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Abstract

A semigroup S is called idempotent-surjective (respectively, regular-surjective) if whenever ρ is a
congruence on S and aρ is idempotent (respectively, regular) in S/ρ, then there is e ∈ ES ∩ aρ
(respectively, r ∈ Reg(S ) ∩ aρ), where ES (respectively, Reg(S )) denotes the set of all idempotents
(respectively, regular elements) of S . Moreover, a semigroup S is said to be idempotent-regular-surjective
if it is both idempotent-surjective and regular-surjective. We show that any regular congruence on an
idempotent-regular-surjective (respectively, regular-surjective) semigroup is uniquely determined by its
kernel and trace (respectively, the set of equivalence classes containing idempotents). Finally, we prove
that all structurally regular semigroups are idempotent-regular-surjective.
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1. Introduction and preliminaries

The main result of this work has been very useful in the description of some
fundamental congruences on an idempotent-regular-surjective semigroup; see [4].

An element a of a semigroup S is called regular if there is x ∈ S such that a = axa,
and a semigroup is regular if each of its elements is regular. In [3], Edwards introduced
the notions of (a) an idempotent-surjective and (b) an eventually regular semigroup S
(that is, for every a ∈ S there exists a positive integer n such that an is regular). The
famous Lallement’s lemma says that all regular semigroups are idempotent-surjective.
In fact, in [3] it has been shown that all eventually regular semigroups have this
property. Note that the class of eventually regular semigroups is wide. For example,
all finite and all group bound semigroups are eventually regular. On the other hand,
in [5] Kopamu introduced the notion of a structurally regular semigroup (see below
for the definition), and showed that the classes of eventually regular and structurally
regular semigroups are incomparable, that is, neither contains the other. Recall that
structurally regular semigroups are also idempotent-surjective [6]. In Section 3 we
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will prove that they are also regular-surjective. (Note that from [3] it follows that any
eventually regular semigroup possesses this property.) Further, it is known that any
regular congruence (for which the quotient semigroup induced by this congruence
is regular) on an eventually regular semigroup is uniquely determined by: (i) the
set of equivalence classes containing idempotents; (ii) its kernel and trace (for the
definitions, see after Theorem 2.2) [7, 9]. The main aim of this paper is to show that
each regular congruence on a regular-surjective semigroup is uniquely determined by
the set of equivalence classes containing idempotents, and each regular congruence
on an idempotent-regular-surjective semigroup is uniquely determined by its kernel
and trace. In particular, the conditions (i), (ii) are valid for any regular congruence
on an arbitrary structurally regular semigroup. The conclusion is that these two
mentioned incomparable classes of semigroups have common properties concerning
regular congruences.

Whenever possible the notation and conventions of Clifford and Preston are
used [1, 2]. Let S be a semigroup and A ⊆ S . Denote by EA the set of all idempotents
of A, that is, EA = {a ∈ A : a2 = a}, and by Reg(A) the set of regular elements of A (in
S ), that is, Reg(A) = {a ∈ A : a ∈ aS a}. Unless otherwise stated, S denotes an arbitrary
semigroup. Let a ∈ S . Denote by V(a), W(a) the set of all inverses and weak inverses
of a, respectively, that is, V(a) = {x ∈ S : a = axa, x = xax}, W(a) = {x ∈ S : x = xax}.
Recall that if a ∈ S is regular, say a = axa for some x ∈ S , then xax ∈ V(a). Also, S
is called regular if V(a) , ∅ for every a ∈ S , and S is said to be E-inversive if for
every a ∈ S there exists x ∈ S such that ax ∈ ES . Clearly, in such a case xax ∈W(a). It
follows that S is E-inversive if and only if W(a) , ∅ for every a in S (see [8]).

In [5], Kopamu defined a countable family of congruences on a semigroup S , as
follows: for each ordered pair of nonnegative integers (m, n), he put

θm,n = {(a, b) ∈ S × S : ∀x ∈ S m, y ∈ S n [xay = xby]},

and he made the convention that S 1 = S and S 0 denotes the set containing only the
empty word. In particular, θ0,0 is the identity relation on S . Recall that a semigroup S
is called structurally regular if S/θm,n is regular for some nonnegative integers m, n [6].
Note that structurally regular semigroups are idempotent-surjective [6, Corollary 3.4]).

Notice that if a semigroup S is regular-surjective and a ∈ S , then from the definition
of a Rees congruence on S it follows that S aS has at least one regular element, so
S aS contains an idempotent of S , say e = xay, where x, y ∈ S . One can easily check
that yex ∈W(a). Thus every regular-surjective semigroup is E-inversive. Also, by the
above each idempotent-surjective semigroup is E-inversive, too.

LetA(S ) denote the set of all reflexive and symmetric (binary) relations on S , E(S )
the set of all equivalences of S and C(S ) the set of all (two-sided) congruences on S .
Recall that both lattices E(S ), C(S ) are complete, where∨

{ρi : i ∈ I} =
(⋃
{ρi : i ∈ I}

)
T

(ρT denotes the transitive closure of ρ).
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We now define the two (inclusion-preserving) maps C,C* ofB(S ) intoB(S ), where
B(S ) denotes the set of all binary relations on S , putting henceforth ρ ∈ B(S ):

ρC = {(x, y) ∈ S × S : ∀s, t ∈ S (1) [(sxt, syt) ∈ ρ]},

ρC∗ = {(x, y) ∈ S × S : ∃ u, v ∈ S , s, t ∈ S (1) [x = sut, y = svt, (u, v) ∈ ρ]},

where S (1) denotes the monoid obtained from S by adjoining an identity if necessary.
Observe that if ρ ∈ B(S ), then ρC ⊆ ρ ⊆ ρC∗.

We then get the following well-known result which is a part of [2, Lemma 10.3].

R 1.1. Let S be a semigroup.

(i) If ρ ∈ E(S ), then ρC is the largest congruence contained in ρ.
(ii) If ρ ∈ A(S ), then ρC∗T is the least congruence containing ρ.

Let A be a collection of disjoint subsets of a semigroup S . We shall say that A is
admissible ifA is a subset of the set of equivalence classes for some congruence on S .
Also, if ρ is an equivalence on S such that elements ofA are ρ-classes (not necessarily
all ρ-classes of ρ), then ρ is said to admit A.

We easily see that the intersection and join of any set of equivalences which admit
A also admit A. Hence the set of all congruences which admit A forms a complete
sublattice of the lattice of all congruences on S .

We start from the 0-element and 1-element on the lattice of equivalences of S which
admitA. LetA = {Ai : i ∈ I} be a disjoint set of subsets of S . Put

A =
⋃
{Ai : i ∈ I},

α(A) = α =
⋃
{Ai × Ai : i ∈ I} ∪ 1S ,

β(A) = β =
⋃
{Ai × Ai : i ∈ I} ∪ (S \ A × S \ A).

Clearly, α is the smallest and β is the largest equivalence admittingA. Also, it is easy
to see that an equivalence ρ has the property that each Ai, where i ∈ I, is a union of
ρ-classes if and only if ρ ⊆ β. Similarly, α ⊆ ρ if and only if each Ai is contained in
some ρ-class. Hence, by Result 1.1, βC is the largest congruence on S such that each
Ai is the union of congruence classes and αC∗T is the least congruence on S with the
property that each Ai is contained in a single congruence class.

Suppose that A is admissible and ρ is a congruence on S . It is immediate that the
set Ai is a ρ-class if and only if it is both a union of ρ-classes and it is contained in a
ρ-class.

R 1.2 (A part of [2, Theorem 10.5]). Let A = {Ai : i ∈ I} be a disjoint collection
of subsets of a semigroup S . Then a congruence ρ on S admits A if and only if
αC∗T ⊆ ρ ⊆ βC. ThusA is an admissible set of subsets if and only if αC∗T ⊆ βC.

We shall say that an admissible setA is normal in a semigroup S if there is a unique
(two-sided) congruence on S which admitsA. From Result 1.2 we immediately have
the following useful result.
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R 1.3 [2]. Let A be an admissible set of subsets of a semigroup S . Then A
is normal if and only if αC∗T = βC, that is, if and only if βC ⊆ ρ, where ρ is any
congruence which admitsA.

2. The main results

Notice that in [9] the authors showed that any regular congruence ρ on
an eventually regular semigroup is uniquely determined by the set of ρ-classes
containing idempotents. Using different methods, we generalise this result for regular
congruences on a regular-surjective semigroup (see Theorem 2.2, below). Denote by
RC(S ) the set of regular congruences on a semigroup S . First, we prove the following
proposition.

P 2.1. Let S be a regular-surjective semigroup, ρ ∈ RC(S ). Then the set
A = {eρ : e ∈ ES } is normal.

P. In view of Result 1.3, it is sufficient to show that βC ⊆ ρ. Since ρ ⊆ βC
(see Result 1.2) and ρ is regular, then βC ∈ RC(S ). Thus βC ⊆ ρ if and only if
aβC ⊆ aρ for every a ∈ Reg(S ). Let a ∈ Reg(S ). Suppose by way of contradiction
that (x, a) ∈ βC and (x, a) < ρ for some x ∈ S . Then there is b ∈ Reg(S ) such that
(b, x) ∈ ρ ⊆ βC, (a, b) < ρ. It follows that (a, b) ∈ βC. Let now a∗ ∈ V(a), b∗ ∈ V(b).
Then (aa∗, ba∗), (b∗a, b∗b) ∈ βC ⊆ β = β(A). Thus, since aa∗, b∗b ∈ ES ,

(aa∗, ba∗) ∈ ρ (2.1)

(b∗a, b∗b) ∈ ρ. (2.2)

By (2.1), (a, ba∗a) ∈ ρ, so (bb∗ba∗a, bb∗a) = (ba∗a, bb∗a) ∈ ρ. Further, by (2.2),
(bb∗a, b) ∈ ρ. Consequently, (a, ba∗a), (ba∗a, bb∗a), (bb∗a, b) ∈ ρ, that is, (a, b) ∈ ρ, a
contradiction with (a, b) < ρ. Thus βC ⊆ ρ, as required. �

T 2.2. Let S be a regular-surjective semigroup, ρ, σ ∈ RC(S ). The following
conditions are equivalent:

(i) eρ ⊆ eσ for every e ∈ ES ;
(ii) ρ ⊆ σ.

Thus ρ = σ if and only if eρ = eσ for every e ∈ ES .

P. (i) =⇒ (ii). LetA = {eρ : e ∈ ES }, B = {eσ : e ∈ ES }. Since (x, y) ∈ α(A) if and
only if either x = y or there exists e ∈ ES such that x, y ∈ eρ, then α(A) ⊆ α(B). Thus
α(A)C∗T ⊆ α(B)C∗T and so ρ ⊆ σ (by Proposition 2.1 and Result 1.2).

(ii) =⇒ (i). This is obvious. �

Note that from [7] it follows that any regular congruence on an eventually
regular semigroup is uniquely determined by its trace and kernel. We show that an
analogous result is valid for each regular congruence on an arbitrary idempotent-
regular-surjective semigroup. Firstly, by the kernel ker(ρ) of a congruence ρ on a
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semigroup S we shall mean the set {x ∈ S : (x, x2) ∈ ρ}, and by the trace tr(ρ) of ρ
we shall mean the restriction of ρ to ES . Clearly, if S is idempotent-surjective, then
ker(ρ) = {x ∈ S : ∃ e ∈ ES [(x, e) ∈ ρ]}.

T 2.3. Let S be an idempotent-regular-surjective semigroup and ρ, σ ∈ RC(S ).
Then the following conditions are equivalent:

(i) tr(ρ) ⊆ tr(σ) and ker(ρ) ⊆ ker(σ);
(ii) ρ ⊆ σ.

Thus ρ = σ if and only if tr(ρ) = tr(σ) and ker(ρ) = ker(σ).

P. (i) =⇒ (ii). Let x ∈ eρ, where e ∈ ES . Then x ∈ ker(ρ) ⊆ ker(σ). Therefore,
(x, x2) ∈ ρ ∩ σ. Since S is idempotent-surjective, then (x, g) ∈ ρ ∩ σ for some g ∈ ES .
It follows that g ∈ eρ. Hence (g, e) ∈ σ, so x ∈ gσ = eσ. Consequently, eρ ⊆ eσ for all
e ∈ ES . Thus ρ ⊆ σ (Theorem 2.2).

(ii) =⇒ (i). This is clear. �

3. Structurally regular semigroups

In this section we will show that all structurally regular semigroups are regular-
surjective. As we have mentioned above they are idempotent-surjective.

To begin, we prove the following two propositions.

P 3.1. Let S be a semigroup, (m, n) be an ordered pair of nonnegative
integers and let a, b ∈ S . Suppose also that aθm,n ∈ V(bθm,n). Then there are elements
c, d ∈ S such that c ∈ aθm,n, d ∈ bθm,n and c ∈ V(d).

P. We remark that if (s, t) ∈ θm,n, p > m, q > n, then xsy = xty for x ∈ S p, y ∈ S q.
Let aθm,n ∈ V(bθm,n), u, v ∈ S q, where q > max{m, n}. Then uav = u(aba)v = (uab)av.
Hence uav = (uab)(aba)v = u(ab)2av, so uav = u(ab)ka(ba)lv for k, l = 1, 2, . . . .
By symmetry, ubv = u(ba)kb(ab)lv for k, l = 1, 2, . . . . Put c = (ab)qa(ba)q ∈ aθm,n

and d = (ba)qb(ab)q ∈ bθm,n. Then

cdc = (ab)qa · (ba)2qb(ab)2q · a(ba)q = (ab)qaba(ba)q = c.

We may equally well show that dcd = d. Consequently, c ∈ aθm,n, d ∈ bθm,n and
c ∈ V(d), as required. �

P 3.2. Let S be a structurally regular semigroup. Then Reg(S ) is a regular
subsemigroup of S .

P. Let S/θm,n be a regular semigroup for some nonnegative integers m, n.
In view of Proposition 3.1, Reg(S ) (or equivalently ES ) is nonempty. Take e, f ∈ ES .
Then (e f )θm,n is regular, so (e f xe f )θm,n = (e f )θm,n for some x ∈ S . Hence
em(e f xe f ) f n = em(e f ) f n. Thus e f xe f = e f , so the product of any two idempotents
of S is regular. It is easy to see that the product LR of any L-class L and any R-class
R of S is contained in a single D-class D of S (see [1, Theorem 2.4]), so Reg(S ) is a
semigroup. �
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Further, the following special version of [5, Theorem 2.4] will be useful.

R 3.3. Let ψ be an epimorphism between the semigroups S and T , (m, n) be an
ordered pair of nonnegative integers. Then there exists an epimorphism ψm,n from the
semigroup S/θm,n onto the semigroup T/θm,n, given by the rule: [aθm,n]ψm,n = (aψ)θm,n

(a ∈ S ).
Thus if S is structurally regular, then every homomorphic image of S is structurally

regular, too.

R 3.4. Note that a semigroup S is called structurally eventually regular if S/θm,n

is eventually regular for some nonnegative integers m, n, see [6]. In the second part
of the above result we may replace ‘structurally regular’ by ‘structurally eventually
regular’.

P 3.5. Let S be a structurally eventually regular semigroup (that is, S/θm,n

is eventually regular, say), ρ ∈ C(S ). If (aρ)θm,n ∈ V((bρ)θm,n) (a, b ∈ S ), then there
exist c, d ∈ S such that cρ ∈ (aρ)θm,n, dρ ∈ (bρ)θm,n and c ∈ V(d).

In particular, if aρ ∈ V(bρ) (a, b ∈ S ), then there exist elements c, d ∈ S such that
cρ ∈ (aρ)θm,n, dρ ∈ (bρ)θm,n and c ∈ V(d).

P. Let ρ ∈ C(S ). Then the mapping ψm,n : S/θm,n→ (S/ρ)/θm,n, where

[aθm,n]ψm,n = (aρ)θm,n (a ∈ S )

is an epimorphism (see Result 3.3). Next, suppose that (aρ)θm,n ∈ V((bρ)θm,n) where
a, b ∈ S . Then

(aθm,n)Ker(ψm,n) ∈ V((bθm,n)Ker(ψm,n)).

Since S/θm,n is eventually regular, then (by [3, Theorem 1]) there exist x, y ∈ S
such that xθm,n ∈ (aθm,n) Ker(ψm,n), yθm,n ∈ (bθm,n) Ker(ψm,n) and xθm,n ∈ V(yθm,n).
Therefore, (aθm,n, xθm,n), (bθm,n, yθm,n) ∈ Ker(ψm,n) and there are c ∈ xθm,n, d ∈ yθm,n

such that c ∈ V(d) (Proposition 3.1). This implies the thesis of the proposition. �

From Proposition 3.5 we obtain the following important corollary.

C 3.6. Every structurally regular semigroup S is regular-surjective.

P. Let S/θm,n be a regular semigroup, ρ ∈ C(S ) and suppose that aρ is regular
(a ∈ S ). Then aρ ∈ V(bρ) for some b ∈ S . Therefore, there exist elements c, d ∈ S such
that c ∈ V(d) and cρ ∈ (aρ)θm,n. Hence ((ab)ρ)m(cρ)((ba)ρ)n = ((ab)ρ)m(aρ)((ba)ρ)n,
so (abcba)ρ = aρ. On the other hand, (ab)ρ, (ba)ρ are idempotent elements of S/ρ.
Thus there exist e, f ∈ ES such that e ∈ (ab)ρ, f ∈ (ba)ρ, so aρ = (ec f )ρ, ec f ∈ Reg(S )
(Proposition 3.2). �

Consequently, structurally regular semigroups are idempotent-regular-surjective.
From Theorems 2.2, 2.3 we obtain the main result of this section.
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T 3.7. Let S be a structurally regular semigroup, ρ ∈ RC(S ). Then:

(i) ρ is uniquely determined by the set of ρ-classes containing idempotents;
(ii) ρ is uniquely determined by its kernel and trace.
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