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Abstract

Many electricity market participants have a requirement to calculate the probabilistic
risk measures, such as earnings at risk (EaR) and value at risk (VaR), for compliance
reporting purposes. This requirement is currently hindered by the lack of analytical
representations for forecasts of demand (load) and price curves; this motivates numerical
simulation and models that need extensive calibration. In this paper, we derive an
analytical representation of a state demand forecast which is the aggregated usage of
all electricity consumers in a particular region (such as New South Wales or Victoria).
We have used two probabilistic benchmarks from the Australian energy market operator
as input, which are expressed as forecasted probability of exceedance.

Due to a number of considerations, including asymmetry of these quantiles with
respect to the median, we have selected a series of truncated lognormal distributions
with two parameters. The procedure of finding these parameters has been reduced to
solving (for every half-hour) a single nonlinear equation. As a result, the two-year half-
hourly forecast (expected curve) and demand volatility are found by explicit integration
with the set of derived distributions. We have also tested an alternative method based
on simplifying assumptions; using a nontruncated lognormal distribution, we found that
under the test conditions this method produces an identical forward load and volatility
curve.

2010 Mathematics subject classification: 00A69.
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1. Introduction

Until recently, most electricity grids were run by the states as an essential service
utility. In the late 1980s, it was realized that markets could be more efficient in driving
the operation of the power system and thus electricity markets and market operators
were created.
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The role of the market operator was to balance supply and demand in each grid
node and provide energy dispatch instructions to all grid-connected generators as
well as ensuring the security and quality of the power supply. Market operators
soon developed into sophisticated command and control centres. They developed
optimization of power flow (OPF) computer algorithms for real-time monitoring of
voltages and currents in grid nodes, as well as running market systems that take offers
from generators to reduce the cost of production by automatically issuing dispatch
instructions. At this point the physical energy pool emerged.

Note that in different geographical regions, electricity markets have evolved
differently. Some are mainly bilateral, with the pool covering the “overs and unders”
(net pool), while others are “gross-pool” markets, where all power must be sold via
the market. We are considering only the latter in this paper, since this approach is
consistent with a optimized central dispatch mechanism. In southeast Australia, the
national electricity market management company limited (NEMMCO) was created in
1996, and the national electricity market (NEM) commenced in 1998. In 2009, the
Australian energy market operator (AEMO) was established to operate both the NEM
and gas markets. The independent market operator (IMO) was created in 2005, which
manages the energy market in western Australia. In this paper, we will use examples
of the NEM, since it is a gross-pool energy-only market while the IMO is a net-pool
market with capacity payments.

Economic drivers are as important for the development of energy markets as the
laws of physics. Under the influence of the economic drivers, the pool model has been
redefined as follows:

• the pool is the sole buyer and seller of electricity;
• the pool collects offers from the suppliers and bids from the consumers to

determine the set of successful bidders whose offers and bids are accepted;
• the market operator finds the “optimum” pool price by solving a centralized

economic dispatch model that takes into account the physical network
constraints (physical state of the grid) to determine lowest possible spot nodal
prices; and
• the solution must be unique to satisfy a supply–demand equilibrium given the

physical state of the grid.

Given that demand is the primary driver of electricity price in the NEM, market
participants have a requirement to forecast state demand, which is the aggregated
usage of all electricity consumers in a particular region (such as New South Wales or
Victoria). As demand (otherwise referred to as load, as it is the load on the electrical
system) changes continuously over time, we require a forward load (demand) curve to
describe the state energy consumption forecast.

Although changes in demand are continuous, bidding in the market follows
a reverse auction process; therefore, bids (comprising generation capacity to be
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dispatched) must be set in discrete time (every five minutes in the case of the NEM).
Ancillary service providers (fast-ramping generators) supply or reduce generation to
counter the accidental deviations in supply–demand balance.

Prices are set every half-hour by averaging the six (five-minute) price calculations
and customer demand and financial contracts are settled at these half-hourly price-
demand levels. Therefore, the most useful structure of a forward load (demand) curve,
especially one intended to model settlements of financial instruments, is a discrete-
time (or piecewise) curve with breakpoints every half-hour.

2. Demand forecasts

The AEMO publishes two forecasts of demand in the NEM called STPASA and
MTPASA (short-term and medium-term projected assessment of system adequacy,
respectively). Strictly speaking, the role of these forecasts is the projected system
adequacy of the NEM. System adequacy is measured in terms of how much system
capacity is remaining at any point in time (to absorb any sudden spikes in demand). If
system adequacy is insufficient, blackouts will occur. The AEMO has an operating
charter that compels continuous monitoring of the adequacy of the system and, if
certain metrics are not met, additional generation capacity must be introduced (see,
for example, [2] for a description of the short-term forecasting process).

However, rather than providing actual demand forecasts, PASA comprises the
forecast error in terms of probability of exceedance (POE) for 10%, 50% and 90%
confidence (MTPASA only quotes 10% and 50% POE). For compliance purposes, we
require a forecast methodology based on an independent and transparent benchmark;
therefore, we have based a demand forecast on the PASA shape and levels.

• STPASA file represents six trading days from the end of the trading day covered
by the most recent pre-dispatch schedule with a half-hourly resolution. It
contains 10%, 50% and 90% short-term probability of exceedance (STPOE) as
well as short-term maximum available capacity (STMAC) forecast. It is updated
every two hours.
• MTPASA file covers 24 months from the Sunday after the day of publication

with a daily resolution. It contains 10% and 50% medium-term probability of
exceedance (MTPOE) and maximum available capacity (MTMAC) forecast. It
is updated weekly.

3. Constructing “ModPASA”

Our aim is to obtain the 2-year half-hourly demand forecast which would comply
with both PASAs, that is, to be consistent with the STPASA profile and match levels
of the MTPASA. Therefore, we develop the following procedure for construction of
the forecast.

(1) We have taken the average of all most recent STPASA datasets (1 year history)
to obtain a single time series which we use as a proxy for the forecast demand
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shape over one year (as any particular forecast will only go out for six days).
By this method, we obtain the full year of the forecast with the average
forecasting error of the STPOE and STMAC included at each point.

(2) For each of the 10% and 50% STPOE and STMAC, we have divided by their
respective daily maxima.

(3) The resultant (normalized) 10% and 50% time series are multiplied by their
corresponding MTPOEs.

As a result of this “stretching” procedure we have obtained two-year projections for
POE and maximum available capacities (MACs) while preserving the half-hourly
profile of STPASA. From now on we name this dataset ModPASA. For further
development, it is more conventional to work in terms of quantile time series rather
than POEs. Therefore, for every half-hourly time period i, we have used

Qα%(i) = POE1−α%(i).

We have found that for all ticks, Q50% − Q10% , Q90% − Q50%, which clearly
indicates the asymmetry of the underlying distribution for demand values.

Since we only want to use STPASA for the “daily shape”, we are not concerned with
the overall levels of STPASA. Instead, we wish to rescale the STPASA to MTPASA
levels while retaining the shape of STPASA (since MTPASA does not feature a daily
shape). We do this by dividing each value of STPASA by its maximum daily value and
then multiplying the resulting value by the corresponding MTPASA number. The same
procedure applies to MAC and, using the following notation, it can be represented as

LMAX =
STMACi

MAX(STMAC1−48)
×MTMAC,

where

STMACi = maximum available capacity of STPASA for this half-hourly point,

MTMAC = maximum available capacity of MTPASA for this day,

MAX(STMAC1−48) = maximum STMAC across the day.

For further calculations we introduce the following “rescaled” quantiles for
convenience: 

y1 =
Q50%

LMTMAC
,

y2 =
Q90%

LMAX
.

(3.1)

We have deliberately omitted here the index i, whilst keeping in mind that the
numerical procedure must be repeated for every single half-hourly interval of the
ModPASA dataset (35 040 intervals in total, and 35 088 if a leap year is included).
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4. Deriving the distribution and forward curves
Our choice for the distribution for demand values was dictated by the following

considerations.

(1) The probability density function (PDF) should have two parameters in order to
match two known ModPASA quantiles.

(2) The probability of zero demand occurrence should be zero.
(3) Support asymmetry, that is, dependent on ModPASA values to be skewed.
(4) Since a set of parameters would have to be found for every tick two years

forward (2 × 2 × 17 520 = 70 800 values in total), it must be “computation
friendly”. This point is extremely important for a choice of distribution, for
example, while the inverse Gamma distribution [3] is quite popular in financial
literature, and could under certain values of parameters satisfy the conditions 1
to 4; solving this number of simultaneous transcendental equations is nontrivial
and could be the focus of a separate paper.

(5) As we make the assumption that supply will always meet demand (that is,
ancillary services are not invoked), all allowable values for demand should
be contained within the interval (0, LMAX). That imposes a truncation-caused
normalization condition on the probability density function represented by the
standard lognormal distribution; here, truncation is necessary as load changes
from 0 to LMAX, whilst for standard lognormal, the domain is (0,∞).

We have chosen a truncated lognormal distribution (TLD), as it meets the above criteria
and can be integrated analytically.

f (σ, µ; x) =
2

Zxσ
√

2π
e−(ln x−µ)2/2σ2

, x ∈ [0, 1). (4.1)

Here, we have truncated the distribution by restricting the domain to [0, LMAX) (by
rescaling (3.1) to [0, 1)). We have then normalized the distribution to make x have a
probability density confined within the domain [0, 1). The normalization constant Z
and parameters σ and µ are yet to be defined. Also, as a consequence of (3.1), we
know that the 50% quantile (y1) is actually the median; therefore, we can assume that

eµ ≈ y1. (4.2)

Note that while generally eµ is the median of a lognormal distribution, since we have
a truncated distribution, we say that it is approximately the median.

Using the Wolfram Online Integrator (integrals.wolfram.com/index.jsp), we
obtained the corresponding cumulative distribution function (CDF) for the yth quantile
by integration of (4.1) using

F(y) =
1
Z

{
erf

( 1

σ
√

2
ln

y
y1

)
+ 1

}
. (4.3)

Here, erf is an error function [1] defined as

erf(z) ≡
2
√
π

∫ z

0
e−t2

dt.
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The forward load curve (FLC) is the first moment of the PDF (4.1) and, keeping in
mind (3.1) and the need to solve for all time periods ti,

FLC(ti) =
LMAX

Z(ti)
y1(ti)eσ

2(ti)/2
[
1 − erf

{
σ(ti)
√

2

( ln y1(ti)
σ2(ti)

+ 1
)}]

and the second moment

M2 =
L2

MAX

Z(ti)
y2

1(ti)e2σ2(ti)
{
1 − erf

( ln y1(ti)

σ(ti)
√

2
+ σ(ti)

√
2
)}
.

Since we have a separate volatility for each time period, we have a volatility curve;
therefore, the forward load volatility curve (FLVC) is

FLVC =

√
FLC2 − M2.

Now, all that is left is to find a normalization constant Z and a parameter σ. We will
proceed with the change of variables

v =
1
√

2σ2
. (4.4)

For two given ModPASA quantiles and normalization, condition (4.3) yields the
system of simultaneous equations

erf(−v ln y1) = Z − 1,

erf
(
v ln

y2

y1

)
= 0.9Z − 1.

(4.5)

From the first equation in (4.5), Z = 1 − erf(v ln y1) and the resulting equation is

G(v) = erf
(
v ln

y2

y1

)
+ 0.9 erf(v ln y1) + 0.1 = 0. (4.6)

Equation (4.6) is solved for every value of y1(ti) and y2(ti), where i ∈ (1, 35 040)
(that is, half-hourly intervals for two years). This equation has two roots, v1 and
v2 (as shown in Figure 1), both of which give valid solutions. We choose the root
by backtesting the forward curve against historical data – one of the roots results in
volatilities that are clearly too high (see Figure 2(a) and (b) – in this case we have
re-averaged the PASA forecast to historical maxima rather than MTPASA in order to
find the best fit against actual load).

We need to prove that equation (4.6) can have a maximum of two roots. For
any quantile Q(y2), y2 , y1. (Note that AEMO publishes two different POEs for
PASA, which are used in construction of the system of simultaneous equations (4.6).
Therefore, the case y2 = y1 is meaningless as equation (4.6) turns into two independent
equations with the same unknown.)
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Figure 1. Solutions for equation (4.6) (NSW).

For the function (obtained from (4.6))

G(v) = erf
(
v ln

y2

y1

)
+ Q erf(v ln y1) + 1 − Q

to have two roots, its derivative must have only one extremum. By differentiating,

G′(v) = −2v ln2 y2

y1
e−[v ln(y2/y1)]2

− 2Qv ln2 y1e−(v ln y1)2
= 0.

Since volatility is always greater than 0, we have either

e(v ln y1)2−[v ln(y2/y1)]2
= Q

[ ln y1

ln(y1/y2)

]2

or

v = ±

√
1

(ln y1)2 − [ln (y2/y1)]2 ln
[
Q
{ ln y1

ln(y1/y2))

}2]
= ±

√
1

ln y2(2 ln y1 − ln y2)
ln

[
Q
{ ln y1

ln(y1/y2)

}2]
. (4.7)

Again, since volatility is always greater than 0, the derivative can have up to one
root that corresponds to the “+” sign in the right-hand side of equation (4.7), which
means that G(v) can have only one extremum and, therefore, a maximum of two roots.

In practice, we have not come across a case (solving for 70 000 points with real-
world data) where G(v) does not solve for a root. However, we cannot guarantee that
G(v) will have at least one root, which is a weakness of this model.

5. Simplified model
Although the arbitrary market price cap superimposes a fixed cut-off to our

distribution (caused by limited generation available for every half-hour), we will
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(a)

(b)

Figure 2. Comparison of low and high roots over time (colour available online).

propose the hypothesis that the probability of exceeding this market cap, given the
market calibrated quantiles we are using, is negligible. By making this assumption,
we can remove the truncation of the lognormal distribution and, therefore, the
normalization factor Z, which in turn removes the need to solve for Z and, thus, greatly
simplifies the model.

We rewrite the density function in (4.1) as a standard lognormal

f (σ, µ; x) =
1

xσ
√

2π
e−(ln x−µ)2/2σ2

, x > 0,
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and, from (4.2),
µ = ln y1. (5.1)

Next, using equation (5.1), we get the cumulative distribution function

F(y) =
1
2

+
1
2

erf
( ln y − ln µ

σ
√

2

)
=

1
2

+
1
2

erf
( ln y − ln y1

σ
√

2

)
. (5.2)

Now equating (5.2) with y2 yields

F(y) = 0.9

⇒
1
2

+
1
2

erf
[ ln y − ln y1

σ
√

2

]
= 0.9

⇒ erf
[ ln(y2/y1)

σ
√

2

]
= 0.8

⇒ σ =
ln(y2/y1)

erf−1(0.8)
√

2
. (5.3)

The simplified forward load curve (SFLC) is the first moment of the PDF; therefore,

SFLC = eµ+σ2/2 = eln y1 × eσ
2/2 = y1eσ

2/2.

Keeping in mind (3.1) and the need to solve for all time periods ti,

SFLC(ti) = LMAXy1(ti)e(1/2)[ln{y2(ti)/y1(ti)}/ erf−1(0.8)
√

2]2
. (5.4)

6. Results – FLC

Figures 3 and 4 show the resultant expected curves against the original 50% and
10% MTPASA POEs. Note that actual data is shown as indicative only. First, a
forecast is not necessarily expected to predict actual demand, rather to give an expected
demand, and ideally also a variance measure. Secondly, the published MTPASA levels
that we have calibrated to appear to be systematically overstating demand – this is
caused by the input data, not the expected curve methodology.

Figures 5–12 show sections of the forward curve on a weekly basis for selected
weeks, and for regions in New South Wales (NSW) and Victoria (VIC).

Based on the methodology, our criterion for a curve of the correct magnitude is that
the maximum daily demand for any day in any week exactly matches the MTPASA
50% POE line for that day. This is because the MTPASA 50% represents the expected
value (50% POE) of the maximum daily demand for each day forecast. The shape
of the demand profile in any day within any week is shaped by the rolling STPASA
short-term forecast, and will differ for each day.
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Figure 3. NSW backtest, FY 2012 – MTPASA generated on 21 June 2011 (colour available online).

Figure 4. VIC backtest, FY 2012 – MTPASA generated on 21 June 2011 (colour available online).

7. Results – SFLC

The simplified forward load curve (5.4) produces a virtually identical curve to
the FLC (R2 = 0.999 999 999 987 for the test period of 1 year). Similarly, if we
compare volatility curves given by equations (4.4) and (5.3), we get identical curves
(R2 = 0.999 999 999 998 97).

This result supports the hypothesis that the truncated portion of the density function
is negligible. Given that the SFLC results in a far simpler representation, avoids the
need for iterative root solving and always solves for a value, it appears to be a better
candidate for the load curve modelling.
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Figure 5. NSW backtest, FY 2012 – MTPASA generated on 21 June 2011 (colour available online).

Figure 6. NSW backtest, FY 2012 – MTPASA generated on 21 June 2011 (colour available online).

8. Conclusions

We have demonstrated a way of reconstituting multiple distributions based on two
vectors of quantiles. For every time period, the solution satisfies the definition of the
measures. We have made two observations while working with the PASA forecasts.

(1) The values of the 10% and 50% POEs produced by AEMO contradict AEMO’s
assertion that the load distributions per time period are normal, as the POEs
demonstrate asymmetry.

(2) When backtested against the observed load, MTPASA appears to regularly
overstate the load, to the point that the 50% POE is more like a 5% or 6%
POE. The performance of MTPASA as a forecast is outside the scope of this
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Figure 7. NSW backtest, FY 2012 – MTPASA generated on 21 June 2011 (colour available online).

Figure 8. NSW backtest, FY 2012 – MTPASA generated on 21 June 2011 (colour available online).

paper, and it does not affect the methodology described here, since the aim of
the methodology is to effectively “shape” MTPASA for compliance reporting
purposes. Whether MTPASA is a reliable forecast of actual demand is a matter
for AEMO’s forecasting process.

The MTPASA forecasts are based on economical and seasonal indicators, mainly
considering estimates from the transmission network service providers (TNSPs), and
it is only quoted on a daily basis. This methodology adds two types of information to
the forecast.
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Figure 9. VIC backtest, FY 2012 – MTPASA generated on 21 June 2011 (colour available online).

Figure 10. VIC backtest, FY 2012 – MTPASA generated on 21 June 2011 (colour available online).

(1) The shaping process increases the frequency from daily to half-hourly.
(2) The resultant distributions support probabilistic risk measures, such as earnings

at risk (EaR) or insurance-based hedging agreements based on load triggers.
EaR is possible when making the assumption that the portfolio in question
exhibits the same volatility profile as state load.

In this paper, we have tested two models, the FLC, which is based on the fact that
load (demand) is confined within 0 and LMAX, while the second model, the SFLC,
assumes that LMAX is high enough so that the probability of exceeding it is negligible.
Since the two models produce near-identical results, the SFLC model appears to be
a highly accurate approximation for the FLC. Given that the simpler model offers

https://doi.org/10.1017/S1446181115000322 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000322


382 J. Maisano, A. Radchik and T. Ling [14]

Figure 11. VIC backtest, FY 2012 – MTPASA generated 21 June 2011 (colour available online).

Figure 12. VIC backtest, FY 2012 – MTPASA generated on 21 June 2011 (colour available online).

significant performance advantages, it would be the preferable load curve model for
practical applications.
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