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THE LMMP FOR LOG CANONICAL 3-FOLDS IN
CHARACTERISTIC p > 5

JOE WALDRON

Abstract. We prove that one can run the log minimal model program for log

canonical 3-fold pairs in characteristic p > 5. In particular, we prove the cone

theorem, contraction theorem, the existence of flips and the existence of log

minimal models for pairs with log divisor numerically equivalent to an effective

divisor. These follow from our main results, which are that certain log minimal

models are good.

§1. Introduction

All varieties are assumed to be over an algebraically closed field k of

characteristic p > 5.

The log minimal model program (LMMP) for klt threefold pairs in

characteristic p > 5 has recently been completed [5, 6, 11, 13]. Here we prove

some results on the LMMP for log canonical threefold pairs in characteristic

p > 5. Our proofs rely on the LMMP for klt pairs in a crucial way.

Our main results are the following:

Theorem 1.1. (Good log minimal models 1) Let (X, B) be a projective

log canonical 3-fold pair over an algebraically closed field k of characteristic

p > 5 with R-boundary B, together with a projective contraction X → Z.

Suppose that KX +B is nef/Z and big/Z. Then KX +B is semi-ample/Z.

Theorem 1.2. (Good log minimal models 2) Let (X, B) be a projective

log canonical 3-fold pair over an algebraically closed field k of characteristic

p > 5 with R-boundary B, together with a projective contraction X → Z.

Suppose that A is a big and semi-ample/Z R-divisor such that KX +B +A

is nef/Z. Then KX +B +A is semi-ample/Z.

Similar results in characteristic zero were proven in [4], and also in great

generality in [8] using vanishing theorems. In place of vanishing theorems

we use Keel’s theorem [13], which says that a line bundle in positive
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characteristic is semi-ample if and only if it is semi-ample when restricted

to its exceptional locus. We use the LMMP to replace (X, B) with a dlt

pair (Y, BY ) such that the exceptional locus of KY +BY is contained in the

reduced part bBY c of BY . We can then obtain semi-ampleness of the restric-

tion to the exceptional locus by using adjunction to a partial normalization

of bBY c and applying abundance for semi-log canonical surfaces [21].

Thus one of the main technical results used in the proof is the following:

Theorem 1.3. Let (Y, BY ) be a projective Q-factorial dlt 3-fold pair

over an algebraically closed field k of characteristic p > 5 with Q-boundary

BY , such that KY +BY is nef. Then (KY +BY )|bBY c is semi-ample.

Theorems 1.1 and 1.2 can be used to contract an extremal ray via a

projective morphism.

Corollary 1.4. (Contraction theorem) Let (X, B) be a projective log

canonical 3-fold pair over an algebraically closed field k of characteristic

p > 5, with R-boundary B. Suppose R is a KX +B-negative extremal ray.

Then there exists a projective contraction X → Z contracting precisely the

curves in R.

In particular, this gives projective flipping contractions, and we can also

apply Theorem 1.1 to construct flips.

Corollary 1.5. (Existence of flips) Let (X, B) be a projective log

canonical 3-fold pair over an algebraically closed field k of characteristic

p > 5, with R-boundary B. Suppose there is an extremal KX +B-flipping

contraction f :X → Z. Then the flip of f exists.

We also use the ascending chain condition (ACC) for log canonical

thresholds to show that any LMMP which begins from an effective pair

terminates, as in characteristic zero [2].

Theorem 1.6. (Termination for effective pairs) Let (X, B) be a projec-

tive log canonical 3-fold pair over an algebraically closed field k of char-

acteristic p > 5, with R-boundary B. Then any sequence of KX +B-flips

which are also M -flips for some R-Cartier M > 0 terminates.

In Section 3, we extend the cone theorem to log canonical 3-folds in

characteristic p > 5. Note that this gives new information even in the klt

case if the variety is not Q-factorial.
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Theorem 1.7. (Cone theorem) Let (X, B) be a projective log canonical

3-fold pair over an algebraically closed field k of characteristic p > 5, with

R-boundary B. Then there exists a countable collection of rational curves

{Ci} on X such that:

(1) NE1(X) =NE1(X) ∩ (KX +B)>0 +
∑

i R>0 · [Ci].
(2) −6 6 (KX +B) · Ci < 0.

(3) For any ample R-divisor A, (KX +B +A) · Ci > 0 for all but finitely

many i.

(4) The rays {R>0 · [Ci]} do not accumulate in (KX +B)<0.

Putting all of our results together allows us to deduce the following:

Corollary 1.8. (Log minimal models) Let (X, B) be a projective log

canonical 3-fold pair over an algebraically closed field k of characteristic

p > 5, with R-boundary B. Suppose there is a projective contraction X → Z,

such that there exists M > 0 with KX +B ≡M/Z. Then there exists a

log minimal model (Y/Z, BY ) for (X/Z, B), such that Y 99KX does not

contract divisors.

In fact this log minimal model can be produced by running a terminating

LMMP/Z starting from (X/Z, B).

If in addition KX +B is big/Z then this log minimal model is good.

A stronger version of Theorem 1.1 over Fp was proven by Martinelli

et al. in [18], using different methods. A version of our Theorem 1.2 over Fp
has been obtained independently in [19] by Nakamura and Witaszek using

methods similar to our own proof of Theorem 1.2 in Section 6. A similar

method was also used for 4-folds in characteristic zero in [12].

The layout of our paper is as follows. We first prove the cone theo-

rem (Theorem 1.7) in Section 3. We then prove the termination result

(Theorem 1.6) in Section 4. Next we come to our main results, proving

Theorem 1.3 in Section 5 on the way to Theorem 1.1 and Theorem 1.2

in Section 6. Finally we prove the remaining results, Corollaries 1.5, 1.4

and 1.8, in Section 7.

§2. Preliminaries

2.1 Semi-ampleness results in positive characteristic

This section summarizes some special features of positive characteristic

which we use later. The first is a criterion for semi-ampleness due to Keel.
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Definition 2.1. [13, 0.1] Let X be a scheme proper over a field, with

nef line bundle L. The exceptional locus E(L) of L is defined to be the

Zariski closure of the union of all subvarieties V of X such that L|V is not

big, given the reduced scheme structure.

Proposition 2.2. [13, 1.9] Let X be a scheme projective over a field of

positive characteristic, with a nef line bundle L. Then L is semi-ample if

and only if L|E(L) is semi-ample.

A universal homeomorphism is a morphism of varieties which remains a

homeomorphism after arbitrary base change. For finite morphisms, this is

equivalent to a simple condition:

Proposition 2.3. [9, I.3.7-8],[16, 49] For a finite morphism f : Y →X,

the following are equivalent:

(1) f is a universal homeomorphism.

(2) f is surjective and injective on geometric points.

Any finite universal homeomorphism can be composed with some other

finite universal homeomorphism to give a power of the Frobenius morphism.

This allows us to move information on line bundles in the reverse direction

to usual:

Proposition 2.4. [13, 1.4] Let f :X → Y be a finite universal homeo-

morphism between schemes of finite type over a field of positive character-

istic. Let L be a line bundle on Y . Then L is semi-ample if and only if f∗L

is semi-ample.

2.2 Demi-normality

We describe a generalization of normality particularly suited to use in

the LMMP.

Definition 2.5. A scheme satisfies Serre’s S2 condition at x ∈X if

depthx OX,x > min(2, dimx OX,x).

Proposition 2.6. [10, 5.10–11], [1, Section 2] If X is a quasiprojective,

reduced, equidimensional variety, then the set U where X satisfies S2 is open

and codim(X − U, X) > 2. There exists a birational morphism φ : Y →X,

called the S2-fication, such that the following hold:

(i) For x ∈X, X satisfies S2 at x if and only if φ is an isomorphism at x.
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(ii) Y satisfies S2 at all points.

(iii) φ is finite and the normalization of X factors through φ.

Remark 2.7. This partial normalization is also called by various

other names in the literature, for example the S2-ization, Z [2]-closure and

saturation in codimension 2.

The best generalization of normality for the purposes of the LMMP is

demi-normality:

Definition 2.8. [15] A scheme is demi-normal if it is S2 and has at

worst nodes in codimension 1.

For example, in characteristic zero, the reduced part of the boundary of

a dlt pair is demi-normal [14, 17.5].

2.3 Singularities of the LMMP

Here we define the singularity classes most commonly encountered in

the LMMP. For more information, see [15]. This work is concerned with

extending results known for klt 3-fold pairs to log canonical 3-fold pairs.

Definition 2.9. Let k be an algebraically closed field. A pair (X, B)

over k consists of a normal variety X over k and an effective R-divisor

B, called the boundary, such that KX +B is R-Cartier. Given a birational

morphism φ : Y →X from another normal variety, we can define BY to be

the unique R-divisor satisfying φ∗BY =B and

KY +BY ∼R φ
∗(KX +B).

For a prime Weil divisor D on such a birational model Y , we define the log

discrepancy of D with respect to (X, B) to be a(D, X, B) := 1− b where b

is the coefficient of D in BY .

We say the pair (X, B) is:

• Kawamata log terminal (klt) if all D on all birational models of X have

a(D, X, B)> 0.

• Log canonical if all D on all birational models of X have a(D, X, B) > 0.

A log canonical center of (X, B) is the image on X of a divisor of log

discrepancy zero with respect to (X, B). We denote the union of all log

canonical centers of a log canonical pair (X, B) by LCS(X, B).
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• We say (X, B) is divisorially log terminal (dlt) if it is log canonical and

there exists a closed subvariety V ⊂X such that (X, B) is log smooth

outside V and no log canonical center is contained in V .

If we are in a situation where log resolutions exist, such as for 3-folds

in positive characteristic, to determine if a pair is log canonical or klt it is

enough to check discrepancies of just the irreducible Weil divisors on a fixed

log resolution of (X, B).

We need to work with pairs on nonnormal surfaces after adjunction, so

we need to be able to talk about singularities in the nonnormal case.

Definition 2.10. [15, 5.10] We say a pair (X, B) consisting of a

(possibly nonnormal) variety X and effective Q-divisor B is semi-log

canonical(slc) if:

• X is a demi-normal scheme with normalization π : X̃ →X.

• The support of B does not contain any component of the conductor D.

• KX +B is Q-Cartier.

• (X̃, D̃ + B̃) is log canonical, where D̃ is the conductor on X̃ and B̃ is the

birational transform of B.

The following result was largely proven in [11] and [15], and stated in this

form as [7, 2.2].

Proposition 2.11. Let (X, B) be a Q-factorial dlt 3-fold pair over an

algebraically closed field of characteristic p > 5, with B =
∑

i Di +B′ where

bBc=
∑

i Di. Then the following hold:

• The s-codimensional log canonical centers of (X, B) are exactly the

irreducible components of the various intersections Di1 ∩ · · · ∩Dis.

• If i1, . . . , is are distinct, each irreducible component of Di1 ∩ · · · ∩Dis is

normal and of pure codimension s.

2.4 3-fold LMMP

Given a Q-factorial dlt 3-fold pair (X, B) over an algebraically closed

field k of characteristic p > 5 and a projective contraction X → Z we may

run a KX +B-MMP/Z using the results of [5] and [6]. In particular, we can

locate extremal rays using the cone theorem [6, 1.1], contract extremal rays

using [6, 1.3] and construct flips using [5, 1.1]. We also use the following

results:
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Proposition 2.12. [5, 5.5] Let (X, B) be a projective Q-factorial dlt

3-fold pair over an algebraically closed field k of characteristic p > 5 with

R-boundary B. Suppose we are given a sequence of KX +B-flips. Then

after finitely many flips, each remaining flip is an isomorphism near bBc.

Proposition 2.13. [5, 1.6] Let (X, B) be a log canonical 3-fold pair

over an algebraically closed field k of characteristic p > 5 with R-boundary

B. Then (X, B) has a crepant Q-factorial dlt model. In particular, this

morphism is small over the klt locus of (X, B).

We follow the convention that, by definition, if (Y, BY ) is a log minimal

model of (X, B) then Y 99KX does not contract divisors. Note that this is

stronger than the definition used in [5], but the difference only occurs when

working on non-klt pairs.

2.5 Polytopes of boundary divisors

We use the following result from [6], proven in characteristic zero in [3].

Proposition 2.14. [6, 3.8], [3, 3.2] Let X be a projective Q-factorial

klt variety over k and V be a finite-dimensional rational affine subspace of

the space of R-divisors on X. For an R-divisor D, if D =
∑

i diDi with Di

distinct and prime, define ||D||= max{|di|}. Finally define L ⊂ V by

L= {∆ ∈ V | (X,∆) is log canonical}.

L is a polytope with rational vertices. Fix B ∈ L. Then there are real numbers

α, δ > 0, depending only on (X, B) and V , such that:

(1) If ∆ ∈ L, ||∆−B||< δ and (KX + ∆) ·R6 0 for an extremal ray R,

then (KX +B) ·R6 0.

(2) Let {Rt}t∈T be a family of extremal rays of NE(X). Then the set

NT = {∆ ∈ L | (KX + ∆) ·Rt > 0 for any t ∈ T}

is a rational polytope.

(3) Assume KX +B is nef, ∆ ∈ L satisfies ||∆−B||< δ, and that Xi 99K
Xi+1/Zi is a sequence of KX + ∆-flips which are KX +B-trivial (where

X =X1). Let Bi (resp. ∆i) be the birational transform of B (resp. ∆)

on Xi. Then if (KXi + ∆i) ·R6 0 for an extremal ray R on some Xi,

then (KXi +Bi) ·R= 0.
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2.6 The LMMP with scaling

In this subsection we describe a special LMMP, called the LMMP with

scaling. For the purpose of describing the process we assume that all

necessary ingredients exist.

Definition 2.15. Let (X, B) be a log canonical pair and A> 0 an

R-Cartier divisor on X. Suppose also that there is t0 > 0 such that

(X, B + t0A) is log canonical and KX +B + t0A is nef. We describe how to

run a KX +B-MMP with scaling of A.

Let λ0 = inf{t :KX +B + tA is nef}, so that λ0 6 t0. Suppose we can

find a KX +B-negative extremal ray R0 which satisfies (KX +B + λ0A) ·
R0 = 0. This is the first ray we contract in our LMMP. If the contraction

is a Mori fiber contraction we stop, otherwise let X1 be the result of the

divisorial contraction or flip. KX1 +BX1 + λ0AX1 is also nef, where BX1 and

AX1 denote the birational transforms on X1 of B and A, respectively. We

define λ1 = inf{t :KX1 +BX1 + tAX1 is nef}. The next step in our LMMP

is chosen to be a KX1 +BX1-negative extremal ray R1 which is KX1 +

BX1 + λ1AX1-trivial. So long as we can always find the appropriate extremal

rays, contractions and flips, we can continue this process indefinitely or until

the LMMP terminates.

Lemma 2.16. Let (X, B) be a projective Q-factorial log canonical pair

with KX +B nef, and let E be an effective R-Cartier divisor satisfying

E 6B and such that (X, B − εE) is klt for ε6 1. Assume Theorem 1.7,

and that all contractions and flips that we need exist.

Suppose that we wish to obtain a log minimal model or Mori fiber space

for (X, B − εE) for some sufficiently small ε, where we are free to shrink ε.

Then if we attempt to do so by running a KX +B − εE-MMP with scaling

of E we may assume that every extremal ray contracted is KX +B-trivial.

In addition, such an LMMP is also a KX +B − ε′E-MMP with scaling

of E for all ε′ < ε, so if the LMMP terminates it produces a log minimal

model or Mori fiber space for (X, B − ε′E) for any 0< ε′ 6 ε.

Proof. Choose some ε < 1 to start the process with. As we know that

KX +B is nef, λ0 6 ε, where λ0 is defined as in Definition 2.15. Suppose

first that λ0 < ε. Then KX +B − (ε− λ0)E is nef. As KX +B is also nef,

then (X, B − ε′E) is its own log minimal model for all ε′ ∈ [0, ε− λ0]. This

means we can terminate the process by replacing ε with ε− λ0.
Suppose instead that λ0 = ε. We claim that there is a KX +B − εE-

negative extremal ray R0 which satisfies (KX +B) ·R0 = 0. For if not,
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by definition of λ0 and Theorem 1.7, there exists a sequence of extremal

rays Ri and a decreasing sequence of rational numbers δi→ 0 which

satisfy (KX +B − δiE) ·Ri < 0 but (KX +B) ·Ri > 0. This is impossible

by Proposition 2.14(1). So there is a KX +B-trivial extremal ray R0

which we contract as the first step of our LMMP. By linearity this is also

KX +B − ε′E-negative for all ε′ ∈ ( 0, ε ].

If we have not obtained a Mori fiber space then let the result of the flip or

divisorial contraction be X1. Define λ1 as in Definition 2.15. Again λ1 6 ε.

If λ1 < ε then (X1, BX1 − ε′EX1) is a log minimal model for (X, B − ε′E)

for all ε′ ∈ (0, ε− λ1), so we may terminate the process by replacing ε with

ε− λ1. On the other hand if λ1 = ε, we get a KX1 +BX1-trivial contraction.

Continuing this process produces the LMMP described in the statement

(even if it does not terminate). Note that we only needed to replace ε at the

end, when we had obtained the model which will give the result.

§3. Cone theorem

We prove the cone theorem for log canonical pairs by passing to a

crepant Q-factorial dlt model and using the Q-factorial dlt cone theorem

[6, Theorem 1.1].

Lemma 3.1. Let f : V →W be a surjective linear map of finite-

dimensional vector spaces. Suppose CV ⊂ V and CW ⊂W are closed convex

cones of maximal dimension and H ⊂W is a linear subspace of codimen-

sion 1. Assume:

• f(CV ) = CW ;

• CW ∩H ⊂ ∂CW .

Then f−1H ∩ CV ⊂ ∂CV and also f−1H ∩ CV = f−1(H ∩ CW ) ∩ CV .

Proof. First we claim that

f−1(∂CW ) ∩ CV ⊂ ∂CV .

Take v ∈ f−1(∂CW ) ∩ CV . Let w = f(v). As w ∈ ∂CW there is a convergent

sequence wi→ w such that wi 6∈ CW for all i. f−1(wi) is an affine space

in V which does not intersect CV (else wi ∈ CW ), and these affine spaces

converge to the affine space f−1(w). Therefore, we can choose vi ∈ f−1(wi)
such that vi converge to v. Thus we have sequence vi not in CV converging

to v and so v ∈ ∂CV .
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We prove the first claim of the Lemma. Suppose v ∈ f−1H ∩ CV . Then

f(v) ∈ CW ∩H ⊂ ∂CW . So v ∈ f−1(∂CW ) and also in CV so it is in ∂CV by

the initial claim.

We prove the second claim. Suppose v ∈ f−1H ∩ CV . Let w = f(v). Then

w ∈H, but also w ∈ CW as f(CV ) = CW . The other inclusion is even more

obvious.

Proof of Theorem 1.7. (X, B) has a crepant Q-factorial dlt model

(Y, BY ) by Proposition 2.13. This comes with birational morphism f :

Y →X, and BY is defined to be the dlt boundary satisfying KY +BY ∼Q
φ∗(KX +B). There is a surjective linear map of vector spaces

f∗ :N1(Y )→N1(X)

which induces a surjection on the pseudo-effective cones

f∗(NE1(Y )) =NE1(X).

By the Q-factorial dlt cone theorem, there is a countable collection of

rational curves CYi on Y satisfying the requirements of the cone theorem.

In particular,

NE1(Y ) =NE1(Y ) ∩ (KY +BY )>0 +
∑
i

R>0 · [CYi ].

Let Ci be the countable collection of rational curves on X given by letting

Ci be f∗C
Y
i with reduced structure. We claim that these curves satisfy (1).

Suppose instead

NE1(X) 6=NE1(X) ∩ (KX +B)>0 +
∑
i

R>0 · [Ci].

Then there is some R-Cartier divisor D which is positive on the right hand

side, but nonpositive somewhere on NE1(X). Let A be an ample divisor

and λ= inf{t :D + tA is nef}. Then D + λA is nef but not ample so by

Kleiman’s criterion it takes value zero somewhere on NE1(X)\{0}. By

replacing D by D + λA we may assume D is nonnegative on NE1(X)\{0}
but D=0 intersects NE1(X) nontrivially. So D=0 cuts out some extremal

face F of NE1(X). By Lemma 3.1,

FY := f−1∗ F ∩NE1(Y ) = f−1∗ D=0 ∩NE1(Y )
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is some nonempty extremal face of NE1(Y ), which is KY +BY -negative

away from the lower dimensional f−1∗ (0). But any such extremal face

contains a KY +BY -negative extremal ray R by the cone theorem [6, 1.1]

on Y , and R contains one of the CYi . But then D=0 contains one of the Ci,

which contradicts our assumption of inequality.

The inequality

−6 6 (KX +B) · Ci < 0

follows directly from the definition of the Ci, the Q-factorial dlt cone

theorem, the projection formula and the observation

0<
(KX +B) · Ci

(KX +B) · f∗CYi
6 1.

Next we show that the rays Ri = R>0 · [Ci] do not accumulate in (KX +

B)<0. Suppose otherwise, so there is some sequence Ri converging to a

KX +B-negative ray R. Let RYi be an extremal ray in NE1(Y ) satisfying

f∗R
Y
i =Ri. Such a ray exists by definition of the Ri. By compactness of

the unit ball in NE1(Y ), some subsequence of the RYi must converge to a

ray RY . This must satisfy f∗R
Y =R, and so by the projection formula it

is KY +BY -negative. This contradicts the cone theorem for dlt Q-factorial

pairs [6, 1.1].

Finally, let A be an ample R-divisor on X. Suppose there are infinitely

many Ci with (KX +B +A) · Ci < 0. By compactness, some subsequence

of the corresponding Ri converge to a ray R. This must satisfy (KX +

B +A) ·R6 0, but R⊂NE1(X) so this implies (KX +B) ·R< 0, which

contradicts (4).

§4. Termination

In this section we prove Theorem 1.6, using the ideas of the characteristic

zero proof in [2, 3.2]. The next remark is important for the proof.

Remark 4.1. [2, 3.1] Given a log canonical 3-fold pair (X, B) we may

take a crepant Q-factorial dlt model φ : Y →X using Proposition 2.13.

Let BY be the dlt boundary such that KY +BY ∼R φ
∗(KX +B). Suppose

we have a KX +B-flip X 99KX+/Z. Then (X+, BX+) is the unique log

canonical model of (X, B) over Z. As remarked in Subsection 2.4 we may

run a KY +BY -MMP over Z. If this LMMP terminates (which will follow

from Theorem 1.6), say with Y 99K Y +, (X+, BX+) is also the unique log

canonical model for (Y +, BY +) over Z, so we get a morphism Y +→X+

and (Y +, BY +) is a crepant Q-factorial dlt model of (X+, BX+).
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Proof of Theorem 1.6. Suppose we have a log canonical pair (X, B), and

an infinite sequence of KX +B-flips which are also M -flips for M > 0.

X =X1

""

X2

�� ��

X3

��

· · ·

Z1 Z2 · · ·

Let t1 = lct(X, B, M) and (X1, B1, M1) = (X, B, M).

Let (Y,∆Y ) be a crepant Q-factorial dlt model of (X, B + t1M), with

birational morphism f : Y →X. Let BY (resp. MY ) be the birational

transform of B (resp. M) on Y , so that ∆Y =BY + t1MY + E where E

is the reduced exceptional divisor of f . In addition, let 0 6B′Y 6BY (resp.

0 6M ′Y 6MY ) be the divisors formed as follows:

• If a component of BY (resp. MY ) has coefficient 1 in BY + t1MY , give it

coefficient 0 in B′Y (resp. M ′Y ).

• If a component of BY (resp. MY ) has coefficient less than 1 in BY +

t1MY , give it coefficient in B′Y (resp. M ′Y ) equal to its coefficient in BY
(resp. MY ).

Thus we have ∆Y =B′Y + t1M ′Y +
⌊
BY + t1MY

⌋
+ E. Run a KY + ∆Y -

MMP/Z1. If this terminates it gives us (Y2,∆Y2) which is a crepant

Q-factorial dlt model for (X2, B2 + t1M2) by Remark 4.1. In particular,

this cannot be isomorphic to (Y,∆Y ). Now repeat the process from

(Y2,∆Y2). Either way we get an infinite sequence of KY + ∆Y -flips.

By Proposition 2.12, these flips are eventually isomorphisms near b∆Y c,
so we may replace Y and the sequence of flips with a truncated version

to assume that each flipping locus is disjoint from Supp(b∆Y c) and also

to ensure there are no divisorial contractions. Each of the KY + ∆Y -

flips is now also a KY +B′Y + t1M ′Y -flip and an M ′Y -flip. This is because

KY +B′Y + t1M ′Y (resp. M ′Y ) only differs from KY + ∆Y (resp. MY ) on the

components of Supp(b∆Y c). By assumption the flipping loci are all disjoint

from the birational transforms of Supp(b∆Y c), and so the intersections with

the flipping curves are unchanged by changing coefficients of components

of Supp(b∆Y c).
Let t2 = lct(Y, B′Y , M

′
Y ). t2 > t1 because (Y, B′Y + t1M ′Y ) is klt by

construction. Let (X2, B2, M2, t2) = (Y, B′Y , M
′
Y , t

2). We are in the same

situation with X2 as we began in with X. Therefore, we can inductively

create a sequence t1 < t2 < t3 < · · · of log canonical thresholds for pairs
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and divisors with coefficients in a finite set. This contradicts ACC [5, 1.10],

so there cannot have been such an infinite sequence of flips.

We now use this to extend special termination for Q-factorial dlt pairs

(Proposition 2.12) to general log canonical pairs.

Proposition 4.2. Let (X, B) be a projective log canonical 3-fold pair

over k. Suppose we are given a sequence of KX +B-flips,

X =X1 99KX2 99KX3 99K · · · .

Then the flipping locus is eventually disjoint from LCS(X, B).

Proof. Suppose the flipping contractions are fi :Xi→ Zi with X =X1.

Let (Y1, BY1) be a crepant Q-factorial dlt model of (X, B), which exists

by Proposition 2.13. Run the KY1 +BY1-MMP/Z1 as in Remark 4.1 . This

LMMP is also a KY1 +BY1 + f∗1A-MMP for A ample on Z1. In particular,

we may choose A sufficiently ample that KY1 +BY1 + f∗1A is big, and so

the LMMP terminates by Theorem 1.6. By Remark 4.1 it terminates on

(Y2, BY2), a crepant Q-factorial dlt model for (X2, BX2). Continuing to run

these LMMPs we get a diagram:

Y1 //

��

Y2

��

// Y3

��

// · · ·

X1
// X2

// X3
// · · ·

where (Yi, BYi) is a Q-factorial dlt model of (Xi, BXi) with birational

morphism gi : Yi→Xi. The top row is a KY1 +BY1-MMP, so by special

termination for Q-factorial dlt pairs the birational maps Yi 99K Yi+1 are

isomorphisms near bBYic for i� 0. Replace the sequences to assume that

this holds for all i. We may also assume that there are no divisorial

contractions in Yi 99K Yi−1 for each i.

Suppose Xi 99KXi+1 is not an isomorphism near LCS(Xi, BXi). Let

φi :W → Yi and φi+1 :W → Yi+1 be birational morphisms resolving the

rational map Yi 99K Yi+1. We can assume that φi and φi+1 are isomorphisms

over the locus where Yi 99K Yi+1 is an isomorphism. In particular, they are

isomorphisms near bBYic and
⌊
BYi+1

⌋
.

D := φ∗i (KYi +BYi)− φ∗i+1(KYi+1 +BYi+1)
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is exceptional over Yi and anti-nef/Zi, so is effective. Yi 99K Yi+1 being an

isomorphism near bBYic implies that D does not intersect φ−1i (bBYic). Note

that

D = φ∗i g
∗
i (KXi +BXi)− φ∗i+1g

∗
i+1(KXi+1 +BXi+1).

Let ΓXi be a curve in the flipping locus which is not disjoint from

LCS(Xi, BXi). Let ΓYi be a curve on Yi surjective to ΓXi and ΓW a curve

on W surjective to ΓYi . As ΓXi is a flipping curve, (KXi +BXi) · ΓXi < 0.

By the projection formula, we see that D · ΓW < 0, and so ΓW is contained

in Supp(D).

By assumption, ΓXi intersects LCS(Xi, BXi) and so ΓW intersects

φ−1i g−1i (LCS(Xi, BXi)). g
−1
i (LCS(Xi, BXi)) consists of bBYic and possibly

finitely many curves which are contracted over Xi. We know that D cannot

intersect φ−1i (bBYic), so D must be connected to φ−1i (bBYic) by a chain of

curves, each of which is contracted over Zi. Suppose for contradiction that

some of these curves are not contained in Supp(D). There must be one such

curve, C say, which satisfies D · C > 0, because at least one must intersect

D but not be contained in Supp(D). But C is contracted over Zi, which

gives a contradiction, for D is anti-nef/Zi.

§5. Restriction

In characteristic zero, the reduced boundary bBY c of a dlt pair (Y, BY )

is S2 and consequently demi-normal. The proof [14, 17.5] uses vanishing

theorems and may fail in positive characteristic. Instead we exploit the

Frobenius morphism to work on a partial normalization in place of bBY c.

Proposition 5.1. Let (Y, BY ) be a Q-factorial dlt 3-fold pair over k.

Let π : S→ bBY c be the S2-fication of bBY c. Then π : S→ bBY c is a finite

universal homeomorphism from a demi-normal scheme.

Proof. π is an isomorphism in codimension 1 because bBY c is reduced

and equidimensional. We show that π is injective and surjective on geometric

points in order to apply Proposition 2.3. It is surjective because the normal-

ization is surjective and π factors into the normalization by Proposition 2.6.

Suppose P is a geometric point on bBY c with more than one pre-

image. We use what we know of bBY c from Proposition 2.11 to reach a

contradiction. First note that each component of bBY c is normal. This

means that we can identify the normalization of bBY c with the disjoint

union of its components. Now observe that P cannot have more than one

pre-image in any irreducible component of S, because π factors into the
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normalization of bBY c, which is just projection from the disjoint union of

the components.

Therefore, we may assume P is contained in at least two components E1

and E2 of bBY c and has distinct pre-images Qi for i= 1, 2, each contained in

the component of S corresponding to Ei. C := E1 ∩ E2 is of pure dimension

1 and its irreducible components are smooth curves by Proposition 2.11. Let

Ri be the unique geometric point in the pre-image of P in Ei ⊂ E1 t E2.

As π factors through the normalization E1 t E2→ bBY c, the image of Ri
in S is Qi. The pre-image of C in E1 t E2 is supported in pure dimension 1.

Therefore, the pre-image of C on S, CS is also supported in pure dimension

1. If Γ is an irreducible component of C which contains P , the pre-image

Γi of Γ in Ei ⊂ E1 t E2 is an irreducible curve passing through Ri. There

is a unique irreducible curve ΓS which is the pre-image of Γ on S because

π is an isomorphism away from a finite set of points. So ΓS is the image of

both Γi and it follows that ΓS must contain both Q1 and Q2. Now let Γν

be the normalization of ΓS . The composition Γν → Γ is an isomorphism of

smooth curves, but some point has two geometric pre-images. We have a

contradiction, and so π must be a universal homeomorphism.

S is nodal in codimension 1 because bBY c is nodal in codimension 1 by

[15, 2.32] and π is an isomorphism in codimension 1. S is S2 by definition,

so we conclude that S is demi-normal.

Proof of Theorem 1.3. The conditions (1)–(6) of [15, 4.2] for adjunction

to S are satisfied. The only condition which is not obvious is (5), which holds

because S is demi-normal [15, 5.1]. Thus there is a different, BS , satisfying

π∗(KY +BY )∼Q KS +BS .

We can check discrepancies to ensure this pair is slc by pulling back

to the normalization, and applying adjunction to the individual normal

components of bBY c. By Tanaka’s abundance for slc surfaces [21], KS +BS
is semi-ample. Now because S→ bBY c is a finite universal homeomorphism,

by Proposition 2.4, (KY +BY )|bBY c is semi-ample.

§6. Good log minimal models

6.1 Big log divisors

In this subsection we prove Theorem 1.1, which will allow us to contract

birational extremal rays.
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Proof of Theorem 1.1 when Z is a point.

Step 1 : Set-up.

We first prove that if (Y, BY ) is a projective Q-factorial dlt 3-fold pair over

k with Q-boundary BY , such that KY +BY is big and nef, then KY +BY
is semi-ample. We spend most of the proof on this case, and then extend

to general log canonical pairs with R-boundaries in the final step. We may

assume bBY c 6= 0 as otherwise (Y, BY ) is klt and we can apply the base-

point free theorem [5, 1.4]. If it were the case that E(KY +BY )⊆ bBY c, we

would be able to apply Theorem 2.2 together with Theorem 1.3 to conclude

the statement. However, this need not be true, so we proceed by modifying

Y to reach a situation where it holds. For this reason, we would like to

remove KY +BY -trivial curves which are not contained in bBY c.
Step 2 : Contract KY +BY -trivial curves which intersect bBY c positively.

KY +BY is big by assumption, so let ε be sufficiently small that KY +

BY − ε bBY c is also big, and so any KY +BY − ε bBY c-MMP terminates

by Theorem 1.6. If we run a KY +BY − ε bBY c-MMP with scaling of bBY c,
by Lemma 2.16, we can replace ε by a smaller number to assume that the

LMMP contracts only KY +BY -trivial extremal rays.

As any contraction Yi→ Zi in this LMMP is KYi +BYi-trivial, we claim

that at each step KYi +BYi pulls back from some Q-Cartier divisor on Zi.

This follows from the klt cone and base-point free theorems (see [17, 3.7(4)]).

Therefore, this LMMP results in a model Y ′ on which the birational

transform KY ′ +BY ′ is semi-ample if and only if KY +BY is semi-ample.

(Y ′, BY ′) is Q-factorial and log canonical but may no longer be dlt. By

our application of Lemma 2.16, we have that KY ′ +BY ′ − ε′ bBY ′c is

nef for all ε′ ∈ [0, ε]. Thus any KY ′ +BY ′-trivial curve cannot intersect

bBY ′c positively: it is therefore forced to either be disjoint from bBY ′c or

completely contained in bBY ′c.
Step 3 : Contract KY ′ +BY ′-trivial curves not contained in bBY ′c.
The underlying variety Y ′ is klt and Q-factorial because it was formed by

running the LMMP from a klt Q-factorial pair, so by Proposition 2.14(1), we

may replace ε to be sufficiently small that any KY ′ +BY ′ − ε bBY ′c-trivial

curve is also KY ′ +BY ′-trivial. Apply the base-point free theorem [5, 1.4]

on the klt KY ′ +BY ′ − ε bBY ′c to produce another birational KY ′ +BY ′-

trivial contraction f : Y ′→ Y ′′ such that KY ′ +BY ′ − ε bBY ′c ∼Q f
∗A for

some ample Q-divisor A. Notice that if 0< ε′ < ε, KY ′ +BY ′ − ε′ bBY ′c is

also semi-ample and its associated morphism contracts the same curves as f .

Therefore, KY ′ +BY ′ − ε′ bBY ′c also pulls back from Y ′′.
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This implies bBY ′c pulls back from a Q-Cartier divisor D on Y ′′, and so

does KY ′ +BY ′ . Let BY ′′ be the birational transform of BY ′ on Y ′′, so that

KY ′ +BY ′ = f∗(KY ′′ +BY ′′) and D = f∗ bBY ′c= bBY ′′c.
We get a new log canonical pair (Y ′′, BY ′′) such that KY ′′ +BY ′′ ∼Q A+

εD for ample A and effective D as above. This implies that E(KY ′′ +BY ′′)⊂
D = bB′′Y c, and we also know that KY ′′ +BY ′′ is semi-ample if and only if

KY ′ +BY ′ is. However, (Y ′′, BY ′′) need not be either dlt or Q-factorial in

general, so we still cannot apply Theorem 1.3.

Step 4 : Construct a model where Keel’s theorem applies.

Let (Y ′′′, BY ′′′) be a Q-factorial dlt model of (Y ′′, BY ′′) with morphism

g : Y ′′′→ Y ′′. We claim that every irreducible component of E(KY ′′′ +BY ′′′)

is either contained within bBY ′′′c or is completely disjoint from it. First

note that LCS(Y ′′, BY ′′) = bBY ′′c, because bBY ′c pulls back from bBY ′′c,
and LCS(Y ′, BY ′) = bBY ′c because (Y ′, BY ′ − ε bBY ′c) is klt.

To complete the proof of the claim, suppose V is an irreducible

component of E(KY ′′′ +BY ′′′) and first assume that it is 2-dimensional.

If V is contracted over Y ′′ then it is in bBY ′′′c by definition of the

crepant dlt Q-factorial modification. If it is not contracted over Y ′′ then

its birational transform on Y is in E(KY ′′ +BY ′′)⊂ bBY ′′c. So we may

assume V is 1-dimensional. g∗ bBY ′′c is an effective Q-Cartier divisor on

Y ′′′ with support equal to bBY ′′′c (because LCS(Y ′′, BY ′′) = bBY ′′c). If V

is contracted over Y ′′ then by the projection formula V · g∗ bBY ′′c= 0. If it

is not contracted over Y ′′ then its birational transform is again contained

within E(KY ′′ +BY ′′) and hence within bBY ′′c. Either way this implies

that either V is contained within bBY ′′′c or it is completely disjoint from

it. This completes the proof of the claim.

We may now apply Keel’s theorem (Proposition 2.2) to (Y ′′′, BY ′′′).

Any connected component of E(KY ′′′ +BY ′′′) is either contained within

bBY ′′′c or is completely disjoint from it. In this first case KY ′′′ +BY ′′′ is

semi-ample when restricted to this connected component by Theorem 1.3.

In the second it is semi-ample because in a neighborhood of the component,

KY ′′′ +BY ′′′ is equal to

KY ′′′ +BY ′′′ − εg∗ bBY ′′c= g∗(KY ′′ +BY ′′ − ε bBY ′′c)

which is nef and big, and the pair (Y ′′′, BY ′′′ − εg∗ bBY ′′c) is klt because

Supp g∗ bBY ′′c= bBY ′′′c, so we may apply base-point freeness in the klt

case [5, 1.4].
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Step 5 : Log canonical pairs with R-boundaries.

So far we have proved Theorem 1.1 for Q-factorial dlt pairs with

Q-boundaries. Suppose now that (X, B) is as in the statement, that

is, log canonical with R-boundary B. A crepant Q-factorial dlt model

φ : Y →X exists by Proposition 2.13, and let BY be the dlt R-boundary

defined by KY +BY = φ∗(KX +B). Let V be the R-vector space of Weil

divisors spanned by the components of BY , and define L to be the rational

polytope from Proposition 2.14. Apply Proposition 2.14(2) with the family

of extremal rays equal to all extremal rays of NE(X). We get a smaller

rational polytope P containing BY such that KY + ∆ is nef for all ∆ ∈ P.

Let the vertices of P be B1, . . . , Bn. We may shrink P around BY to assume

that KY +Bi is big for all i. By the case we have already proved, KY +Bi
is semi-ample for each i. But we can write BY as some R-linear combination

of the Bi with positive coefficients, and so this implies that KY +BY is

also semi-ample. This in turn implies that KX +B is semi-ample.

Proof of Theorem 1.1 in relative case. We now have a projective con-

traction f :X → Z. Let A be an ample divisor on Z. Because KX +B

is big/Z, there exits n� 0 such that KX +B + nf∗A is big. Now using

Theorem 1.7(2), perhaps after increasing n, KX +B + nf∗A is also globally

nef and positive on every curve not contracted/Z. Our ground field is

algebraically closed, so it is F -finite, infinite and perfect. By the results

of [20] we can find A′ ∼R nf
∗A such that (X, B +A′) is log canonical. We

may now apply the global case.

6.2 Big boundary divisors

Now we move on to Theorem 1.2. The proof follows that of Theorem 1.1 in

outline, but differs in detail as we must deal with nonbirational morphisms

and non- pseudo-effective log divisors.

Proof of Theorem 1.2 when Z is a point.

Step 1 : Set-up.

As before, we first prove the theorem in the Q-boundary, Q-factorial dlt

case. To this end, assume that (Y, BY ) is a projective Q-factorial dlt 3-fold

over k with Q-boundary BY . Assume also that AY is a big and semi-ample

Q-divisor, such that KY +BY +AY is nef. We prove that KY +BY +AY
is semi-ample. By [20], we may replace AY to assume that (Y, BY +AY )

is log canonical. We may also assume that bBY c 6= 0 by the base-point free

theorem.
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Step 2 : Run a KY +BY +AY − ε bBY c-MMP with scaling of bBY c.
In fact, this step consists of showing that there is a way to choose such

an LMMP which terminates, and that by taking ε sufficiently small we may

assume that each contraction is KY +BY +AY -trivial.

First note that by Lemma 2.16, whenever the LMMP with scaling

attempts to contract an extremal ray which is not KY +BY +AY -trivial,

we may replace ε with a smaller number so that we terminate instead.

Lemma 2.16 also tells us that our LMMP is also aKY +BY +AY − ε′ bBY c-
MMP for any ε′ ∈ ( 0, ε ]. This means that we are free to replace ε by a

smaller number at any point during the LMMP without affecting the validity

of the previous steps.

We now show that we can choose such an LMMP which terminates. As

a first step we claim that there is some choice of KY +BY +AY − ε bBY c-
MMP with scaling of bBY c with the following properties:

• Every step is KY +BY +AY -trivial.

• It reaches (but may not terminate on) a model Ỹ such that:

• No KỸ +BỸ +AỸ − ε
⌊
BỸ
⌋
-MMP with scaling of

⌊
BỸ
⌋

which contracts

only KỸ +BỸ +AỸ -trivial rays will ever contain a divisorial contraction.

Suppose otherwise. Then given any model reachable via a KY +BY +

AY − ε bBY c-MMP which contracts only KY +BY +AY -trivial extremal

rays, it is possible to find a way to continue contracting onlyKY +BY +AY -

trivial rays and reach a divisorial contraction. By induction this produces an

infinite sequence of divisorial contractions, which is impossible. Therefore,

there must exist a model Ỹ as described. Thus, however we continue to

run our LMMP with scaling from Ỹ then we may assume that every step

is a flip.

Let HỸ be an ample Q-Cartier divisor on Ỹ such that KỸ +BỸ +

AỸ − ε
⌊
BỸ
⌋

+HỸ is nef. We may apply [20] to assume that (Ỹ , BỸ +

AỸ +HỸ ) is log canonical. Apply Proposition 2.14 to Ỹ and the rational

vector space of Weil divisors spanned by BỸ +AỸ − ε
⌊
BỸ
⌋
, BỸ +AỸ and

BỸ +AỸ +HỸ − ε
⌊
BỸ
⌋
. Let L be the polytope and α and δ be the real

numbers obtained in Proposition 2.14. Note that by definition, each of

BỸ +AỸ − ε
⌊
BỸ
⌋
, BỸ +AỸ and BỸ +AỸ +HỸ − ε

⌊
BỸ
⌋

lie within the

polytope L. Choose 0< λ� 1 and let P be the subpolytope with vertices

given by BỸ +AỸ − λε
⌊
BỸ
⌋
, BỸ +AỸ and BỸ +AỸ + λ(HỸ − ε

⌊
BỸ
⌋
).

By taking λ sufficiently small we may assume that ||∆− (BỸ +AỸ )||< δ
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for any ∆ in P where || · || is as in Proposition 2.14. Note that KỸ +BỸ +

AỸ + λ(HỸ − ε
⌊
BỸ
⌋
) is nef, as it is a linear combination of two nef divisors,

and we are happy to replace ε by λε for the purposes of our LMMP.

Now run a (Ỹ , BỸ +AỸ − λε
⌊
BỸ
⌋
)-MMP with scaling of λHỸ . At every

stage, so long as we contract no divisor, Proposition 2.14 ensures that every

extremal ray contracted is also KỸ +BỸ +AỸ -trivial. This means that this

LMMP is also a KỸ +BỸ +AỸ − λε
⌊
BỸ
⌋
-MMP with scaling of

⌊
BỸ
⌋
, and

hence also a KỸ +BỸ +AỸ − ε
⌊
BỸ
⌋
-MMP with scaling of

⌊
BỸ
⌋

and so

by the construction of Ỹ we indeed never contract a divisor. This LMMP

terminates by klt termination with scaling [6, 1.5] on some model Y ′, which

is either a log minimal model or a Mori fiber space.

Step 3 : Case where (Y ′, BY ′ +AY ′ − ε bBY ′c) is a Mori fiber space.

Suppose Y ′ has KY ′ +BY ′ +AY ′ − ε bBY ′c-Mori fiber space structure g :

Y ′→ V , where V is normal. By construction, g is KY ′ +BY ′ +AY ′-trivial,

so the fibers of g intersect bBY ′c positively and there is some component

V ′ of bBY ′c which is surjective to V . By [17, 3.7(4)], KY ′ +BY ′ +AY ′

pulls back from some Q-Cartier divisor D on V . Using Proposition 2.13,

let ψ : Y ′′→ Y ′ be a crepant Q-factorial dlt model for (Y ′, BY ′ +AY ′),

with V ′′ the birational transform of V ′ on Y ′′. ψ∗(KY ′ +BY ′ +AY ′)|V ′′ =
((g ◦ ψ)|V ′′)∗D, and by Theorem 1.3 the left hand side is semi-ample. Thus

D is semi-ample because g|V ′ : V ′→ V is a surjective projective morphism

to a normal variety (see [13, 2.10]). Thus we are done in this case.

Step 4 : Case where (Y ′, BY ′ +AY ′ − ε bBY ′c) is a log minimal model.

For a given ε, we may assume that KY ′ +BY ′ +AY ′ − ε bBY ′c is not

big by Theorem 1.1. We may write AY ′ ∼Q C + E for some ample C and

effective E. Choosing δ sufficiently small we may ensure that

(Y ′, BY ′ − ε bBY ′c+ (1− δ)AY ′ + δE)

is klt. The base-point free theorem for klt pairs [6, 1.2] now implies that

KY ′ +BY ′ +AY ′ − ε bBY ′c is semi-ample. As in the proof of Theorem 1.1,

by applying this for various values of ε we obtain a contraction f : Y ′→ V

satisfying.

KY ′ +BY ′ +AY ′ − ε bBY ′c ∼Q f
∗H

KY ′ +BY ′ +AY ′ ∼Q f
∗(H + εD)

for some H ample on V and D > 0. We show that H + εD is semi-ample.

If V has dimension less than 2 this is obvious, so we may assume it has
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dimension 2. E(H + εD)⊂ Supp(D), and f−1(Supp(D)) = bBY ′c because

D is Q-Cartier and so f−1(Supp(D)) is equidimensional. Let g : Y ′′→ Y ′

be a crepant Q-factorial dlt modification of (Y ′, BY ′ +AY ′) with KY ′′ +

∆ = g∗(KY ′ +BY ′ +AY ′). As Y ′ is Q-factorial and LCS(Y ′, BY ′ +AY ′) =

bBY ′c, g−1(bBY ′c) = b∆c. Theorem 1.3 implies that (KY ′′ + ∆)|(f◦g)−1D is

semi-ample. We may now apply the semi-ampleness criterion [6, 7.1], derived

from Keel’s theorem to deduce that H + εD is semi-ample.

Step 5 : Log canonical pairs with R-boundaries and R-Cartier A.

We now work with the log canonical pair (X, B) with R-boundary B and

R-Cartier A from the statement. Let φ : Y →X be a crepant Q-factorial

dlt modification of (X, B) which exists by Proposition 2.13. We claim that

we may replace A by some A′ ∼R A to assume that (X, B +A) is also log

canonical and that φ is a crepant Q-factorial dlt modification of (X, B +A).

To see this, note that by [20] there is some A′′ ∼R 2A such that (X, B +A′′)

is log canonical. Set A′ = 1
2A
′′. Any log canonical place of (X, B +A′) is

then also a log canonical place of (X, B).

We also wish to assume that A is a Q-divisor. To this end, write A=∑
aiAi where 0< ai ∈ R and Ai are semi-ample Q-divisors. Let ai = a1i + a2i

for each i, where we freely choose 0< a1i ∈ R and 0< a2i ∈Q. Define AR =∑
a1iAi and AQ =

∑
a2iAi. By choosing a1i sufficiently small, we may assume

that AQ is big. Now we may replace B with B +AR and A with AQ to

assume A is Q-Cartier.

Define BY to be the dlt R-boundary satisfying KY +BY = φ∗(KX +B),

and let AY = φ∗A (which is also big and semi-ample). It is now enough to

show that KY +BY +AY is semi-ample when (Y, BY ) is Q-factorial dlt but

BY may be an R-boundary.

Let V ′ be the R-vector space of R-Weil divisors generated by the compo-

nents of BY . Now let V = V ′ +AY . This is an affine space of Weil divisors,

so let L be as defined in Proposition 2.14. Let P ⊂ L be those ∆ ∈ L such

that (KY + ∆) ·R> 0 for all extremal rays R of NE(X). This is a rational

polytope by Proposition 2.14(2). Label the vertices B1 +AY , . . . , Bn +AY .

For each i, KY +Bi +AY is nef and so we may apply the version of

Theorem 1.2 for Q-boundaries to deduce that KY +Bi +AY is semi-

ample. But as KY +BY +AY can be written as a linear combination of

KY +Bi +AY with positive coefficients, this is also semi-ample.

Proof of Theorem 1.2 in relative case. As in the relative case of Theo-

rem 1.1, if we let H be the pullback to X of a sufficiently ample divisor
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on Z, A+H is big and semi-ample and by Theorem 1.7 KX +B +A+H

is globally nef. By [20] we may replace H up to Q-linear equivalence so that

(X, B +A+H) is log canonical. Now we may apply the global case.

§7. The LMMP

Next we apply Theorem 1.1 to construct flips for log canonical pairs.

Proof of Corollary 1.5. Let (X, B) be a projective log canonical 3-fold

pair with flipping contraction f :X → Z.

(X, B) has a Q-factorial dlt model g : Y →X where KY +BY = g∗(KX

+B) by Proposition 2.13. Run an LMMP/Z for (Y, BY ). If A is an

ample divisor on Z, KY +BY + ng∗f∗A is big for n� 0 and so the

LMMP terminates on a log minimal model (Y +, BY +) by Theorem 1.6. By

Theorem 1.1, KY + +BY + is semi-ample/Z. It therefore has a log canonical

model (X+, B+)/Z, which we show is the flip of (X, B)/Z. It suffices to show

that no divisors are contracted by X+ 99KX as KX+ +BX+ is ample/Z.

Let φ :W →X and φ+ :W →X+ be a common resolution.

L= φ∗(KX +B)− φ+∗(KX+ +BX+)

is anti-nef/Z and so by the negativity lemma is effective. Suppose there is a

divisor E+ which is contracted by X+ 99KX, and let EW be its birational

transform on W . L must have coefficient zero in EW , for any Weil divisor

extracted by Y →X has log discrepancy 0 with respect to (X, B), and hence

E+ appears with coefficient 1 in BX+ . Note that φ+∗(KX+ +BX+)|EW
is

big and nef over Z, so L intersects negatively with a general curve on EW
which is contracted over Z. There is a family of such curves, because EW
is contracted over X and hence over Z. But this negative intersection is

impossible if L has coefficient zero in EW , because L is effective.

Next we prove the contraction theorem:

Proof of Corollary 1.4. Let A be an ample R-divisor on X. For a

sufficiently small rational ε > 0, R is also KX +B + εA negative. By

Theorem 1.7, there are only finitely many KX +B + εA-negative extremal

rays. Therefore, we may find an R-divisor H such that R is the only

H-negative extremal ray of NE1(X). We may also assume that A′ =

H − (KX +B + εA) is ample (i.e., positive on all of NE1(X)). So we

may replace A by A′ + εA such that R is the only KX +B +A-negative

extremal ray.
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Let λ= inf{t :KX +B + tA is nef} (so λ > 1). KX +B + λA is positive

wherever KX +B is nonnegative, and also positive on every extremal KX +

B-negative extremal ray except R. This means the extremal face (KX +B +

λA)=0 ∩NE(X) must be R itself. By Theorem 1.7 R contains a curve.

By Theorem 1.2, KX +B + λA is semi-ample, and so induces the

contraction of R.

Proof of Corollary 1.8. This is a consequence of all our other results.

Given a log canonical pair (X, B) such that KX +B is not nef, we

may find a KX +B-negative extremal ray using Theorem 1.7. There is a

projective contraction contracting the curves in this ray by Corollary 1.4.

If it is a flipping contraction, the flip exists by Corollary 1.5. Finally,

if KX +B ≡M > 0 the program terminates by Theorem 1.6. Under the

additional assumption the log minimal model is good by Theorem 1.1.
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langage des schémas, Inst. Hautes Études Sci. Publ. Math. (4) (1960).
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de France, Paris, 1992, Papers from the Second Summer Seminar on Algebraic
Geometry held at the University of Utah, Salt Lake City, Utah, August 1991,
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