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In a recent paper (see [2]), Orrin Frink introduced a method to provide
Hausdorff compactifications for Tychonoff or completely regular T, spaces
X. His method utilized the notion of a normal base. A normal base & for
the closed sets of a space X is a base which is a disjunctive ring of sets,
disjoint members of which may be separated by disjoint complements of
members of &.

Frink showed that if X has a normal base, then the Wallman space,
w(Z), consisting of the Z-ultrafilters is a Hausdorff compactification of X.
This also showed that X must be a Tychonoff space. In this note we use the
notion of & -ultrafilters in a countably productive normal base & to introduce
a new space n(Z’) consisting of all those Z-ultrafilters with the countable
intersection property.

Every normal base & of X corresponds to a normal base Z* in #(Z)
(and also in w(Z)). We show that every collection of & *-ultrafilters with
the countable intersection property is fixed, that is the intersection of all
the members of the collection is non empty. In light of this fact, we say that
(%) is Z*-real-compact. We also show that 7(Z) is contained in the
Q-closure of X in w(Z’). Finally if Z is the collection of all zero-sets then
7(Z) is precisely the Hewitt real compactification of X. We have attempted
to show that every realcompactification Y of a space X can be obtained as a
space 1(Z). This remains an open question.

Many examples exist of normal bases which are countably productive.
One of the most important is the collection of all zero-sets of a completely
regular T, space. Gillman and Jerison in [3] have shown that this family is
countably productive and also that it satisfies the requirements for a normal
base. Thus every Tychonoff space has a countably productive normal base.

DEFINITIONS. A base & for the closed sets of a T space X is said to be
disjunctive if given any closed set F and any point « not in F there is a
closed set A of £ that contains x and is disjoint from F. The base is said
to be normal if any two disjoint members A and B of & are subsets respec-
tively of disjoint complements C’ and D’ of members of Z.

A family & of subsets of a set X is a 7ing of sets if it is closed under
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finite unions and intersections. We say that & is countably productive if
it is closed under countable intersections. We say that 2 has the countable
intersection property if every countable collection of subsets of 2 has non
empty intersection.

A base & for the closed sets of a T, space X is a normal base if it is a
normal disjunctive ring of sets.

A proper subset of a normal base Z is called a Z-filter if it is closed
under finite intersections and contains every superset in % of each of its
members. We also assume that no Z-filter contains the empty set. A
& -ultrafilter is a maximal Z-filter.

If Z is a base for the closed sets in X we say that X is & -realcompact
if every Z-ultrafilter with the countable intersection property has a non
empty intersection.

If & is any distinguished family of subsets of a space X, we will re-
present the family of complements, X —Z, for Z in & by €Z. In particular,
if & is a normal base of closed sets in a Tychonoff space X then €2 is a
base for the open sets.

Before stating our main results we will give three lemmas that will be
needed. The proof of Lemma 1 can be found in [1].

LemMaA 1. If Z s a normal base for X and if F 1s a ZX-filter on X,
then F is a Z-ultrvafilter if and only if for each Z in & either Z is in F or
there is an A in F such that A is included in the complement of Z.

LEMMA 2. Let & be a countably productive base for the closed sets of X
and let F be a X -ultrafilter with the countable intersection property. If(A,)nen
1S a sequence of sets in F, then the intersection A of the sets A, is in F.

Proor. We first note that 4 is in & since £ is countably productive.
If Fisin & then F n A is non empty since & has the countable intersection
property. It follows that # U {4} generates a Z-filter # containing .
Consequently A is in & since & must equal #.

Lemma 1 characterizes & -ultrafilters in a manner which directly relates
the filter with the definition of the basic open sets in Frink’s compactifica-
tions (see[2]). To investigate Z-realcompact spaces we need a similar
result for the filters on the trace of a normal base with a subspace.

LEMMA 3. Let A be a subspace of a space X, let & (X) be a base for the
closed sets of X, let Z(A) be the trace on A of Z(X), and let clgx Z be in Z (X)
forall Z in Z(A).If F is a Z (X )-ultrafilter on X and if {F n A : F isin F}
s a base for a Z(A)-filter F(A), then F (A) is a & (A)-ultrafilter.

Proor. By hypothesis F(4) is a Z(4) filter so there is a Z(4)-
ultrafilter ¢ that contains & (4). Let S be the set of all B in 2 (X) such
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that B contains c/xG for some G in . It is easy to see that o is a Z(X)-
filter. Since F contains clx(F n A), if F is in & then F ~n A is in & (4)
and F is in 4. Thus the 2’(X)-ultrafilter & must be equivalent to .

If G is in the & (A4)-ultrafilter ¢ then G is in 2 (4) and clxG is in
Z(X). Thus clxgG is in # =% and G =clyG=clyGn A is in the
Z (A)-filter F (4). It follows that ¥ is equivalent to # (4) and that % (4)
is a & (A)-ultrafilter. This completes the proof of the lemma.

We now consider X to be always a Tychonoff space with a countably
productive normal base & for the closed subsets of X. For this base &,
the space #(Z) is obtained in the following manner. The points of 7(Z)
are the Z-ultrafilters of X with the countable intersection property. For
each Z in & we define the set Z* to be the family of all Z-ultrafilters
with the countable intersection property having Z as a member. The
collection Z* of sets Z* for Z in Z is taken as a base for the closed subsets
of n(Z). The space n(Z) is a Z*-realcompact Hausdorff space. In particular
if 2 is the collection of zero-sets of X then 5(Z) is the Hewitt realcom-
pactification »X (see Gillman and Jerison [3]).

There is a natural embedding ¢ of X into #(Z) where ¢(x) is the
Z-ultrafilter with the countable intersection property consisting of all
Z-sets that contain . The mapping ¢ is a homeomorphism of X onto the
dense subset ¢(X) of (Z).

In an equivalent manner, we could define a base for the open sets of
7(Z). Let U* be the collection of all Z-ultrafilters with the countable
intersection property that have some subset of U as a member, where
X—U is in &. This is just the dual of the definition of Z*, that is,
n(Z)—-U* = (X—U)* where X —U is in Z.

THEOREM 1. Let X be a Tychonoff space with a countably productive base
Z and let @ be the natural embedding of X into n(Z). If U, V, and (U,):,
are members of €F and Z, (Z,), are members of &, then the following
properties hold.

1. IfUCVthen U*CV*.

(UsL Ua)* e Un and (N2, UL)* = N2, US.

U* np(X) = <p(U) and Z* n ¢(X) = ¢(2).

ya9(Z) = Z*.

gy P(Mazr Z2) = Ny Sy ey 9(Z,) o7 equivalently

(ﬂ;o=1 Z,)* = el Z .

The map ¢ of X onto the subset ¢(X) of n(Z) is a homeomorphism.

Proor. If U, V are in €% and if U CV then A a subset of U implies
that 4 is a subset of V' and therefore U* C V*. If (U,)2, is any sequence
of members of €% then UL, U¥ C (UL, U,)* and (N2,U,)* C N, U

SR A

https://doi.org/10.1017/51446788700007448 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700007448

492 R. A. Alo and H. L. Shapiro [4]

To complete the proof of (2) we use the fact that for X—U in Z,
n(Z)—-U* = (X—-U)*. If «isin (U, U,)* then there is an 4 contained
in U, U, such that 4 is a member of a. If « is not in UL, U¥ then
X—U,is in « for each #. Then

AnX—UU)=4n (N (X=U,)) =0
n=1 n=1

for « is in (LU, U,)* which is a contradiction since « has the countable
intersection property. Thus

(Uuys= 0 ux

n=1 n=1

Using this, DeMorgan’s laws, and #(Z)—U* = (X—U)* for X—U in Z,

we have
(NU)*=N U
n=]1 n=1

and (2) is shown.

The map ¢ is a one-one map of X onto the subspace ¢(X) of (%)
since & is a disjunctive family and X is a T, space. To show that ¢ is a
homeomorphism it will be sufficient to show that (3) holds. In fact if «
is in @(X) n U* then « = @(z) for some z in X and there is a Z in ¢(z)
such that ZCU. Hence 2 is in ZCU and ¢(z) is in ¢(U). Thus
p(U) = U* n ¢(X). Since ¢ is one-one and onto ¢(X) this equation shows
that ¢ is both a continuous and open map; hence ¢ is a homeomorphism.
It follows then that Z* n ¢(X) = ¢(Z).

From (3) it follows that cl, , ¢(Z) is included in Z*. Conversely if «
is in Z* and U* is any basic open set containing « then there isan 4 CU
such that 4 n Z is in «. Since « is a filter there is a point p in 4 n Z and
@(p) is in U* n ¢(Z). Thus dl, 4, ¢(Z) = Z*.

Finally property (5) follows from DeMorgan’s laws and properties (2)
and (4). This completes the proof of our theorem.

We are now in a position to prove our main theorem.

THEOREM 2. If X is a Tychonoff space with a countably productive
normal base Z then X is homeomorphic to a dense subspace of the Z*-real-
compact Hausdorff space n(Z).

ProoOF. Let % * be a Z*-ultrafilter on #(Z’) that also has the countable
intersection property. By (5) of Theorem 1, the elements of #* are of the
form cl,,(m' Z for some Z in & where we have identified Z with ¢(Z). Thus
F* s a family cl, 4 Z,, for a in an indexing set I. Let & be the collection of
¢lygyZy 0 X for « €. This is precisely the collection of Z, for a e I. This
collection is a base for a Zfilter 5# on X. For if Z, and Z, are in ¢ then
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by property 5 of Theorem 1, ¢l Z, ncl Z, = cl(Z, n Z,) is in & and hence
Z,n Z,is non empty, so Z, n Z,isin %.

The filter o is precisely the Z-filter on X generated by the family of
F n X for Fin &. By Lemma 3, 2# is a Z-ultrafilter on X. If K is a count-
able subset of I then c/((N,cxZn) = nex¢! Z, is non empty since Z* has
the countable intersection property. Consequently [),.xZ, is non empty,
H is in (%), and 5 belongs to each member of #*. Thus (%) is Z&*-
realcompact.

Now let « and § be two distinct peints in 4#(Z°). By maximality of the
filters « and g there are disjoint &’-sets 4 and B such that 4 is in « but not
in § and B is in § but not in «. By the normality of & there are sets C and
D in & such that their complements are disjointand 4 CX—C, BC X—D.
Then « is in (X—C)* and g is in (X—D)* and 5(Z) is a Hausdorff space.

If U* is any basic non empty open set in n(Z’) then its correspondent
U is non empty. Since U* n ¢(X) = ¢(U) (see Theorem 1), it follows that
@(X) is dense in n(Z’) and the theorem has been proved.

COROLLARY, If & is the countably productive normal base of all zero-sets
of a Tychonoff space X, then n(Z) is precisely the Hewitt realcompactification
vX.

If the space X has a normal base & (Frink has shown that X must
be a Tychonoff space) and if X is & -realcompact then our construction
for (Z') gives precisely X.

THEOREM 3. If & is a normal base on a space X and if X is & -veal-
compact then X is precisely n(Z).

PrOOF. If « is in #(Z) then « is a Z-ultrafilter with the countable
intersection property. Since X is Z'-realcompact there is an x in X such that
z belongs to every member of «. But then the ultrafilter « is included in
the filter ¢(x) and thus « must be ¢(z). Hence ¢(X) = n(Z).

We have not yet determined whether or not 5(Z) is realcompact in
the usual sense. S. Mrowka has pointed out to the authors that #(Z) is
contained in the Q-closure of X in w(Z), the Hausdorff compactification
introduced by Frink in [2]. If X is a subspace of a space Y, then a point
p is in the Q-closure of X in Y if there does not exist a real-valued continuous
function that is zero at p and positive on S.

Frink’s compactification w (%) for a normal base & of a space X is
obtained by taking Z* to be the family of all % -ultrafilters that have Z
as a member. The collection of sets Z* are taken as a base for the closed
sets of w(Z). Then X is shown to be a dense subspace of the compact
Hausdorff space o(Z).

The following Lemma will be needed to give our result.
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LemMA 4. If & is a normal base on a space X, then Z* is a normal
base on w(Z).

Proor. That &* is a ring follows immediately (see Lemma 1 of [1]).
If Z* is any basic closed set of w(Z) and if & is any point not in Z* then
by Lemma 1 there is an 4 in % such that A is included in X—Z. Hence
F is in A* and A* n Z* is empty since A n Z is empty. Thus Z* is
disjunctive.

If Z¥ and Z7 are two disjoint Z* sets then Z, n Z, is empty. By the
normality of Z there are Z-sets F; and F, whose complements are disjoint
and such that Z; CX—F, and Z,C X—F,. It follows that Z} C X —F§
and ZFCX—-F}.

THEOREM 4. If & s a countably productive normal base on X then
n(Z) 1s a subset of the Q-closure of X in w(Z).

ProOF. Suppose that & is a point in w (%) that is not in the Q-closure
of X in w(Z). Then there is a real-valued continuous function f on w{Z)
that is zero at & and positive on X.

For each integer #, let F, be the set of ¥ in w(Z’) such that /(¥4) = 1/n.
The sets F, are closed in «(Z) and & is not in F, for any #. Since Z*
is a normal base on w(Z’), there is a Z, in & such that & is in Z} and
Z¥ n F,is empty. Then Z, is in & for each #» and Z,, is included in X - F .
But X is included in U;,’°=1 F, so the intersection of the sets Z, must be
empty. Hence & does not have the countable intersection property and
& is not in n(Z). This completes the proof.

The Q@-closure of a subspace of a space is always realcompact. It
remains an open question as to whether or not (%) is precisely the Q-
closure of X in w(%).

We can now give an example of a space X with different normal bases
%, and %, for which the & -realcompactifications are not equal ( = 1, 2).
In particular let X be an uncountable discrete space. Let %, be the collection
of all subsets 4 of X such that 4 or X—4 is at most countable and let Z,
be the collection of all subsets of X.

It is easy to verify that 2, and &, are countably productive normal
bases on X; moreover, that n(Z;) = »X = ¢(X) and that w(Z,) = X
where »X is the Hewitt realcompactification and gX is the Stone-Cech
compactification of X. Now #(Z,) is not equal to ¢ (X) for there is a member
F of n(Z,) that is not in ¢(X). In fact let & be the &, filter that is the
collection of all subsets of X whose complement is at most countable. It is
a Z,-ultrafilter since X —Z is in & for any member Z of a filter containing
& where Z is not in & (see Lemma 1). If (F,)2, is any sequence of sets
in &, then their common intersection F is non empty since the complement
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of F is countable and hence not equal to X. This shows that % has the
countable intersection property. Finally X —{z} is in & for each z in X
and the common intersection of these sets is empty. It follows that the
common intersection of the sets F in # must be empty. Thus & is not
in ¢(X). Hence in this case we have that 2, C 2, and n(Z,) is, homeo-
morphically, a proper subset of n(Z,).

In addition w(Z,) is not equal to 8X. For if it were, then 5(Z,) would
be included in the Q-closure of X in X which in turn is included in gX,
by Theorem 4. But the Q-closure of X in X is vX = X. Hence 4(Z,) is
included in »X = X and since #(Z,) contains X homeomorphically we
would have that X = 5(Z,), a contradiction.
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