

On Fredholm Operators Between Non-archimedean Fréchet Spaces

W. ŚLIWA

Faculty of Mathematics and Computer Science, A. Mickiewicz University, ul. Umultowska 87, 61-614 Poznań, Poland. e-mail: sliwa@amu.edu.pl

(Received: 4 December 2001; accepted 20 March 2002)

Abstract. It is proved that the index of a Fredholm operator between non-Archimedean Fréchet spaces is preserved under compact perturbations. A similar result is shown for Fredholm operators between non-Archimedean polar regular LF-spaces.

Mathematics Subject Classifications (2000). 47S10, 46S10.

Key words. compact perturbations of Fredholm operators, index of Fredholm operator.

Introduction

In this paper all linear spaces are over a non-archimedean nontrivially valued field \mathbb{K} which is complete under the metric induced by the valuation $|\cdot|: \mathbb{K} \to [0, \infty)$. For fundamentals of locally convex Hausdorff spaces (l.c.s) and normed spaces we refer to [6, 9] and [8].

The problem of perturbations of continuous linear operators between Banach spaces has been studied in [5, 11, 12] and [1]. In [1], J. Araujo, C. Perez-Garcia and S. Vega proved that the index of a Fredholm operator between Banach spaces is preserved under compact perturbations. In this paper we extend this result to Fredholm operators between Fréchet spaces. We show the following (Theorem 4). Let X and Y be Fréchet spaces. If T is a Fredholm operator from X to Y and K is a compact operator from X to Y, then T + K is a Fredholm operator, and the index of T + K is equal to the one of T. We prove a similar result for Fredholm operators from a polar regular LF-space to an LF-space (Theorem 8).

Preliminaries

Let X and Y be linear spaces. The set of all linear operators from X to Y we denote by $\mathcal{L}(X, Y)$. We say that $T \in \mathcal{L}(X, Y)$ has an index if dim ker $T + \dim(Y/TX) < \infty$. In this case the index of T is defined as $\chi(T) = \dim \ker T - \dim(Y/TX)$. If $T \in \mathcal{L}(X, Y)$ has an index and $F \in \mathcal{L}(X, Y)$ is a finite-dimensional operator (that is dim $FX < \infty$), then T + F has an index and $\chi(T + F) = \chi(T)$ ([1], Theorem 3.5). Let X, Y and Z be linear spaces. If two of the three operators $T \in \mathcal{L}(X, Y)$, $S \in \mathcal{L}(Y, Z)$ and $ST \in \mathcal{L}(X, Z)$ have indexes, then the third one also has an index and $\chi(ST) = \chi(T) + \chi(S)$ ([7], Proposition 7.1.6).

The identity operator on a linear space X is indicated by I_X .

By a *seminorm* on a linear space *E* we mean a function $p: E \to [0, \infty)$ such that $p(\alpha x) = |\alpha|p(x)$ for all $\alpha \in \mathbb{K}$, $x \in E$ and $p(x + y) \leq \max\{p(x), p(y)\}$ for all $x, y \in E$. A seminorm *p* on *E* is *norm* if ker $p := \{x \in E : p(x) = 0\} = \{0\}$.

The set of all continuous seminorms on a l.c.s *E* is denoted by $\mathcal{P}(E)$. A l.c.s *E* is of *countable type* if for every $p \in \mathcal{P}(E)$, the normed space $(E/\ker p, \bar{p})$, where $\bar{p}(x + \ker p) = p(x)$ for $x \in E$, contains a linearly dense countable subset.

The set of all continuous linear functionals on a l.c.s X is denoted by X'. If X is of countable type, then for any $x \in (X \setminus \{0\})$ there is $f \in X'$ with $f(x) \neq 0$ ([9]).

A subset *B* of a l.c.s *E* is *compactoid* if for each neighbourhood *U* of 0 in *E* there exists a finite subset $A = \{a_1, \ldots, a_n\}$ of *E* such that $B \subset U + \operatorname{co} A$, where $\operatorname{co} A = \{\sum_{i=1}^n \alpha_i a_i : \alpha_1, \ldots, \alpha_n \in \mathbb{K}, |\alpha_1|, \ldots, |\alpha_n| \leq 1\}$ is the *absolutely convex hull* of *A*. Any compactoid subset in a l.c.s *E* is bounded and its linear span is of countable type (see [10], Corollary 1.5).

Let X and Y be locally convex Hausdorff spaces. The set of all continuous linear operators from X to Y we indicate by L(X, Y). A mapping $T \in L(X, Y)$ is an *isomorphism* if T is injective and surjective and $T^{-1} \in L(Y, X)$. A map $T \in L(X, Y)$ is a *Fredholm operator* if it has an index and TX is a closed subspace of Y. The family of all Fredholm operators from X to Y is denoted by $\Phi(X, Y)$. For any $T \in \Phi(X, Y)$, TX is a complemented subspace of Y. Put $\Phi_0(X, Y) = \{T \in L(X, Y): T \text{ has an index}\}$. By the open mapping theorem ([6], Corollary 2.74), $\Phi_0(X, Y) = \Phi(X, Y)$, whenever X and Y are Fréchet spaces (i.e. complete metrizable locally convex spaces).

An operator $T \in L(X, Y)$ is *compact* if there exists a neighbourhood U of 0 in X such that T(U) is compactoid in Y. The set of all compact operators from X to Y we denote by C(X, Y).

An LF-space (E, τ) , i.e. a l.c.s which is the inductive limit of an inductive sequence $((E_n, \tau_n))$ of Fréchet spaces, is *regular* (respectively, *strict*) if for every bounded subset *B* of *E*, there is $k \in \mathbb{N}$ such that $B \subset E_k$ and *B* is τ_k -bounded (respectively, if $\tau_{n+1}|E_n = \tau_n$ for any $n \in \mathbb{N}$).

Every strict LF-space is regular ([3], Theorem 1.4.13); in particular the direct sum $\bigoplus_{n=1}^{\infty} E_n$ of any sequence (E_n) of Fréchet spaces is a regular LF-space.

Any continuous linear map from an LF-space X onto an LF-space Y is open (see [4], Theorem 3.1).

Results

To prove our main result (Theorem 4) we shall need two lemmas.

Let *D* be a finite-dimensional subspace of a l.c.s *X*. If *X'* separates points of *X* (in particular, if the field \mathbb{K} is spherically complete), then *D* is complemented in *X*; so for any $K \in L(X, X)$ there is a finite-dimensional operator $F \in L(X, X)$ such that

F | D = K | D (i.e. F(x) = K(x) for any $x \in D$). For arbitrary l.c.s X we have the following lemma:

LEMMA 1. Let X and Y be locally convex Hausdorff spaces. Let $K \in C(X, Y)$ and let D be a finite-dimensional subspace of X. Then there exists a finite-dimensional operator $F \in L(X, Y)$ such that F | D = K | D.

Proof. Put $D_0 = D \cap \bigcap \{ \ker f : f \in X' \}$. Let D_1 be an algebraic complement of D_0 in D. Clearly, for any $x \in (D_1 \setminus \{0\})$ there is $f \in X'$ with f(x) = 1.

We shall show that there exists a continuous linear projection from X onto D_1 . Let $r = \dim D_1$. It is enough to consider the case when r > 1. Assume that $1 \le k < r$ and $(x_1, f_1), \ldots, (x_k, f_k) \in D_1 \times X'$ with $f_i(x_j) = \delta_{i,j}$ for $1 \le i, j \le k$. Then there are $x_{k+1} \in (D_1 \cap \bigcap_{i=1}^k \ker f_i)$ and $f \in X'$ such that $f(x_{k+1}) = 1$. Let $f_{k+1} = f - \sum_{i=1}^k f(x_i)f_i$. Then $f_{k+1}(x_{k+1}) = 1$ and $f_{k+1}(x_i) = 0 = f_i(x_{k+1})$ for $1 \le i \le k$. It follows that there exist $(x_1, f_1), \ldots, (x_r, f_r) \in D_1 \times X'$ with $f_i(x_j) = \delta_{i,j}$ for all $1 \le i, j \le r$. Clearly, the operator $P: X \to X, x \to \sum_{i=1}^r f_i(x)x_i$ is a continuous linear projection from X onto D_1 .

Put F = KP and S = (K - F). Suppose that $x \in (D_0 \setminus \ker S)$. Since S(X) is of countable type, there exists $g \in (S(X))'$ with $g(S(x)) \neq 0$. But $g \circ S \in X'$ and $x \in D_0$, a contradiction. It follows that $D_0 \subset \ker S$. Clearly, $D_1 \subset \ker S$. Thus $D \subset \ker S$, hence F(x) = K(x) for $x \in D$.

To get Theorem 4 in a special case, when Y = X, $T = I_X$ and $K \in C(X, X)$, it is enough to show that there exists a finite-dimensional operator $F \in L(X, X)$ such that the operator $(I_X + K - F): X \to X$ is an isomorphism. In the proof of Theorem 3 we will need a more general fact.

LEMMA 2. Let X and Y be Fréchet spaces. Assume that $K \in C(X, Y)$ and $S \in L(Y, X)$. Then there exists a finite-dimensional operator $F \in L(X, Y)$ such that the operator $(I_X + S(K - F)): X \to X$ is an isomorphism.

Proof. Let *U* be a neighbourhood of zero in *X* such that K(U) is compactoid in *Y*. For some $p \in \mathcal{P}(Y)$ we have $S(W_p) \subset U$, where $W_p = \{y \in Y : p(y) \leq 1\}$. Take $\alpha \in \mathbb{K}$ with $0 < |\alpha| < 1$. Since K(U) is compactoid, E = K(X) is of countable type and there exists a finite-dimensional subspace D_0 of *E* such that $K(U) \subset \alpha^2 W_p + D_0$. Let *D* be an algebraic complement of ker $p \cap D_0$ in D_0 . Then

$$K(U) \subset \alpha^2 W_p + \ker p \cap D_0 + D \subset \alpha^2 W_p + \alpha^2 W_p + D \subset \alpha^2 W_p + D.$$

It follows that

 $\forall x \in U \exists x' \in D : (Kx - x') \in \alpha^2 W_p \cap E.$

Now, we prove that there exists a continuous linear projection P from E onto D such that $p(Px) \leq |\alpha|^{-1}p(x)$ for any $x \in E$. Put $E_p = (E/\ker p)$ and $\bar{p}(x + \ker p) = p(x)$ for $x \in E$. Denote by π the quotient map from E onto E_p . Let $\tilde{E_p} = (\tilde{E_p}, \tilde{p})$ be the completion of the normed space (E_p, \bar{p}) of countable type.

Clearly, $\pi(D)$ is a closed subspace of the Banach space \tilde{E}_p of countable type, so there exists a continuous linear projection Q from \tilde{E}_p onto $\pi(D)$ such that $\tilde{p}(Qz) \leq |\alpha|^{-1}\tilde{p}(z)$ for any $z \in \tilde{E}_p$ (see [8], Theorem 3.16 and its proof). It is easy to see that $G = \pi^{-1}(\ker Q \cap E_p)$ is a closed subspace of E and G + D = E. Since $\ker Q \cap \pi(D) = \{0\}$ and $D \cap \ker p = \{0\}$, then $G \cap D = \{0\}$. The linear projection $P: G + D \to D, g + d \to d$ is continuous because G is closed and $\dim D < \infty$. Let $x \in E$. Since $Q(\pi(x - Px)) = 0$, then $p(Px) = \bar{p}(\pi(Px)) = \bar{p}(Q(\pi(Px))) = \bar{p}(Q(\pi(x))) \leq |\alpha|^{-1}\bar{p}(\pi(x)) = |\alpha|^{-1}p(x)$. Thus $p(Px) \leq |\alpha|^{-1}p(x)$ for any $x \in E$.

It follows that $P(W_p \cap E) \subset \alpha^{-1}W_p$, so $(I_E - P)(W_p \cap E) \subset \alpha^{-1}W_p$. Put $F = P \circ K$ and L = S(K - F). For any $x \in U$ we have $L(x) = S(I_E - P)K(x) = S(I_E - P)(Kx - x')$; hence $L(U) \subset S(\alpha W_p) \subset \alpha U$. Thus $L^n(U) \subset \alpha^{n-1}L(U)$ for any $n \in \mathbb{N}$. Since L(U) is compacted and $|\alpha| < 1$, then $\lim_n L^n(x) = 0$ for any $x \in U$ (and $L^n(x) = \alpha^n x_n, n \in \mathbb{N}$, for some bounded sequence $(x_n) \subset X$). It follows that the series $\sum_{n=0}^{\infty} (-1_K)^n L^n(x)$ is convergent in X for any $x \in X$. Let

$$M: X \to X, x \to \sum_{n=0}^{\infty} (-1_{\mathbb{K}})^n L^n(x).$$

By the continuity of *L* we get $M(I_X + L) = I_X = (I_X + L)M$. Hence, by the open mapping theorem, the operator $(I_X + L): X \to X$ is an isomorphism.

The proof of Lemma 2 shows that for any sequentially complete l.c.s X and any $K \in C(X, X)$ there exists a finite-dimensional operator $F \in L(X, X)$ such that the operator $(I_X + K - F): X \to X$ is an algebraic isomorphism. Hence we get

COROLLARY 3. Let X be a sequentially complete l.c.s X. Then for any $K \in C(X, X)$ we have $I_X + K \in \Phi_0(X, X)$ and $\chi(I_X + K) = 0$; in particular, the operator $I_X + K$ is injective if and only if it is surjective.

Now, we shall prove our main result.

THEOREM 4. Let X and Y be Fréchet spaces. If $T \in \Phi(X, Y)$ and $K \in C(X, Y)$, then $T + K \in \Phi(X, Y)$ and $\chi(T + K) = \chi(T)$.

Proof. Denote by \hat{X} the quotient space $X/\ker T$ and by Q the quotient map from X onto \hat{X} . Let $\hat{T}: \hat{X} \to Y$ with $\hat{T}(Qx) = Tx, x \in X$. Clearly, $Q \in \Phi(X, \hat{X})$ and $\hat{T} \in \Phi(\hat{X}, Y)$. Since $\hat{T}\hat{X}$ is a closed subspace of Y with dim $(Y/\hat{T}\hat{X}) < \infty$, then $\hat{T}\hat{X}$ is complemented in Y and by the open mapping theorem there exists $S \in L(Y, \hat{X})$ with $S\hat{T} = I_{\hat{X}}$. By Lemma 1 there is a finite-dimensional operator $F \in L(X, Y)$ such that ker $T \subset \ker(K - F)$. Let $G: \hat{X} \to Y$ with $G(Qx) = (K - F)(x), x \in X$; clearly, $G \in C(\hat{X}, Y)$. By Lemma 2 there exists a finite-dimensional operator $H \in L(\hat{X}, Y)$ such that the operator $(I_{\hat{X}} + S(G - H)): \hat{X} \to \hat{X}$ is an isomorphism. Since $S\hat{T} = I_{\hat{X}}, I_{\hat{X}} + S(G - H) = S(\hat{T} + G - H)$ and $\hat{T} \in \Phi(\hat{X}, Y)$, then $S \in \Phi(Y, \hat{X})$,

116

 $(\hat{T}+G-H) \in \Phi(\hat{X}, Y), \ \chi(S) = -\chi(\hat{T}) \text{ and } \chi(\hat{T}+G-H) = \chi(\hat{T}). \text{ Hence } (\hat{T}+G) \in \Phi(\hat{X}, Y) \text{ and } \chi(\hat{T}+G) = \chi(\hat{T}+G-H) = \chi(\hat{T}). \text{ It follows that } (T+K)-F = (\hat{T}+G)Q \in \Phi(X, Y) \text{ and } \chi(T+K-F) = \chi(\hat{T}+G) + \chi(Q) = \chi(\hat{T}) + \chi(Q) = \chi(\hat{T}Q) = \chi(T). \text{ Thus } T+K \in \Phi(X, Y) \text{ and } \chi(T+K) = \chi(T+K-F) = \chi(T). \square$

If X is a regular LF-space, then for any sequence $(\alpha_n) \subset \mathbb{K}$ with $\lim \alpha_n = 0$ and every bounded sequence $(x_n) \subset X$, the series $\sum_{n=1}^{\infty} \alpha_n x_n$ is convergent in X (see [3], Propositions 2.3.2 and 2.3.3).

Using the proof of Lemma 2 we obtain

LEMMA 5. Let X be a regular LF-space and let Y be a l.c.s. Assume that $K \in C(X, Y)$ and $S \in L(Y, X)$. Then there exists a finite-dimensional operator $F \in L(X, Y)$ such that the operator $(I_X + S(K - F)): X \to X$ is an isomorphism.

(Note, that Lemma 5 is a generalization of Lemma 2, since we do not assume that LF-spaces are proper, so Fréchet spaces are regular LF-spaces.)

To prove our last theorem we will also need the following proposition:

PROPOSITION 6. (a) (See [2]). If X and Y are LF-spaces, then $\Phi_0(X, Y) = \Phi(X, Y)$. (b) Let D be a finite-dimensional subspace of an LF-space X. Then X/D is an LF-space, too. If X is polar and regular, then X/D is regular.

(c) Let M be a closed subspace of an LF-space X with $\dim(X/M) < \infty$. Then M is an LF-space.

Proof. (a) Let $T \in L(X, Y)$ with dim $(Y/TX) < \infty$ and let D be an algebraic complement of TX in Y. Clearly, $X \times D$ is an LF-space and the linear continuous map $S: X \times D \to Y, (x, d) \to x + d$ is surjective. By the open map theorem for LF-spaces, S is an isomorphism; so $TX = S(X \times \{0\})$ is a closed subspace of Y.

(b) Let $(X, \tau) = \lim \operatorname{ind}(X_n, \tau_n)$. Without loss of generality we can assume that $D \subset X_1$. Let $n \in \mathbb{N}$. Let $\pi_n: X_n \to X_n/D$ and $\pi: X \to X/D$ be quotient maps. Put $\varphi_n: X_n \to X, x \to x$, and $\psi_n: X_n/D \to X/D, x+D \to x+D$. Clearly, $\pi \circ \varphi_n = \psi_n \circ \pi_n$; hence for any $B \subset X/D$ we have $\varphi_n^{-1}(\pi^{-1}(B)) = \pi_n^{-1}(\psi_n^{-1}(B))$. Let γ be a locally convex linear topology on X/D such that $(X/D, \gamma) = \lim \operatorname{ind}(X_n/D, \tau_n/D)$. We shall show that $\gamma = \tau/D$.

Let $n \in \mathbb{N}$. Let $U \in \tau/D$. Since $\pi_n^{-1}(\psi_n^{-1}(U)) = \varphi_n^{-1}(\pi^{-1}(U))$, then $\psi_n^{-1}(U) = \pi_n(\varphi_n^{-1}(\pi^{-1}(U))) \in \tau_n/D$. Thus for any $n \in \mathbb{N}$ the map $\psi_n: (X_n/D, \tau_n/D) \to (X/D, \tau/D)$ is continuous. Hence $\tau/D \subset \gamma$.

Clearly, $\pi^{-1}(\gamma) = {\pi^{-1}(U) : U \in \gamma}$ is a locally convex linear topology on X. Let $n \in \mathbb{N}$. Let $V \in \pi^{-1}(\gamma)$. Then for some $U \in \gamma$ we have $V = \pi^{-1}(U)$; hence $\varphi_n^{-1}(V) = \varphi_n^{-1}(\pi^{-1}(U)) = \pi_n^{-1}(\psi_n^{-1}(U)) \in \tau_n$. Thus for any $n \in \mathbb{N}$ the map $\varphi_n: (X_n, \tau_n) \to (X, \pi^{-1}(\gamma))$ is continuous. Hence, $\pi^{-1}(\gamma) \subset \tau$, so $\gamma \subset \tau/D$.

Thus $\tau/D = \gamma$. Clearly, τ/D is a Hausdorff topology. It follows that $(X/D, \tau/D)$ is an LF-space.

If X is polar, then D is complemented in X; thus for any bounded subset B in X/D there exists a bounded subset A in X such that $\pi(A) = B$. Therefore X/D is regular, if X is polar and regular.

(c) It follows from (b), since X is isomorphic to the product $M \times D$, where D is an algebraic complement of M in X.

Using Lemma 5 and Proposition 6(a), we get the following corollary:

COROLLARY 7. Let X be a regular LF-space. Then for any $K \in C(X, X)$ we have $I_X + K \in \Phi(X, X)$ and $\chi(I_X + K) = 0$; in particular, the operator $I_X + K$ is injective if and only if it is surjective.

By Lemma 5, Proposition 6 and the proof of Theorem 3 we obtain the following theorem:

THEOREM 8. Let X be a polar regular LF-space and let Y be an LF-space. If $T \in \Phi(X, Y)$ and $K \in C(X, Y)$, then $T + K \in \Phi(X, Y)$ and $\chi(T + K) = \chi(T)$.

References

- Araujo, J., Perez-Garcia, C. and Vega, S.: Preservation of the index of p-Adic linear operators under compact perturbations, *Compositio Math.* 118 (1999), 291–303.
- Christol, G. and Mebkhout, Z.: Topological p-adic vector spaces and index theory, Ann. Math. Blaise Pascal 2 (1995), 93–98.
- De Grande-De Kimpe, N., Kąkol, J., Perez-Garcia, C. and Schikhof, W. H.: *p*-adic locally convex inductive limits, In: W. H. Schikhof, C. Perez-Garcia, and J. Kąkol (eds), *p*-adic Functional Analysis, Marcel Dekker, New York, 1997, pp. 159–222.
- Gilsdorf, T. and Kąkol, J.: On some non-archimedean closed graph theorems, In: W. H. Schikhof, C. Perez-Garcia, and J. Kąkol (eds), *p-adic Functional Analysis*, Marcel Dekker, New York, 1997, pp. 153–158.
- 5. Gruson, L.: Théorie de Fredholm p-adique, Bull. Soc. Math. France 94 (1966), 67–95.
- Prolla, J. B.: Topics in Functional Analysis over Valued Division Rings, North-Holland Math. Studies 77, North-Holland, Amsterdam, 1982.
- 7. Robba, P. and Christol, G.: *Equations différentielles p-adiques*, Hermann, Paris, 1994.
- van Rooij, A. C. M.: Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978.
- Schikhof, W. H.: Locally convex spaces over non-spherically complete valued fields I-II, Bull. Soc. Math. Belgique 38 (1986), 187–224.
- Schikhof, W. H.: p-adic local compactoids, Report 8802, 1–8, Dept. of Mathematics, Catholic University, Nijmegen, The Netherlands, 1988.
- 11. Schikhof, W. H.: On p-adic compact operators, Report 8911, 1–28, Dept. of Mathematics, Catholic University, Nijmegen, The Netherlands, 1989.
- Serre, J. P.: Endomorphismes complétement continus des espaces de Banach p-adiques, Inst. Hautes Etudes Sci. Publ. Math. 12 (1962), 69–85.