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CONSTRUCTION OF VECTOR VALUED MODULAR FORMS 
FROM JACOBI FORMS 

JAE-HYUN YANG 

ABSTRACT. We give a geometrical construction of the canonical automorphic factor 
for the Jacobi group and construct new vector valued modular forms from Jacobi forms 
by differentiating them with respect to toroidal variables and then evaluating at zero. 

1. Introduction. For given two fixed positive integers n and m, we let 

Hn := {Z G C(ww) | Z = % ImZ > 0} 

be the Siegel upper half plane of degree n and let Tn be the Siegel modular group of 
degree n. Let 

?m,n := C[Wn,• • •, Wmnl W = (Wkl) e CM 

be the ring of polynomial functions on C^n\ Here C(w'w) (resp. C(/n'w)) denotes the space 
of all complex n x n (resp. m x /ï)-matrices (see notation below). For any homogeneous 
polynomialP G &m,n, we define the differential operatorP{dw) on C(mw) as follows: 

\dWn dWmnJ 

In this paper, the author proves that if P is a homogeneouspluriharmonic polynomial in 
fPw?„ and/ G Jp ^ ( r w ) (see Definition 3.1) is a Jacobi form of index M with respect to 
a rational representation p of the general group GL(«, C), then the following function 

P(dwV(Z9W)\w=o 

yields a vector valued modular form with respect to a new rational representation of 
GL(«, C). For precise details, we refer to Definition 5.1 and Main Theorem in Section 5. 
In [M-N-N] (cf. pp. 147—156), the authors proved the similar result for theta functions. 
Our result is a generalization of their result because theta functions are special examples 
of Jacobi forms. 

This paper is organized as follows. In Section 2, we provide a geometrical construction 
of the canonical automorphic factor for the Jacobi group. In Section 3, we review Jacobi 
forms and establish the notation. In Section 4, we review pluriharmonic polynomials and 
obtain some properties to be used in the subsequent sections. In Section 5, we shall prove 
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the main theorem. In Section 6, we obtain two identities by applying the main theorem 
to Jacobi forms. 

NOTATION. We denote by Z, R and C the ring of integers, the field of real numbers, 
and the field of complex numbers respectively. Tn := Sp(«, Z) denotes the Siegel modular 
group of degree n. The symbol ":=" means that the expression on the right is the définition 
of that on the left. We denotes by Z+ the set of all positive integers. F^k,l) denotes the set 
of all k x / matrices with entries in a commutative ring F. For a square matrix A G F^k,k) of 
degree k, a(A) denotes the trace of A. For A G F^^ and B G F ^ , we set B[A] = lABA. 
For any M G F ^ , lM denotes the transpose matrix of M. En denotes the identity matrix 
of degrees. 

2. The canonical automorphic factor for the Jacobi group. Let m and n be two 
fixed positive integers. It is well known that the automorphism group Aut(//m+M) of the 
Siegel upper half plane of degree m + n is given by 

Aut(//w+„) = Sp(w + n9 R)/{±Em+n}. 

We observe that Hn is a rational boundary ofHm+n (cf. [N]). The normalizer N(Hn) := 
{<T G Aut(//w+AJ) : â(Hn) C Hn} ofHn is given by 

where 

Here we put 

N(Hn) = P(Hn)/{±Em+n}9 

P(Hn) : = {ge Sp(m + n9 R) : g(Hn) C Hn} 

= {[<T9u,(\,ii9K)] G Sp(m + «,R)}. 

A 0 B A'n-B'\\ 

[ a , M A , / i , « ) ] : = | c 0 D C V _ D < A 

0 0 0 'w"1 / 

i(m,m) where a = f ] G Sp(«, R), w G GL(AW, R), A, /i G R(m'w) and K G R(" 

if f w T) G ̂ w+'1 with z G ̂ r G R(m,n) and r G //m'we simpiy write 

(Z9W9T):=^ *%y 

We denote the symplectic action ofN(H„) on (Z, FF, J) by 

g(Z,W,T):=(Z,W,f), geN(Hn). 

It is easy to see that (Z, W, f) is of the form 

Z = CTg(Z), 

^=afe;Z)(ff) + èfe;Z), 
f =mg{T) + c(g;Z,W), 
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where ag £ Aut(Hn)9 mg G Aut((Pm), 

a(g; -):H„-+ GL(C(w'w)) holomorphic, 

b(g9 • ) : # „ - > C(m'w) holomorphic, 

c(g; -, -):Hnx C(/M'w) - • Hm holomorphic. 

Here fPw := {Y G IR(m'w) | 7 = lY > 0} is an open convex cone in R 2 ^ and we set 

AutCPw) := {£ G G L ( C ^ ) | &(Pm) - 3?»}. 

REMARK 2.1. In [PS], Piateski-Sharpiro called the mapping (Z, W9T)*-+ (Z, JF, 7) 
a quasilinear transformation. 

From now on, we set 
Hn,m := //„ x C^>. 

We observe that g = [a9 u9 (A, /x, ft)](mod{±iiw+„}) G iV(//„) acts on //w,w by 

(Z, FF) K-, (og(Z)9a(g9Z)(W) + ft(g;Z)). 

The subgroup of N(Hn) consisting of elements g — [a, u9 (A, /i, «^(modji^+w}) with 
the property 

mg = Identity on Hm 

is called the Jacobi group, denoted by GJ. It follows immediately from the definition that 

Gr = {[<T9Em9(\,n9K)]eP(HH)}. 

It is easy to see that GJ is the semidirect product of Sp(«, R) and H^,m\ where 

rt£m) '•= R 4 ( A , | i , K ) ] G W } 

is the nilpotent 2-step subgroup of P(Hn), called the Heisenberggroup. For some results 
on rf£m\ we refer to [Y1HY2]. 

Now we consider another subgroup G of GJ. By the definition, G consists of elements 
of GJ whose action is of the following form: 

(Z, W,T)*-+ (ag(Z)9 a(g9 Z)(W)9T' + c(g; Z, WJ), c(g; Z, 0) = 0. 

LEMMA 2.2. The map 

J: GxHn^ GL(C(W/I)) 

defined by 
J(a9Z) := tf(<r;Z), â G G9 Z G Hn 

is a factor of automorphy for G. 

PROOF. It is easy to prove it. We leave its proof to the reader. • 
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We note that the mapping 

(2.1) A(g,(Z,W)):=c(g;Z,W), g G GJ, (Z,W) G H„,m 

is a summand of automorphy, i.e., 

(2.2) A(glg2,(Z, W)) = A(gug2 • (Z, Wj) +A(g2,(Z, W)), 

where g,, g2 G GJ and (Z, W) G //„,m. We let 

Kc C GL(C(m-n)) 

be the complex Lie group generated by the linear mapping 

{a(g;Z):geGJ}. 

Then Kc is isomorphic to GL(n, C). 

LEMMA 2.3. Let 

p:GL(«,C)-+GL(Kp) 

&e a finite dimensional holomorphic representation ofGL(n, C) on a finite dimensional 
complex vector space Vp and let \- C^m,n^ —> Cx be a character on the additive group 
C(m,m) Then the mapping j p : GxHn-+ GL(FP) defined by 

Jp(â, Z) := p(j(a, Z)), âeG,ZeHn 

is a factor of automorphy for G. Furthermore the mapping 

Jx,p{g,(Z, W)) := X{c(g;Z, W))p(a{g;Z)), g e G1 

is a factor of automorphy for the Jacobi group GJ with respect to \ and p. 

PROOF. The proof of this first statement is obvious. The proof of the second state
ment follows immediately from the fact that A [g, (Z, Wfj := c(g; Z, W) is a summand of 
automorphy (cfi (2.1) and (2.2)) and that Jp is a factor of automorphy for G. m 

DEFINITION 2.4. Jp and JXJP are called the canonical automorphicfactor for G with 
respect to p and the canonical automorphic factor for GJ with respect to x and p respec
tively. 

3. Jacobi forms. In this section, we establish the notation and define the concept 
of Jacobi forms. 

Let 
Sp(«, R) = {M G R{2nM | lMJnM = Jn} 

be the symplectic group of degree n, where 

J •=( ° E") 

"• {-E, Oj-
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It is easy to see that Sp(n, R) acts on Hn transitively by 

M(Z) := (AZ + B)(CZ + D)-\ 

whereM = f J G Sp(w,R)andZ G Hn. 

For two positive integers n and /w, we recall that the Jacobi group GJ := Sp(«, R) K 
//^ ,w) is the semidirect product of the symplectic group Sp(«, R) and the Heisenberg 
group //^'w) endowed with the following multiplication law 

( A / , ( A , / I , K ) ) - ( A / , ( À ^ « 0 ) :=(MM/,(Â+A ,,/x + /x,,/€ + /c, + Â y - / ï / A / ) ) 

with M,M' G Sp(«, R), (A, /x, /c), (A7, / / , «') G /4"'m) and (A, p) := (A, /i>W. It is easy to 
see that GJ acts on 7/w>TO := Hn x C(mw) transitively by 

(3.1) (M,(A,jz,«)) .(Z,FF) := (M(Z),(^+AZ+^XCZ + D)"1), 

whereM = ( £ j H G Sp(n,R), (A,/I ,K) G / ^ a n d ( z > ^ ) € #»,m-

Let p be a rational representation of GL(«, C) on a finite dimensional complex vector 
space Vp. Let 9{ G R(w'm) be a symmetric half-integral semi-positive definite matrix of 
degree m. Let C°°(Hn,m, Fp) be the algebra of all C°° functions on Hnm with values in Vp. 
For/ G C°°(Hn,m, Kp), we define 

(/|^[(M(A,/x,/c))])(Z,FP) 

(3.2) . _ e-2TTia(M[W+\Z+ii](CZ+D)-lC) x e27r/a(fWr(AZ/A+2A'^+(K+/2,A))) 

x p(CZ + Z))" y ( M z > , ( ̂  + AZ + /x)(CZ + D)~] ), 

w h e r e M - {A * 1 G SpfaR), (A,ji,*) G //jf'"0 and(Z, fF) G //„,m. 

DEFINITION 3.1. Let p and M be as above. Let 

H%>m) := {(\,H,K) G /4W 'W) I X,fi G Z(/W'"U G Z(m'w)}. 

A Jacobi form of index f̂ f with respect to p on Tn is a holomorphic function/ G 
C°°(Hnm, Vp) satisfying the following conditions (A) and (B): 

(A) V l ^ m = / « " • all 7 G r^ := T„ K 7#-">. 
(B) / has a Fourier expansion of the following form: 

f(Z,W)= £ £ c(T,R)'e2™(TZ)-e27ria{RlV) 

half-integral 

with c(7\*) ^ 0 only if ( , ^ j j ) > 0. 

If « > 2, the condition (B) is superfluous by Kôcher principle (cf. [Z] Lemma 1.6). 
We denote by J ^ ( r n ) the vector space of all Jacobi forms of index 94. with respect to 
p on r„. Ziegler (cf [Z] Theorem 1.8 or [E-Z] Theorem 1.1) proves that the vector space 
J ^(T„) is finite dimensional. For more results on Jacobi forms with n > 1 and m > 1, 
we refer to [Y3HY6] and [Z]. 
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4. Pluriharmonic polynomials. We review pluriharmonic polynomials of matrix 
arguments and collect some properties to be used in the next section (cf [K-V] and [M-
N-N]). 

Let n and m be two positive integers and let tPm,n := C[W\ \, W\2,..., Wmn\ be the ring 
of complex valued polynomials on C(m,/l). For any homogeneous polynomial P e tPm,n, 
we put 

\dWn dWmnJ 

Let S be a positive definite symmetric rational matrix of degree m. Let T := (tpq) be the 
inverse of S. For each ij with 1 < /,;' < n, we denote by A^- the following differential 
operator 

(4.2) A,v:= Y , ^ ^ ^ - , l<i,j<«. 
p,q=\ OWpiOWqj 

A polynomial P on C(w'^ is said to be harmonic with respect to S if 

(4.3) JTAuP = 0. 

A polynomial P on C(w'w) is called pluriharmonic with respect to S if 

(4.4) A l V P = 0 , 1 < / , ; < « . 

If there is no confusion, we just write harmonic or pluriharmonic instead of harmonic 
or pluriharmonic with respect to S. Obviously a pluriharmonic polynomial is harmonic. 
We denote by ^ 4 „ the space of all pluriharmonic polynomials on C(mw). The ring fPw^ 
of polynomials on C(w,Al) has a symmetric nondegenerate bilinear form (P,Q) := 
(P(dw)Q)(0) for P, Q <E fPw,„. It is easy to check that (, ) satisfies 

(4.5) (P,QR) = (Q(dw)P,R), P,Q,R£ <Pm,n-

LEMMA 4.1. ^ n is invariant under the action ofGL(n, C) x 0(S) given by 

(4.6) {(A,B),P(WJ) »-> P(BWA\ A G GL(«, C), B <E 0(S). 

HereO(S) : = { 5 E GL(W, C) | *BSB = S} denotes the orthogonal group of the quadratic 
formS. 

PROOF. See Corollary 9.11 in [M-N-N]. • 

REMARK 4.2. In [K-V], Kashiwara and Vergne investigated an irreducible decom
position of the space of complex pluriharmonic polynomials defined on C(m,w) under the 
action of (4.6). They showed that each irreducible component r ® À occurring in the 
decomposition of 9^^ under the action (4.6) has multiplicity one and the irreducible 
representation r of GL(«, C) is determined uniquely by the irreducible representation of 
0(S). 
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LEMMA 4.3. IfP is pluriharmonic, then we have 

P{dw)e«wc'ws-^ = P(2S-lWQe^c'w^ 

for all complex symmetric matrices C G C^n,n^ of degree n. We recall that a(A) denotes 
the trace of a square matrix. 

PROOF. We set h{W) := cr(WC WS~l). We observe that h(dw)P = 0. Indeed, 

h(W) = £ WikcklWmltmi 
i,k,l,m 

= Y,Ck,(YJtmiWmlWik) 
k,l V i > ' 

= J2 Cklhlk-
k,l 

Thus h(8w)P = T*jcu{hu!idw)P) = ZkjeuA^P = 0. We put ip(W) := e*W. Then 

f(W) := <p(W + A) = <p(W)<p(A)ri(W), where A G C(m-"> and rj(W) := e^
2WC'A^\ 

P(dwMW)\w=A = P(dwy(W)\w=0 

= V(A)(P(dwMW)v(W))\w=0 

= ^p(A)P(dw)ri(lV)\w=o. 

Indeed, since h(dw)P — 0, we have 

J\dw)(<p(fV)n(W))\w=0 = {P,<P-TI)= Widw)P,r1) 
OO 1 

= TJ-Àh\dw)P,r]) 
n=0 m 

= (P9ri) = P(dwMW)\w=o. 

By an easy computation, we obtain 

P(dw)T)(W) = P(2STlAC)r](W). 

Finally, we have 
P(dwMW)\w=A = ^(A)'P(2S-{AC)r](0). 

Hence we obtain the desired result. • 

5. Proof of Main Theorem. Throughout this section we fix a rational representa
tion p of GL(«, C) on a finite dimensional complex vector space Vp and a positive definite 
symmetric, half-integral matrix M of degree m once and for all. 

We set S := (2fW)-1. As in the previous section, we denote by ^4,n the vector space 
of all pluriharmonic polynomials with respect to S on C(m,w). According to Lemma 4.1, 
there exists an irreducible subspace VT(^ 0) invariant under the action of GL(«, C) given 
by (4.6). We denote this representation by r. Then we have 

(5.1) (T(A)P)(W) = P{WA\ A <E GL(n,C), P G VT9 We C{m>n\ 
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The action f of GL(«, C) on V^ is defined by 

(5.2) (iiArlC)(P):=C{r(!A-l)P)9 

where A G GL(rc, C), £ G ^ and P G KT. 

DEFINITION 5.1. Le t / G 7p ^ ( r „ ) be a Jacobi form of index M with respect to p 
on r„. Let P G KT be a homogeneous pluriharmonic polynomial. We put 

(5.3) fP{Z) := P(Ô^/(Z, »F)|^=o, Z G f t , ^ G C^>. 

Now we define the mapping 
fT:Hn-*rT®Vp 

by 

(5.4) (fT(Z))(P):=fp(Z), ZeHn,PeVT. 

DEFINITION 5.2. A holomorphic function/: Hn —> Kp is called a modular form of 
type p on Tn if 

f(M(Z)) = p(cz+Dy(Z), zeHn 

for all M = r ] G Tn. If « = 1, the additional cuspidal condition will be added. 

We denote by [rw, p] the vector space of all modular forms of type p on r„. 

MAIN THEOREM. Let r andf be as before. Letf G J <^(rw) be a Jacobi form. Then 
fr{Z) is a modular form of type f ® p, i.e.,fT G [Tn,f <g> p]. 

PROOF. Let 

/(Z, W) = Y,c(T>R)e2™iTZ) • e2lxia{RW) 

be a Fourier expansion of/(Z, W). Then we have 

P(dwY(Z, W) = £P(27r/'i?) • c(r,i?) • i*w™w) 
TJi 

and 

(5.5) /P(Z) := P(Ô^/(Z, FF)|^o = £P(2TTI ft) • e2™(7Z) • c(7,*) 

Since/ G Jp ^ ( r „ ) , we have the following transformation law 

(5.6) f(M(Z), W(CZ + D)~x) = e2™(Mw(cz+Drc<W). p(Œ + D y R ^ 

for all M = J G r„. Applying P{dw) to (5.6), according to Lemma 4.3, we have 

P(dwy(M(Z), W(CZ + D)~l) 

= P{AmMW{CZ + Dyicy^mcz+D^cw) 

x p(CZ + D/(Z, JF) + A(Z, FT) + ^./a(^^(cz+D)->c^ 

x £/X2TTI!R) • p(CZ + D)c(T,R) • é™*™™)^ 
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where h(Z, W) is a Fp-valued function on Hnjm whose restriction to W = 0 vanishes. 
Here we used the fact that (CZ + D)~XC is a complex symmetric matrix of degree n and 
Lemma 4.3. If we evaluate this at W = 0, P being homogeneous, we have 

(5.7) P(dwy(M{Z), W(CZ + D)-l)\w=0 = Y.P^i'R) • <?™(TZ) • p(CZ + D)c{T,R). 

On the other hand, 

p(dwv(M(z),w(cz+Dyl)\w=o 

= P(dw)Zc(T,R)e2^™^ • ^aiRW(cz+D)-^w=Q 

= Y.P^RXCZ+DY1) . e
27ri*T-M{z)). c(r,/?). 

Thus according to (5.7), we have 

(5.8) J2P&ri'K) • e27r/a(rM(z)) • c(T,R) £ P ( 2 T T / ^ ) • ellxiG{JZ) • p(CZ + D)c(7,#), 

where P(W) := ^ ( ^ C Z + Z))-1). By (5.5), (5.8) implies 

(5.9) 7P(M(Z)) = p(CZ + Z>y>(Z), 

that is, 

(5.10) (fT(M{Z))){P) = p(CZ + D/r(Z)(P). 

Since P = r(^{CZ + D)~l)P, we have from (5.9) 

((f-1 0 lVp)(CZ + DyT(M(Z)))(P) = ( (1^ 0 p\CZ + DYT(Z))(F)9 

where lp* (resp. l^p) denotes the trivial representation of GL(«,C) on KJ* (resp. Fp). 
Hence we obtain 

(5.11) MM(Z)) = (f ® p)(CZ + D/T(Z) 

for all M = G T„. Therefore^ is a Hom(Fr, Fp)-valued modular form of type 

f(g)p. • 

6. Applications. In this final section, we obtain important identities by applying 
the main theorem to two special Jacobi forms. 

(I) Let S G lS2k,2k) be a positive definite symmetric, unimodular even matrix of de
gree 2k. We choose an integral matrix c 6 Z(2*,w) such that lcSc is positive definite. We 
consider the following theta series 

0sAZ,W):= £ e™Wxz'x+2X'(cW))\ 
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Then 6S,C <E Jk^(Tn) with M := \lcSc {cf. [Z], p. 212). We write/(Z, W) := 05,C(Z, FF). 
Then by Main Theorem,^ is a Hom(PA

T, C)-valued modular form of type f ® det*. Fur
thermore, according to (5.9), for any homogeneous pluriharmonic P with respect to 
(2Myx — (fcSc)-1, we obtain the following identity 

£ P(27TI 'GSA '(CZ + D ) - 1 ) • e^5A(>IZ+iïXCZ+D)-»'A) 
AGZC2M) 

= {det(CZ+ £>)}* X] ^Tr/fcSA)-^ 
AGZ(2*.") 

,7r/cr(SAZ'A) 

fo ra l lAf=f^ ^ 1 <Gr„andZ<E//„. 

(II) In [Z], Ziegler defined the Eisenstein series 
4 V Z ' ^ ) o f Siegel type. Let 9d be 

a half integral positive definite symmetric matrix of degree m and let k G Z+. We set 

^°:-(U *>) er„ c = o 

Let ^ be a complete system of representatives of the cosets r „ 0 \ Tn and A be a complete 
system of representatives of the cosetsZ(m'")/(ker(fAf)nZ(m'")), where ker(fftf) := {A G 
R(m.") I <5Vf . A = 0}. The Eisenstein series É^u is defined by 

£^(Z, W) := X) det(CZ + D)~* • ^ ( ^ ( ^ r ' c ^ 

AGA 

927T/(j(^((^Z+5)(CZ+Z))-1'A+2A/(CZ+Z))-1 ' JF)) 

where (Z, FF) G //«,w Now we assume that k > n + m + 1 and & is evew. Then according 
to [Z], Theorem 2.1, £*n^(Z, FT) is a nonvanishing Jacobi form in Jk ^(Tn). By Main 

Theorem, (^j"L-)r is a Hom(Fr, C)-valued modular form of type f ® det*. We define the 
automorphic factory: Sp(«, R) x Hn —» GL(«, C) by 

j(g,Z):=cZ + d, g=[a
c * ) GSp(/i,R), Z £ / / „ . 

Then according to (5.9), for any homogeneous pluriharmonic polynomial P with respect 
to {2M)~X, we obtain the following identity 

dety(M,Z)* £ £ d e t y ( 7 , Z T * - P ( 4 7 r i ^ 
7G^A<EA 

= E Ed e^wr*-/>(4™^ 
7G^AGA 

for all M e r„ and Z G //„. 
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