The details 
of the calculation are omitted, but it yields the number stated above. 

(27) c*(2(a + 2), 2a + 2, a) = [I(a + 2)2]. 

If P is a (2a + 2)-polytope with 2{a + 2) vertices, then any Gale transform 
of the set of its vertices is 1-dimensional. The fact that P has an a-dimensional 
axis of symmetry containing none of the vertices implies, by Corollary (9), that 
the Gale transform consists of a + 2 pairs of coincident points. Considering the 
case where r pairs lie on one side of the origin, and s pairs on the other, we see 
that the number of non-isomorphic Gale transforms of the required type is equal 
to the number of integer solutions of the inequalities, 

1 ^r g s, r + s ^ a + 2. 

This number is [\(a + 2)2], yielding the stated result. 

(28) c*(2(a + 3), 2a + 3, a) = c(a + 3, a) + x(a) , 

where 

*<«>=f("t5)+f(T)+H<°-3>[l<3«+4 
Let P be a (2a + 3)-polytope with 2 (a + 3) vertices paired with respect to an 

a-dimensional axis of symmetry. Then any Gale transform V of vert P is 2-
dimensional, and consists of a + 3 pairs of coincident points. Let us consider the 
diagram W which is obtained from F by halving the multiplicity of each point of 
V. If every open half-plane in lin F with o on its boundary contains at least two 
points of W, then IF is a Gale transform of the set of vertices of an a-polytope 
with a + 3 vertices [2, 5.4.2]. If this condition does not hold, then we shall call W 
an exceptional transform. Writing x(#) for the number of non-isomorphic 
exceptional transforms, we see that c*(2(a + 3), 2a + 3, a) = c(a + 3 ,a)+x(a) , 
as stated. 

We must now determine x(#)- Remembering that in the exceptional trans­
forms, each open half-plane with o on its boundary contains at least one point of 
W, we see that the exceptional transforms must be of the form shown in Figure 4, 
where the multiplicities m, n, p, q, r, and 5 satisfy the equality and inequalities 
stated. 
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m •_ 

m + n + p + q + r + s = a + 2,rn + q ^ l,w + r ^ 1,<Z + f + s ^ 1 ; 
m = 0 if and only if w = 0. 

FIGURE 4 

Noticing that the diagrams in Figure 5 are isomorphic, 

i i 

m - 1 0 - - 0 

FIGURE 5 

it is a straightforward matter to enumerate the possibilities. We do not repro­
duce the calculations here, but merely assert that they lead to the value of x(a) 
stated above. 

8. Enumeration of simplicial polytopes with an axis of symmetry. 
It is not surprising that enumeration problems can be solved more completely 
if we restrict ourselves to simplicial polytopes. We shall prove the following. 

(29) THEOREM. 

c*(2(a+ l),d,a) = 0 if a > \d, 

c*(2(a+ l ) , 2 a , a ) = 1, 

c*(2(d — a),d, a) = X) cs(v, a) if a ^ \{d — 1). 

In each case, the number of vertices is the smallest possible number permitted 
by the inequality (4). 

Proof. Let us consider first the case of axes of symmetry of large dimension, 
that is, a ^ \{d — 1). As we have already shown (Corollary (8)), a poly tope P 
satisfying this condition corresponds to a centrally symmetric Gale transform V 
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of 2a — d + 1 dimensions. In particular, if 2a — d + 1 ^ 2, then P has cofaces 
consisting of just two vertices (corresponding to any point of V distinct from 0, 
and its reflection in 0), and so has faces with 2a ^ d + 1 vertices. This is in­
consistent with the supposition that P is simplicial. Consequently, if a > \d, 
then c*(2(a + 1), d, a) = 0. On the other hand, if d = 2a or 2a + 1, then the 
dimension 2a — d + 1 of the Gale transform is either 1 or 0. The latter case 
corresponds to the simplex alone. In the former case we must enumerate centrally 
symmetric 1-dimensional Gale transforms with 2(a + 1) points, none of which 
coincide with 0. Again, up to isomorphism, there is only one possibility, namely: 

a+1 a+1 
. e • 

The corresponding polytope is Ta © Ta (in the notation of [4, p. 119]), and we 
therefore have cs*(2(a + I) ,2a, a) = 1. 

When the axis of symmetry of the polytope P is of small dimension 
(a S %(d — 1)), the enumeration can be carried out by a slight modification of 
Theorem (21) of § 6. The fact that P is simplicial places a number of restrictions 
on the possible axis figure VA and the corresponding polytope PA: 

(i) PA must be a simplicial polytope. For if FA were a non-simplicial proper 
face of PA, then the face F of P associated with FA would not be a simplex. 

(ii) The label attached to each vertex of PA must be at most 1, and so exactly 1. 
For a label r at a vertex of PA would imply that P had an r-cross-polytope as one 
of its f-faces. 

(iii) Every proper face of PA, other than a vertex, must carry the label 0. For if 
a face FA of PA carried a non-zero label, then it is easy to see that the face F of 
P , associated with FA, would not be a simplex. The polytope PA itself can, of 
course, carry a non-zero label. 

The number of distinct (d — a)-labelled a-polytopes satisfying these con­
ditions is easily seen to be 

Z) c8(v,a), 
vt^d—a 

and so we obtain the result stated in the theorem. 
Actual numerical values can be found only when d = 2a -f 1, 2a + 2 or 

2a + 3. These yield: 

cs*(2(a+ l ) , 2 a + 1, a) = 1, 

c ,*(2(a+.2) ,2a + 2,a) = [|a] + 1, 

c*(2(a + 3), 2a + 3, a) = 2[^a] - 1 + \ £ ^h)2W)l\ 
4(a + 3) „|a+3; 

h odd 

the last value being obtained from Perles' formula for cs(a + 3, a), see [2, 6.3]. 
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TABLE. Summary of results 

The symbols c*(v, d, a), cs*(v, d, a), c(v, d), and cs(v, d) are defined in § 1 

(A) Axes of large dimension (§ 5). 

(17) c*(2(a+l),a+l,a) = l. 

(18) c*(2(a + 2), a + 1, a) = [\a(Za + 2)]. 

(19) c*(2(a +l),a + 2, a) = l £ 2sd^~) - 2 
(a + 1) S|a+ 

(2^a 

' (a"3) a odd 
J22a , a even, 

+ (3 • 2*c 

, . _ , a even, 
+ 1 . „1<«-1> a o d d _ 

\ 2 i 

(B) Axes of small dimension (§ 6). 

(22) c*(2d,d,0) = 1. 

(23) c*(2(d-i),d,i) = [ w - m 

(C) Axes of dimension near \d (§ 7). 

(24) c*(2(o + 1), 2a + 1, a) = 1. 

(25) c*(2(a+ l ) ,2a , a) = a. 

(26) C*(2(a + 1), 2a - 1, a) = E ^ E 2 ' * @ - 3a - | 

/ 7 • 2ia-\ 
(5 • 2*(8-1) 

(27) c*(2(a + 2), 2a + 2, a) = [J(a + 2)"]. 

(28) c*(2(a + 3), 2a + 3, a) = c(a + 3, a) + x ( a ) , 

where 

*w-K*ïO+i('ïO+Hfr-»l>-'-i>]-
(D) Simplicial polytopes (§ 8). 

{ cs*(2(a + 1), d, a) = 0 if a > K 

(29) \ ^ / (2 (a + 1), 2a, a) = 1, 

cs*(2(d — a),d, a) = X Cs(^#) i f a ^ | ( ^ — 1 ) . 
v v^d—a 
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