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The magnetic presheath is a boundary layer occurring when magnetized plasma is in
contact with a wall and the angle α between the wall and the magnetic field B is
oblique. Here, we consider the fusion-relevant case of a shallow-angle, α�1, electron-
repelling sheath, with the electron density given by a Boltzmann distribution, valid for
α/
√
τ + 1�

√
me/mi, where me is the electron mass, mi is the ion mass, τ = Ti/ZTe,

Te is the electron temperature, Ti is the ion temperature and Z is the ionic charge
state. The thickness of the magnetic presheath is of the order of a few ion sound
Larmor radii ρs=

√
mi(ZTe + Ti)/ZeB, where e is the proton charge and B= |B| is the

magnitude of the magnetic field. We study the dependence on τ of the electrostatic
potential and ion distribution function in the magnetic presheath by using a set of
prescribed ion distribution functions at the magnetic presheath entrance, parameterized
by τ . The kinetic model is shown to be asymptotically equivalent to Chodura’s fluid
model at small ion temperature, τ � 1, for |lnα|> 3|ln τ | � 1. In this limit, despite
the fact that fluid equations give a reasonable approximation to the potential, ion gyro-
orbits acquire a spatial extent that occupies a large portion of the magnetic presheath.
At large ion temperature, τ � 1, relevant because Ti is measured to be a few times
larger than Te near divertor targets of fusion devices, ions reach the Debye sheath
entrance (and subsequently the wall) at a shallow angle whose size is given by

√
α

or 1/
√
τ , depending on which is largest.

Key words: fusion plasma, plasma sheaths

1. Introduction
Plasma–wall interaction is important in systems such as plasma discharges

(Lieberman & Lichtenberg 2005), fusion devices (Stangeby 2000), magnetic filters
(Anders, Anders & Brown 1995), plasma probes (Hutchinson 2002) and thrusters
(Martinez-Sanchez & Pollard 1998). In the context of nuclear fusion research, the
plasma–wall interaction at the divertor or limiter targets of fusion devices is directly
related to the boundary conditions to be imposed (Loizu et al. 2012) on models of
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plasma in the open-field line region (the scrape-off layer). The heat flux reaching
the wall of the device must be minimized and one way to do so is to make the
magnetic field lines reach the divertor or limiter target at a shallow angle α� 1 (α is
measured in radians unless otherwise indicated) (Loarte et al. 2007). In typical devices,
α∼0.05–0.2 radians(∼3–12◦), and in ITER it is expected that α∼0.04 radians∼2.5◦
(Pitts et al. 2009). Hence, it is crucial to understand plasma–wall interaction at such
small angles in order to address the problem of exhaust in fusion plasmas.

The magnetic presheath (Chodura 1982) is a boundary layer with a width of a few
ion sound Larmor radii, ρs =

√
mi(ZTe + Ti)/ZeB, next to the wall, where Ti and Te

are the ion and the electron temperatures respectively, mi is the ion mass, Z is the
ionic charge state, e is the proton charge and B is the magnetic field strength. This
region is characterized by a balance between electric and magnetic forces on the ions.
Closer to the wall, in steady state, there is a non-neutral layer called the Debye sheath
which typically repels electrons. The Debye sheath has a thickness of a few Debye
lengths, λD =

√
ε0Te/e2ne, where ne is the electron density and ε0 is the permittivity

of free space, and is characterized by the electric forces dominating the ion dynamics.
The Debye length is generally much smaller than the ion sound gyroradius, λD� ρs,
and therefore the magnetic presheath can be solved as a separate quasineutral system.
Moreover, we assume that ions collide for the last time when they are a distance
dcoll � ρs away from the wall, and therefore the magnetic presheath is collisionless.
The latter assumption is expected to hold in attached divertor regimes of operation,
whereas in detached divertors the temperature is so low that the collisional scale may
be small enough to make dcoll ∼ ρs (Tskhakaya 2017).

Due to their small mass relative to the ions, most electrons are usually repelled by
the sheath electric field, and we thus assume the electrons to be in thermal equilibrium.
This assumption becomes less valid when the angle between the magnetic field and
the wall is very small and when the ion temperature is sufficiently large compared
to the electron temperature (as we will see in § 2). For the ions, many magnetic
presheath models use fluid equations, which rely on Ti = 0 (Chodura 1982; Riemann
1994; Ahedo 1997; Ahedo & Carralero 2009). However, in the vicinity of the divertor
target of a typical tokamak plasma, the ion temperature is at least as large as the
electron temperature, Ti∼ Te (Mosetto et al. 2015), making a kinetic treatment of the
ions necessary (Siddiqui et al. 2016). In this paper, we study the dependence of the
magnetic presheath on the parameter

τ =
Ti

ZTe
, (1.1)

which is of fundamental importance in kinetic models of turbulence. For Z = 1, τ is
simply the ratio of ion to electron temperature. Early attempts to solve the magnetic
presheath by retaining the ion distribution function made use of analytical solutions of
the ion trajectories (Holland, Fried & Morales 1993; Parks & Lippmann 1994; Cohen
& Ryutov 1998; Daube & Riemann 1999) with a variety of assumptions, giving
valuable insight into the characteristics of the ion motion in the magnetic presheath.
Later, there were several particle-in-cell (PIC) studies of the Chodura and Debye
sheaths (Tskhakaya & Kuhn 2003, 2004; Khaziev & Curreli 2015), as well as some
kinetic simulations using a Eulerian–Vlasov approach (Coulette & Manfredi 2014,
2016). Here, we use analytical solutions of the ion trajectories in a magnetic field
whose angle with the wall is small (Holland et al. 1993; Cohen & Ryutov 1998). An
asymptotic theory of magnetic presheaths with α � 1, and an associated numerical
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Temperature dependence of shallow-angle magnetic presheaths 3

FIGURE 1. An ion gyro-orbit is shown schematically at a distance of approximately an
ion gyroradius ρi from the wall (grey horizontal surface). The magnetic field is constant
and the angle between the magnetic field and the wall is small, α� 1 (in radians). The
electric field is directed towards the wall and is a function of the coordinate x.

scheme to obtain self-consistent solutions of the electrostatic potential, was presented
in detail in Geraldini, Parra & Militello (2017, 2018). The method also determines
the ion distribution function at the Debye sheath entrance. Although only valid for
grazing angles, this method has yielded several analytical results, is valid within the
current paradigm of plasma exhaust in a fusion device and is computationally fast.

This paper is structured as follows. The orderings and geometry of the magnetic
presheath are discussed in § 2. We use the shallow-angle (α � 1) kinetic model
described in Geraldini et al. (2017, 2018) which we briefly review in § 3. In § 4
we discuss the two limits of small τ (τ � 1) and large τ (τ � 1/α) analytically
using our kinetic model. In particular, we show that our kinetic model is consistent
with: the fluid model of Chodura (1982) for τ � 1; a kinetic model that assumes
a half-Maxwellian ion distribution function, briefly discussed in § 3B of Cohen &
Ryutov (1998), for τ � 1/α. Using a set of boundary conditions that recovers those
used in the small and large temperature limits, numerical results of the shallow-angle
kinetic model are obtained for finite values of τ . The boundary conditions and
numerical results are presented in § 5. We conclude by summarizing and discussing
our results in § 6.

In order to help the reader keep track of the several symbols used in this paper
(many of which were introduced in references Geraldini et al. (2017, 2018)), we
include a glossary in appendix A. For each symbol, the glossary includes a brief
verbal definition (or an equation) and a reference to the equation where it first
appears in the main text.

2. Orderings

Consider a magnetized plasma in steady state, in the region x > 0, in contact with
a wall, defined as the plane x= 0. We use a set of orthogonal axes, depicted in the
top-right corner of figure 1, with the x-axis aligned normal to the wall, and the y- and
z-axes aligned in the two directions parallel to the wall. The magnetic field is uniform
and given by

B= B cos αẑ− B sin αx̂. (2.1)

In (2.1), x̂ and ẑ denote unit vectors parallel to the x and z-axes and α�1 is the small
angle between the magnetic field and the wall. The components of the ion velocity in
the three directions are vx, vy and vz. The system is uniform in the plane parallel to
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the wall, and thus every quantity is independent of the value of y and z. The ion
motion can therefore be described using four coordinates: x, vx, vy, and vz.

We consider a plasma with a single ion species and an electron species. An electric
field normal to the wall is present to repel the most mobile of the plasma species –
the electrons – away from the wall,

E=−φ′(x)x̂, (2.2)

where φ is the electrostatic potential and a prime denotes differentiation with respect
to x. The electrostatic potential is assumed to monotonically converge to some value
at x → ∞, and this value is set to be φ = 0. Moreover, it has been shown that
φ(x) − φ(0) ∝

√
x at x → 0 (see (141) and (142) in Geraldini et al. (2018)), so

that the magnetic presheath electric field diverges at the Debye sheath entrance.1 The
coordinate system and the geometry are depicted in figure 1.

Since the electric field is present to repel electrons from the wall, the characteristic
size of the electrostatic potential φ is given by

eφ ∼ Te. (2.3)

Ions gain energies of the order of Zeφ ∼ ZTe; at such energies, they have a velocity
of the order of the Bohm speed,

vB =

√
ZTe

mi
. (2.4)

If the energy gained by the ions during this acceleration is smaller than their thermal
energy, ZTe . Ti, the typical ion velocity is the ion thermal speed,

vt,i =

√
2Ti

mi
. (2.5)

From (2.4) and (2.5) it follows that, in general, the ion’s speed has a characteristic
size equal to the ion sound speed2 cs,

|v| ∼ cs =

√
v2

B +
1
2
v2

t,i =

√
ZTe + Ti

mi
. (2.6)

Note that cs = vB when τ = 0 and cs =
√

Ti/mi = vt,i/
√

2 when τ =∞.
We proceed to argue that the typical size of the magnetic presheath, denoted dmps,

is the ion sound gyroradius (Chodura 1982),

ρs =
cs

Ω
, (2.7)

where Ω =ZeB/mi is the typical ion gyrofrequency. We consider the two limits τ� 1
and τ � 1 separately. When the ion temperature is much smaller than the electron

1This is not a real divergence of the electric field, but is rather a large electric field satisfying Te/eρs�
φ′(0)� Te/eλD. See, for example, Riemann (1991) for detailed explanations on the use of asymptotic methods
for Debye sheaths and for certain types of presheath.

2Our definition of the ion sound speed is not the most general one, as in fluid treatments this quantity
is often defined with an adiabatic constant multiplying the ion temperature. Since the adiabatic constant is
normally of order unity in size, the discrepancy in these definitions does not matter.
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temperature, τ � 1, the only way by which ions can acquire the Bohm velocity vB
in the direction normal to the wall – necessary to satisfy the Bohm condition at the
Debye sheath entrance (Riemann 1991) – is if the electric field becomes large enough
that it demagnetizes the ion orbits. From the ordering |v| ∼ vB for the ion speed and
by balancing the magnetic and electric forces, we obtain φ′(x)∼Te/edmps∼vBB; hence,
dmps ∼ ρB, where

ρB =
vB

Ω
. (2.8)

Since ρB'ρs for τ� 1, this is consistent with dmps∼ρs. When the ion temperature is
large, τ � 1, the radius of gyration of the ions is larger than ρB. The length scale of
the magnetic presheath is set by the ion density variation, and therefore must satisfy
dmps ∼ ρi = vt,i/Ω , where ρi is the ion gyroradius. Since ρi '

√
2ρs for τ � 1, this is

consistent with dmps ∼ ρs. When τ ∼ 1, both arguments are valid, since ρi ∼ ρB ∼ ρs.
The assumption of an electron-repelling wall is not valid for any value of α and τ .

We proceed to obtain the condition on α and τ for this assumption to be valid. We
expect electrons to travel at characteristic velocities equal to their thermal speed,

vt,e =

√
2Te

me
, (2.9)

where me is the electron mass. The typical electron velocity is so large, vt,e � vB,
that electrons are virtually unaffected by the electric field, since they are subject to
magnetic forces, evyB∼ evt,eB, much larger than electric forces, eφ′. evBB. Moreover,
electron gyro-orbits are small, ρe � ρs. Hence, averaging over the small-scale gyro-
motion, the electrons in the magnetic presheath stream parallel to the magnetic field
at a velocity of the order of vt,e. Conversely, the ion motion close to the wall in the
magnetic presheath consists of gyro-orbits distorted by the electric field, and so the
ions reach the wall travelling at a velocity of the order of cs. Considering an ion
and an electron initially at a distance ∼ρs from the wall, and remembering that the
electron motion is constrained to be parallel to the magnetic field, the electron has to
travel a longer distance than the ion by a factor of 1/α. However, the electron travels
this distance at a speed larger than the ion’s by a factor vt,e/cs =

√
mi/(me(1+ τ)).

Hence, the electron reaches the wall in a shorter time than the ion if√
me

mi

√
τ + 1� α. (2.10)

If condition (2.10) is satisfied, the wall repels most of the electrons back into the
plasma, and the ordering for the magnitude of the ion velocity, equation (2.6), is self-
consistent.

For an electron-repelling wall, the electron distribution function is typically
considered to be well approximated by a Maxwellian. The reason for this is that
the collisional processes outside of the collisionless sheath and presheath drive it to a
Maxwellian, and the sheath repels most of the electrons back into the plasma. Hence,
the electron density is assumed to be given by a Boltzmann distribution.

3. Kinetic ion model
In this section we briefly review the shallow-angle kinetic model presented in detail

in Geraldini et al. (2017, 2018). In § 3.1 we use the asymptotic expansion in α� 1 to
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write the ion velocity in terms of slowly varying orbit parameters, finding that there
are approximately periodic solutions to the ion motion. In moving across the magnetic
presheath, ions conserve two quantities to lowest order in α: the total energy U and
an adiabatic invariant µ (Cohen & Ryutov 1998). The adiabatic invariant is directly
related to the approximately periodic nature of the ion motion, and coincides with the
usual magnetic moment only when the electric field variation over the ion gyroradius
scale is small.

When written as a function of µ and U, the distribution function is constant across
the magnetic presheath, to lowest order in α. This is used, in § 3.2, to write an
expression for the ion density. In § 3.3, we write the quasineutrality equation and
summarize the main equations of the shallow-angle kinetic model.

3.1. Ion trajectories in terms of slowly changing orbit parameters
The equations of motion of an ion in the magnetic presheath are

v̇x =−
Ωφ′

B
+Ωvy cos α, (3.1)

v̇y =−Ωvx cos α −Ωvz sin α, (3.2)
v̇z =Ωvy sin α. (3.3)

Expanding (3.1)–(3.3) in α� 1 and neglecting second-order terms, we obtain

v̇x '−
Ωφ′

B
+Ωvy, (3.4)

v̇y '−Ωvx −Ωvzα, (3.5)
v̇z 'Ωvyα. (3.6)

We introduce three orbit parameters: the orbit position

x̄= x+
1
Ω
vy, (3.7)

the perpendicular energy

U⊥ =
1
2
v2

x +
1
2
v2

y +
Ωφ(x)

B
, (3.8)

and the total energy

U =
1
2
v2

x +
1
2
v2

y +
1
2
v2

z +
Ωφ(x)

B
. (3.9)

The orbit parameters vary over a time scale which is longer by a factor of 1/α
than the time scale 1/Ω over which x, vx and vy vary, x̄/ ˙̄x ∼ U⊥/U̇⊥ ∼ 1/αΩ �
|v|/|v̇| ∼ 1/Ω . The total energy U is exactly constant, U̇ = 0. The instantaneous
particle velocities can be expressed in terms of the instantaneous position x and the
orbit parameters,

vx =±Vx(x, x̄,U⊥)=±
√

2(U⊥ − χ(x, x̄)), (3.10)
vy =Ω(x̄− x), (3.11)

vz = V‖(U⊥,U)=
√

2(U −U⊥), (3.12)
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where
χ(x, x̄)=

1
2
Ω2(x− x̄)2 +

Ωφ(x)
B

(3.13)

is an effective potential function. In (3.12) we assumed vz > 0 because all ions enter
the magnetic presheath with vz > 0, are accelerated to larger values of vz, reach
the Debye sheath and are then absorbed by the wall (Geraldini et al. 2018). For
convenience, in (3.10) we introduced the symbol Vx to denote the absolute value of
vx as a function of x, x̄ and U⊥, and in (3.12) we introduced the symbol V‖ to denote
vz as a function of U⊥ and U.

For times comparable to the typical ion gyroperiod, 2π/Ω , the orbit parameters are
constant to lowest order in α and (3.10)–(3.13) can be used to infer the approximate
particle trajectory. From (3.10), the ion motion is periodic to lowest order in α
if, for some x̄ and U⊥, turning points xb (bottom) and xt (top) exist such that:
(i) Vx(xb, x̄, U⊥) = Vx(xt, x̄, U⊥) = 0 and (ii) χ(x, x̄) 6 U⊥ in the interval xb 6 x 6 xt.
Then, the ion will move back and forth between xb and xt with period ∼2π/Ω . In
order to satisfy (ii), the turning points must lie on either side of an effective potential
minimum xm which, by definition, satisfies

χ ′(xm, x̄)=Ω2(xm − x̄)+
Ωφ′(xm)

B
= 0 (3.14)

and

χ ′′(xm)=Ω
2
+
Ωφ′′(xm)

B
> 0. (3.15)

The value of χ evaluated at the effective potential minimum is, using (3.13) and
(3.14),

χm(x̄)= χ(xm, x̄)=
1
2

(
φ′(xm)

B

)2

+
Ωφ(xm)

B
. (3.16)

The ion motion in the x direction (normal to the wall) is exactly periodic for
α = 0, with constant orbit parameters (in the y direction, the motion is a sum of an
exactly periodic motion and a constant E × B drift, as explained in Geraldini et al.
(2017)). The small angle α perturbs the periodic motion by a small amount, since
the orbit parameters become slowly changing in time. Thus, the ion velocity can be
approximately decomposed into a periodic piece, with period ∼2π/Ω , and a piece
that is approximately constant over the time scale of the periodic motion. Under such
circumstances, there is a quantity related to the underlying periodic motion, called
an adiabatic invariant, which is a constant of the overall quasi-periodic motion to
lowest order in the perturbation parameter.3 The adiabatic invariant in this system is
given by

µ=µgk(x̄,U⊥)=
1
π

∫ xt

xb

Vx(x, x̄,U⊥) dx∼
v2

t,i

Ω
, (3.17)

and is constant to lowest order in α. The ordering µ ∼ v2
t,i/Ω on the far right is

obtained in the following way. We define the quantities

ρx = x− xm ∼ xt − xb, (3.18)

and
wx = ρ̇x ∼

√
2(U⊥ − χm). (3.19)

3In fact, adiabatic invariants can usually be corrected at every order in such a way that they are conserved
to all orders in the perturbation parameter.
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Note that the size of wx is the characteristic orbital velocity, and the size of ρx is the
characteristic spatial extent of the orbit in the x direction (normal to the wall). From
(3.17) we estimate µ∼ wxρx. At the magnetic presheath entrance, where the electric
field is very small, the ion gyro-orbit is circular to a good approximation. Hence, the
orbital velocity is of the order of the ion thermal velocity, wx∼ vt,i, and the ion orbit
size is of the order of the ion thermal gyroradius, ρx ∼ ρi = vt,i/Ω . The ordering in
(3.17) follows because µ is an adiabatic invariant, and so µ is conserved to lowest
order in α as the ion moves across the magnetic presheath. Recall that the ion motion
must retain an approximate periodicity for µ to be an adiabatic invariant.

3.2. Ion density
Treating the ion motion as periodic to lowest order in some expansion parameter
is akin to conventional gyrokinetics (Rutherford & Frieman 1968; Taylor & Hastie
1968; Catto 1978; Antonsen & Lane 1980; Frieman & Chen 1982). At every point,
the ion’s trajectory can be approximated to lowest order by a periodic orbit whose
period is faster than any other time scale of interest. As in gyrokinetic theory, the ion
distribution function can be shown to be independent of the fast time scale to lowest
order in α. Moreover, since µ and U are both constants of the perturbed motion (at
least to lowest order in α), the distribution function written in terms of the variables
µ and U, F(µ,U), can be shown to be constant across the magnetic presheath (Cohen
& Ryutov 1998; Geraldini et al. 2017). Therefore, the function F(µ,U) is completely
determined by ions entering the magnetic presheath at x → ∞. In order to write
F(µ, U) from the distribution function at x→∞ expressed in terms of v, denoted
f∞(v), we use the equations

µ=
v2

x + v
2
y

2Ω
(3.20)

and
U =Ωµ+ 1

2v
2
z . (3.21)

These equations are obtained by setting φ = 0 in (3.9) and (3.17), and are thus valid
at x→∞. Note that the self-consistent form of f∞(v) should be independent of the
gyrophase angle, which at x→∞ is tan−1(vx/vy).

The ion density, ni, can be obtained by taking an integral in the velocity space
variables x̄, U⊥ and U, as explained in Geraldini et al. (2017, 2018). There are two
distinct contributions to the ion density: one due to ions in quasiperiodic orbits

ni,cl[φ](x)=
∫
∞

x̄m(x)
Ω dx̄

∫ χM(x̄)

χ(x,x̄)

2 dU⊥
Vx(x, x̄,U⊥)

∫
∞

U⊥

F(µgk(x̄,U⊥),U) dU
V‖(U⊥,U)

, (3.22)

and another due ions that are about to intersect the wall,

ni,op[φ](x) =
∫
∞

x̄m,o(x)
Ω dx̄

∫
∞

χM(x̄)

F(µgk(x̄, χM(x̄)),U) dU
V‖(χM(x̄),U)

×[Vx(x, x̄, χM(x̄)+∆M(x̄,U))− Vx(x, x̄, χM(x̄))]. (3.23)

The notation f [φ](x) represents a functional f that depends on the whole function φ,
and not just on its value at a particular position x. In (3.22), the subscript ‘cl’ stands
for ‘closed’ and in (3.23) the subscript ‘op’ stands for ‘open’, corresponding to ions
whose trajectory can be approximated by a closed orbit (i.e. periodic) and an open
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orbit (i.e. terminating at the wall). The total ion density is the sum of the closed and
open orbit densities of equations (3.22) and (3.23), respectively,

ni(x)= ni,cl[φ](x)+ ni,op[φ](x). (3.24)

In (3.22) and (3.23), we have introduced several quantities which are derived and
explained in detail in Geraldini et al. (2017, 2018), and we have assumed that φ(x),
φ′(x) and φ′′(x) are all monotonic functions of x. The minimum allowed orbit position
x̄m for an ion at position x to be in an orbit that is periodic to lowest order in α is

x̄m(x)= min
s∈[0,x)

1
2
(x+ s)+

φ(x)− φ(s)
ΩB(x− s)

. (3.25)

The minimum allowed orbit position x̄m,o for an ion at position x to be in an orbit
that is not periodic to lowest order in α is

x̄m,o(x)=

{
x̄c for x< xc,

x̄m(x) for x > xc.
(3.26)

In (3.26) we have introduced the two quantities x̄c and xc, defined via

x̄c = min
x∈[0,∞]

(
x+

φ′(x)
ΩB

)
= xc +

φ′(xc)

ΩB
. (3.27)

The effective potential maximum χM(x̄) is the largest value of χ(s, x̄) for a given value
of x̄ and for values of s smaller than the position of the effective potential minimum
xm,

χM(x̄)= χ(xM, x̄)= max
s∈[0,xm]

χ(s, x̄). (3.28)

The quantity xM is the position of the effective potential maximum at a given value
of x̄. For x̄= x̄c, the values of χM and χm coincide with

χc ≡ χ(xc, x̄c). (3.29)

For x̄ > x̄m(x), we are guaranteed to find χM(x̄) > χ(x, x̄) and x > xM, so that there
are closed orbit solutions (to lowest order in α) passing through x. For x̄ > x̄m,o(x),
we are guaranteed to find χM(x̄)> χ(x, x̄), so that there are open orbit solutions with
U⊥'χM(x̄) passing through x. Finally, the quantity ∆M is the range of possible values
of v2

x/2 that an ion in an open orbit can have at a given value of x̄ and U, and is
given by

∆M(x̄,U)= 2παV‖(χM(x̄),U)
dµ
dx̄

∣∣∣∣
open

, (3.30)

where
dµ
dx̄

∣∣∣∣
open

=
d

dx̄
[µgk(x̄, χM(x̄))]. (3.31)

Equation (3.30) is derived in appendix B from the expression for ∆M given in
Geraldini et al. (2018).
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3.3. Quasineutrality and summary of equations
The magnetic presheath is quasineutral: the ion charge density is equal and opposite
to the electron charge density, and so

Zni(x)= ne(x). (3.32)

Since the electrons are assumed to be in thermal equilibrium, the electron number
density is

ne(x)= Zn∞ exp
(

eφ(x)
Te

)
, (3.33)

where n∞ is the ion density for x→∞. Using (3.24) and (3.33), the quasineutrality
equation of our kinetic model can be written as

ni,cl[φ](x)+ ni,op[φ](x)= n∞ exp
(

eφ(x)
Te

)
. (3.34)

Equation (3.34) is used to determine the self-consistent electrostatic potential φ(x)
across the magnetic presheath. A condition that must be satisfied in order for (3.34)
to have a solution is (Geraldini et al. 2018)∫

f∞(v)
v2

z

d3v 6
n∞
v2

B
, (3.35)

which we refer to as the kinetic Chodura condition.
Once φ(x) is calculated, we can obtain several interesting quantities. The component

ux of the ion fluid velocity in the direction normal to the wall is obtained by use of
the steady-state ion continuity equation d/dx(niux) = 0. The quasineutrality equation
(3.32) and the expression for the electron density (3.33) lead to ni = n∞ exp(eφ/Te).
Hence, using the boundary conditions ni(∞)= n∞ and ux(∞)= ux∞, we obtain

ux(x)= ux∞ exp
(
−

eφ(x)
Te

)
. (3.36)

The value of ux∞ is obtained from the flow velocity in the direction parallel to the
magnetic field at x→∞, projected in the direction normal to the wall. Since to lowest
order in α the velocity component uz∞ is equal to the component of the velocity
parallel to the wall, we have

ux∞ =−αuz∞ =−
α

n∞

∫
vzf∞(v) d3v. (3.37)

The ion distribution function at the Debye sheath entrance, x= 0, is given by

f0(v)= F(µ,U)Π̂(vx,−Vx(0, x̄, χM(x̄)+∆M(x̄,U)),−Vx(0, x̄, χM(x̄))), (3.38)

where x̄= vy/Ω at x= 0, and Π̂ is the top-hat function defined by

Π̂ (y, h1, h2)=

{
1 if h1 < y 6 h2,

0 else.
(3.39)
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In order to study the three-dimensional distribution function at the Debye sheath
entrance of (3.38), we define the distribution of the velocity component normal to
the wall,

f0x(vx) =

∫
∞

0
dvy

∫
∞

0
f0(v) dvz =

∫
∞

x̄c

Ω dx̄
∫
∞

χM(x̄)

F(µ(x̄, χM(x̄)),U) dU
V‖(χM(x̄),U)

× Π̂ [vx,−Vx(0, x̄, χM(x̄)+∆M(x̄,U)),−Vx(0, x̄, χM(x̄))] dU, (3.40)

and the two-dimensional distribution of the velocity components tangential to the
wall,

f0yz(vy, vz) =

∫ 0

−∞

f0(v) dvx

= F(µ(x̄, χM(x̄)),U)[Vx(x, x̄, χM(x̄)+∆M(x̄,U))− Vx(x, x̄, χM)]. (3.41)

Equation (3.40) is obtained by integrating (3.38) over x̄ and U, without integrating
over vx. Equation (3.41) is obtained by integrating (3.38) over vx and re-expressing
the distribution as a function of vy and vz, using vy =Ω x̄ (valid at x = 0) and vz =√

2(U − χM(x̄)). In Geraldini et al. (2018) it was shown that the equation∫
f0(v)

v2
x

d3v ≡

∫ 0

−∞

f0x(vx)

v2
x

dvx =
ni(0)
v2

B
, (3.42)

which corresponds to the equality form of the well-known kinetic Bohm condition,
is satisfied self-consistently by the magnetic presheath solution. In the review paper
Riemann (1991), it is shown that in most presheath models the Bohm condition is
self-consistently satisfied in the equality form, as in (3.42).

4. The limits of small and large ion temperature

In order to study the effect of ion temperature in a kinetic model of the magnetic
presheath, it is essential to check that the model is consistent with expected results
in appropriate limits of τ . Here, we study the limits α1/3

� τ � 1 (cold ions) and
τ � 1/α� 1 (hot ions) of the kinetic model introduced in § 3. For cold ions, τ � 1
and so the ion distribution function is narrow when compared to the Bohm velocity,
as vt,i =

√
2τvB� vB. Since we have argued in § 2 that the typical ion speed in the

magnetic presheath is, for τ � 1, the Bohm velocity, the ion distribution function can
be taken to be a delta function to lowest order in τ . The result of this approximation
is the fluid theory first presented in Chodura (1982). Conversely, for hot ions, τ �
1 and the size of the Bohm velocity is negligible compared to the thermal velocity,
vB = vt,i/

√
2τ � vt,i. This means that an accurate knowledge of the whole of the ion

distribution function is important when studying the limit τ � 1. For the purpose of
this paper, we assume that the ion distribution function is a half-Maxwellian when
entering the collisionless magnetic presheath, as was done in Cohen & Ryutov (1998).

4.1. Cold ions (τ � 1)
In this subsection, we argue that our kinetic model is equivalent to Chodura’s fluid
model, which is valid for τ = 0, in an appropriate limit for τ � 1.
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In order to compare the fluid and kinetic models with each other, we first briefly
recap the fluid analysis. We start by generalizing to arbitrary values of α. All ions are
assumed to have the same velocity at a given position x, such that v= u(x), where u
is the fluid velocity vector (a function of position only). The fluid velocity at x→∞
is chosen to be

ux∞ =−vB sin α, uy∞ = 0, and uz∞ = vB cos α. (4.1a−c)

The choice (4.1) corresponds to flow parallel to the magnetic field satisfying the
Chodura (or Bohm–Chodura) condition (Chodura 1982) with the equality sign. Using
(3.36) and (4.1a), the ion fluid velocity at every position can be written in terms of
the electrostatic potential at that position,

ux =−vB exp
(
−

eφ
Te

)
sin α. (4.2)

As shown in § C.1, from the momentum equations and equation (4.2), one obtains a
first-order differential equation for the electrostatic potential,(

sin2 α exp
(
−

2eφ
Te

)
− 1
)2

v2
B

Ω2 cos2 α

(
eφ′

Te

)2

= 1− sin2 α exp
(
−

2eφ
Te

)
−

2eφ
Te

−
1

cos2 α

[
2− exp

(
eφ
Te

)
− exp

(
−

eφ
Te

)
sin2 α

]2

. (4.3)

Equation (4.3) was originally derived in Chodura (1982) (and later in Riemann
(1994)), in terms of ux instead of φ, and is valid for all values of α (provided that
α�
√

me/mi as discussed in § 2).
For α � 1, the relationship between electrostatic potential and fluid velocity,

equation (4.2), simplifies to

ux '−αvB exp
(
−

eφ
Te

)
. (4.4)

In the fluid model, the equality form of the Bohm condition is ux(0) = −vB, which,
from (4.4), leads to equation

eφ(0)
Te
' ln α. (4.5)

In § C.2, we expand (4.3) for α� 1, thus obtaining an equation for the electrostatic
potential for τ = 0 and α� 1,

x' ρB

∫ eφ/Te+(1/2)α2
[exp(−2eφ/Te)−1]

ln α+1/2−(1/2)α2

dp√
−3− 2p+ 4ep − e2p

. (4.6)

In order to obtain a correspondence between our kinetic model and Chodura’s fluid
model, we define a new expansion parameter, ε ≡ 1/|lnα|, and take the ordering

1
ε
≡ |lnα| ∼ |ln τ | ∼ |lnα| − 3|ln τ | � | ln ε| ∼ 1. (4.7)

The ordering (4.7) restricts α (and τ ) to be exponentially small, α = exp(−1/ε).
However, with the ordering (4.7), the kinetic model is asymptotically equivalent to
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the fluid model with an exponentially small error in ε (or, equivalently, a small error
in α and τ ). Hence, since the error is so small, in practice α need not be excessively
small (we require α < 0.1).

Before analysing the kinetic model for τ � 1 using the ordering (4.7), it is
instructive to solve (4.6) explicitly for ε � 1. Using the boundary condition (4.5),
we order eφ/Te ∼ 1/ε in the magnetic presheath. Then, we expand (4.6) in ε� 1 to
obtain

x' ρB

∫ eφ/Te

ln α

dp
√
−2p

. (4.8)

Carrying out the integral in (4.8), the electrostatic potential in the magnetic presheath
is

eφ(x)
Te
'

{
−

1
2(x/ρB −

√
2/ε)2 for x/ρB <

√
2/ε,

0 for x/ρB >
√

2/ε.
(4.9)

From (4.9), the length scale of the magnetic presheath is ∼ρB/
√
ε.

We will find that, in the ordering (4.7), the magnetic presheath can be divided into
three regions where different types of ion trajectories are dominant:

(i) a region far from the wall,

x
ρB
>

√
2
ε
−
√

4|ln τ |, (4.10)

where all ions are in small approximately periodic orbits (closed orbits);
(ii) a region close to the wall,

x
ρB
<

√
2
ε
−

√
2
ε
− 2|ln τ |, (4.11)

where all ions are in open orbits;
(iii) an intermediate region,

√
ε�

x
ρB
<

√
2
ε
, (4.12)

where ions moving towards the wall transition from small closed orbits to larger,
distorted closed orbits, and finally to open orbits.

In §§ 4.1.1–4.1.3, we study the three regions in the order listed above. Instead of
taking the limit τ� 1 of (3.22) and (3.23) directly, which we leave to appendix E, in
§§ 4.1.1 and 4.1.2 we derive the flow velocity of ions in closed and open orbits. For
ions in closed orbits, the flow velocity is much smaller than the particle velocity, as
most of the particle velocity is periodic in time and gives no contribution to the flow
(because the periodic motion is averaged over); hence, the flow velocity is equal to the
drift velocity of the ion gyro-orbits. However, for ions in open orbits sufficiently close
to the wall the motion has no periodic piece, and so the flow velocity is equal to the
individual particle velocity. From the flow velocity ux and (4.4), we derive equations
for the electrostatic potential φ in the regions (4.10) and (4.11). To lowest order in
α and τ , the solution for the electrostatic potential in the part of these two regions
that overlaps with the intermediate region (4.12) is a parabola. Therefore, we assume
that the lowest-order solution for φ(x) in the whole intermediate region (4.12) is a
parabola, and use this to write an approximate kinetic quasineutrality equation for the
region (4.12). Finally, in § 4.1.4 we write an approximate differential equation for the
electrostatic potential, whose solution is (4.6), and show that it is equivalent to the
equations describing the electrostatic potential in the three regions.
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FIGURE 2. Effective potential curves χ(x, x̄) (solid lines), corresponding to the
electrostatic potential profile φ(x) (dashed line) given by the approximation (4.6) (valid
for τ = 0) with α = 0.05, shown for five different values of x̄. From the equation
χ(x̄, x̄)=φ(x̄), the values of x̄ are where the dashed line intersects the solid lines. For the
different values of x̄, the values of U⊥ (horizontal dotted lines) of an ion with µ� v2

B/Ω
are U⊥ ' χm(x̄). When the difference between χm(x̄) (local minimum) and χM(x̄) (local
maximum) becomes so small that U⊥ ' χM(x̄) (shaded region around the solid vertical
line, x= xc), the ion gyro-orbit is distorted and enlarged.

4.1.1. Far from the wall
From (4.9), the characteristic size of the magnetic presheath is ρB/

√
ε. Hence,

sufficiently far away from the wall, all ions are in closed orbits with a radius of
gyration, ρi, that is small compared with the size of the magnetic presheath, ρB/

√
ε.

The motion of the ions is thus drift kinetic. As shown in figure 2, for χ ′′(x) 6= 0 the
effective potential χ looks like a parabola locally near the minimum,

χ(x, x̄)− χm(x̄)=
1
2
χ ′′(xm)(x− xm)

2
(

1+O
(ρx

l

))
, (4.13)

where, in the error term, we have introduced the characteristic length scale over which
the second derivative of the effective potential, χ ′′, changes,

l=
∣∣∣∣ χ ′′(x)χ ′′′(x)

∣∣∣∣ . (4.14)

Consider an ion moving in an effective potential given by (4.13). The turning points
xb and xt are solutions of the equation U⊥ = χ(x, x̄), and so

U⊥ − χm(x̄)=
1
8
χ ′′(xm)(xt − xb)

2
(

1+O
(ρx

l

))
. (4.15)

Recalling the definitions and orderings in (3.18)–(3.19), equation (4.15) corresponds
to w2

x ∼ χ
′′(x)ρ2

x . Thus, we obtain the ordering ρx ∼ wx/
√
χ ′′(x) relating the typical

spatial extent in the x direction (normal to the wall) of the ion orbit, ρx, to the typical
orbital velocity component in the same direction, wx. Note that wx/ρx ∼

√
χ ′′(xm) is
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(a) (b)

FIGURE 3. An example of an ion orbit shown at two different positions: far from the wall
(green), and in the intermediate region (blue). (a) The approximate trajectory is shown in
the coordinates (ỹ, x), where ỹ is a y-coordinate in a frame of reference that is moving
with the average vy of the ion. (b) The trajectory is shown in phase space coordinates
(vx, x). The invariance of µ ensures that the area of the closed orbits in (b) is constant.

the characteristic gyrofrequency of the approximately periodic motion of the ion. This
is consistent with the elliptical gyro-orbits studied in the Appendix of Geraldini et al.
(2017). Moreover, from (3.17) we have the relationship µ∼ wxρx ∼ v

2
t,i/Ω ∼ τv

2
B/Ω ,

from which we obtain the estimates

wx ∼

(
χ ′′(xm)

Ω2

)1/4
√
τvB (4.16)

and

ρx ∼

(
χ ′′(xm)

Ω2

)−1/4
√
τρB. (4.17)

The electrostatic potential φ given in (4.9) has a discontinuous second derivative:
for x/ρB >

√
2/ε, we have φ′′(x) ' 0 and χ ′′(x) ' Ω2, while for x/ρB <

√
2/ε we

have φ′′(x)'−Ω2 and χ ′′(x)' 0. Hence, to lowest order in ε, the second derivative
of the electrostatic potential is not determined (note that (4.3) does not specify φ′′(x)).
However, the abrupt jump in the value of φ′′(x) and χ ′′(x) occurring at x/ρB=

√
2/ε

is a reflection of a decrease of φ′′(x) and χ ′′(x) in going from x→∞ to x/ρB<
√

2/ε.
From (4.17), the size of ion orbits is ρx ∼

√
τρB∼ ρi when χ ′′(xm)'Ω

2. Conversely,
when χ ′′(xm)�Ω

2, the spatial extent of the ion orbits is larger, ρx�ρi. The growth of
the ion orbit as it approaches the wall in the magnetic presheath is shown in figure 3.
Note that as ρx becomes larger, the typical orbital velocity wx ' vx becomes smaller
(see (4.16)). When ρx grows so large that ρx ∼ l, equations (4.13) and (4.15)–(4.17)
cease to be valid as the effective potential can no longer be Taylor expanded near its
minimum. This happens when the ion reaches the shaded region in figure 2.

We proceed to solve for the ion motion by assuming that ρx is small,

x= xm + ρx ' xm. (4.18)

From (3.14) and (4.18), we obtain the value of vy =Ω(x̄− x),

vy =
φ′(xm)

B
−Ωρx '

φ′(xm)

B
. (4.19)

Indeed, since the orbital velocity is small, by (4.16), and the angle between the
magnetic field and the wall is shallow, the motion of the ion is approximately parallel
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to the wall. Thus, the magnetic force away from the wall, ZeBvy, is approximately
equal to the electric force towards the wall, Zeφ′(x) ' Zeφ′(xm). Using (3.8) and
(4.19), the perpendicular energy of an ion at a position x' xm is given by

U⊥ =
1
2

(
φ′(xm)

B

)2

+
Ωφ(xm)

B
+O(χ ′′(xm)ρ

2
x ,w2

x). (4.20)

The first error in (4.20) is a combination of the orbital component of (1/2)v2
y , Ω2ρ2

x /2,
and the quadratic term, Ωφ′′(xm)ρ

2
x /2B, of the Taylor expansion of Ωφ(x)/B near x=

xm. Note that the term O(φ′(xm)Ωρx/B) arising from taking the square of (4.19) has
cancelled with the linear term of the Taylor expansion of Ωφ(x)/B. The second error
in (4.20) comes from neglecting (1/2)v2

x . From (4.16) and (4.17), the two errors have
the same size. From (4.1), the total energy of an ion at x→∞ is given by U= v2

B/2.
Hence, the z-component of the ion velocity is, using (3.12) and (4.20) with U= v2

B/2,

vz =

√
v2

B −

(
φ′(xm)

B

)2

−
2Ωφ(xm)

B
+O

(
w2

x

vB

)
. (4.21)

In order to obtain the ion fluid velocity ux, we do not require the exact velocity of
an ion, vx ' wx, as most of this velocity gives a quasi-periodic motion at the small
length scale ρx� ρB. Instead, we require a drift velocity, denoted vd, defined as

vd = ẋm. (4.22)

Using this definition for the drift velocity and (3.19) and (4.18), the ion velocity ẋ= vx
can be split into two distinct contributions,

vx =wx + vd. (4.23)

As mentioned at the end of § 3.1, it is important that the ion motion be approximately
periodic for our shallow-angle kinetic model to be valid. The ion motion can
be considered as an approximately periodic orbit only if the characteristic period
∼ρx/wx is much smaller than the characteristic time it takes for the ion orbit to drift
(at speed vd) by a distance l such that the electrostatic potential has changed by a
significant amount, ∼l/vd. Thus, the criterion for approximate periodicity is

vd

l
�

wx

ρx
. (4.24)

We proceed to obtain an expression for vd. From (3.5), we obtain

vx =−αvz −
v̇y

Ω
. (4.25)

Taking the derivative of (4.19), we obtain

v̇y = vd
φ′′(xm)

B
−Ωwx. (4.26)

Inserting (4.21), (4.23) and (4.26) into (4.25), the terms proportional to wx on the left-
and right-hand sides cancel and we obtain an implicit equation for vd,

vd =−α

√
v2

B −

(
φ′(xm)

B

)2

−
2Ωφ(xm)

B
−
vdφ

′′(xm)

ΩB
+O

(
α

w2
x

vB

)
. (4.27)
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The right-hand side of (4.27) consists of the small component of parallel streaming
in the x direction, approximately given by −αvz, a polarization drift, approximately
given by −vdφ

′′/ΩB, and the error term coming from the error in vz. By manipulating
(4.27), we obtain

vd(xm)=
−α
√
v2

B − (φ
′(xm)/B)2 − 2Ωφ(xm)/B

1+ φ′′(xm)/ΩB

(
1+O

(
w2

x

v2
B

))
. (4.28)

An alternative procedure to derive (4.28) is to obtain the time derivative of xm by
using the chain rule, vd = ẋm = ˙̄x dxm/dx̄, as shown in appendix D. Equation (4.28)
is divergent for φ′′(xm) = −ΩB, but approximating the ion motion as a closed orbit
becomes invalid close to the divergence, as it requires vd to be small by (4.24).

The ion fluid velocity ux is the average value of vx at a fixed position x, not at a
fixed guiding centre position xm. The orbital velocity wx averages to zero provided that
the motion is approximately periodic (condition (4.24)). Moreover, writing vd(xm) '
vd(x)− v′d(x)ρx+O(vdρ

2
x /l

2) and using the fact that the linear piece in ρx averages to
zero for approximately periodic motion (condition (4.24)), we obtain

ux(x)=
−α
√
v2

B − (φ
′(x)/B)2 + 2Ωφ(x)/B

1+ φ′′(x)/ΩB

(
1+O

(
ρ2

x

l2

))
. (4.29)

The O(w2
x/v

2
B) error in (4.28) is neglected in (4.29) as it is smaller than the O(ρ2

x /l
2)

error.
The assumption that wx averages to zero also implies that we have neglected the

contribution from the open orbits, ni,op(x)' 0, so that ni(x)' ni,cl(x). The closed orbit
density can then be obtained from (4.29) and the fact that niux =−αn∞vB,

ni,cl(x)=
n∞vB(1+ φ′′(x)/ΩB)√

v2
B − (φ

′(x)/B)2 − 2Ωφ(x)/B

(
1+O

(
τρ2

B

l2

√
Ω2

|χ ′′(x)|

))
, (4.30)

where the error has been rewritten using the ordering (4.17). This result can also be
derived by taking the limit τ � 1 in (3.22), which is a more direct though perhaps
less intuitive approach (see appendix E). We can substitute either of (4.29) or (4.30)
into (4.4) or (3.34), respectively, to obtain a differential equation for the electrostatic
potential,

vB(1+ φ′′/ΩB)√
v2

B − (φ
′/B)2 − 2Ωφ/B

(
1+O

(
ρ2

B

l2

(
|χ ′′|

Ω2

)−1/2

τ

))
= exp

(
eφ
Te

)
. (4.31)

Recalling that 1 + Ωφ′′(x)/B = χ ′′(x)/Ω2, the ordering that results from (4.31) is
χ ′′(x)/Ω2

∼ exp(eφ/Te), which also leads to the ordering 1/l ∼ χ ′′′/χ ′′ ∼ eφ′/Te.
Moreover, using the fact that balancing the terms in the denominator of (4.31) gives
ρ2

B(eφ
′/Te)

2
∼ eφ/Te, we obtain the ordering

ρ2
B

l2
∼

eφ
Te
. (4.32)

Then, upon rearranging (4.31) and re-expressing the error, we obtain

vB(1+ φ′′/ΩB)√
v2

B − (φ
′/B)2 − 2Ωφ/B

= exp
(

eφ
Te

)
+O

(
τ

eφ
Te

exp
(

eφ
2Te

))
. (4.33)
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Multiplying (4.33) by eφ′/Te, integrating once and using the boundary condition φ =
φ′ = 0 at x→∞, gives

2−

√
1− ρ2

B

(
eφ′

Te

)2

−
2eφ
Te
= exp

(
eφ
Te

)
+O

(
τ , τ

eφ
Te

exp
(

eφ
2Te

))
. (4.34)

Upon integrating the error on the right-hand side of (4.33), we obtain two distinct con-
tributions to the error in (4.34): one is O(τ ) and the other is O(τ (eφ/Te) exp(eφ/2Te)).
Note that both these error terms are exactly equal to zero for φ = 0 and they are
comparable in size for −eφ/Te . 1, while for −eφ/Te ∼ 1/ε � 1 the term O(τ ) is
larger. However, this larger term tends to a constant, which as we will see does not
affect the functional form of the solution φ(x), but only shifts the value of the constant
of integration by a small amount. Equation (4.34) can be rearranged to obtain

ρ2
B

(
eφ′

Te

)2

+ 3+
2eφ
Te
= 4 exp

(
eφ
Te

)
− exp

(
2eφ
Te

)
+O

(
τ , τ

eφ
Te

exp
(

eφ
2Te

))
.

(4.35)
Finally, equation (4.35) can be integrated to obtain the electrostatic potential far away
from the wall, although a boundary condition in the intermediate region, which we
have not yet specified, is required to carry out the integration.

For −eφ/Te � 1, all the terms on the right-hand side of (4.35) become small
except for the O(τ ) term, which approaches a constant, and the solution approaches
the parabola

eφ(x)
Te
'

eφp(x)
Te
=−

3
2
+ κτ −

1
2
(x−C)2

ρ2
B

. (4.36)

Here, C is a constant determined by boundary conditions, and we denoted the constant
O(τ ) error coming from the right-hand side of (4.35) as κτ , where κ is an unknown
constant of order unity. The electrostatic potential at the wall is large, −eφ(0)/Te =

|lnα| = 1/ε� 1, and so we expect (4.36) to become valid closer to the wall. If we
assume that (4.36) is valid at x = 0 to lowest order in ε and impose −eφ(0)/Te =

|lnα| = 1/ε, we obtain

C' ρB

√
2
ε
. (4.37)

To lowest order in ε, equation (4.36), with C given by (4.37), is equivalent to (4.9),
which was obtained from the fluid model. However, note that the non-constant piece
of the error in (4.35) becomes comparable to the first term on the right-hand side
when exp(eφ/Te) ∼ τ(eφ/Te) exp(eφ/2Te). Hence, equation (4.35) fails to correctly
determine the potential when exp(eφ/Te) ∼ τ

2
|ln τ |2 ∼ τ 2/ε2. From (4.17), with the

ordering χ ′′/Ω2
∼ exp(eφ/Te), and (4.32), this value of exp(eφ/Te) corresponds to

ρx ∼ l∼
√
ερB, which is the point at which the approximation in (4.13) ceases to be

valid. The validity of (4.35) is thus restricted to

τ 2

ε2
� exp

(
eφ
Te

)
. (4.38)

Note that, from (4.36), (4.37) and (4.38), the validity region is given by (4.10) to
lowest order in ε. Ion gyro-orbits grow in size as they approach the wall, as shown
in figure 3, making the treatment of this section invalid for x/ρB 6

√
2/ε −

√
4|ln τ |,

where ρx is no longer small.
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4.1.2. Near the wall
When U⊥ ' χM, ions transition to open orbits and thereafter reach the wall in a

time scale of the order of a gyroperiod, ρx/wx ∼ 1/
√
χ ′′(xm). Previously, we saw that

the spatial extent of a closed ion orbit enlarges as the ion approaches the wall; for the
moment, we take ρx ∼ ρB for ions transitioning from closed to open orbits, ignoring
any potential scaling with ε. For such transitioning ions, we expect that χM − χm ∼

w2
x ∼ τ

2v2
B/ρ

2
x , since µ∼ρxwx∼ τv

2
B. Thus, χM−χm is small in τ . Recall, from (3.29),

that χc is defined to be the value of the effective potential at x̄= x̄c such that χc =

χM(x̄)=χm(x̄). Hence, it follows that χM(x̄)'χc and x̄' x̄c for all ions in open orbits,
as can be seen in figure 2. The error in approximating χM(x̄)−χ(x, x̄)'χc−χ(x, x̄c)
can be obtained by calculating

d
dµ

∣∣∣∣
open

(χM − χ(x, x̄))=
(

dµ
dx̄

)−1

open

Ω2(x− xM)∼
τΩρ2

B

ρ2
x

, (4.39)

where we used d(χM−χ(x, x̄))/dx̄=Ω2(x− xM)∼Ω
2ρx and estimated (dµ/dx̄)open∼

Ω2ρ2
x /wx ∼Ωρ

3
x /τρ

2
B from (B 7). Since typical ion orbits have values of µ differing

by O(τv2
B/Ω), the values of χM(x̄)− χ(x, x̄) of such orbits change by O(τ 2v2

Bρ
2
B/ρ

2
x ).

Recall that an open orbit has U⊥ − χ(x, x̄) = χM(x̄) − χ(x, x̄) + O(∆M): from (3.30)
and the previous estimate for (dµ/dx̄)open, we obtain the scaling ∆M ∼ αΩvBρ

3
x /τρ

2
B.

If the condition
α

τ 3
∼ αA

= exp
(
−

A
ε

)
� 1 (4.40)

is satisfied, with A a positive constant, the O(∆M) error term is small in α compared
to the O(τ 2v2

Bρ
2
B/ρ

2
x ) error. Then, using (3.10) with U⊥ − χ(x, x̄) ' χc − χ(x, x̄c) +

O(τ 2v2
Bρ

2
B/ρ

2
x ), the velocity of an ion in an open orbit near the wall is

vx =−

√
2(χc − χ(x, x̄c))+O(τ 2v2

Bρ
2
B/ρ

2
x ). (4.41)

As we will see at the end of this section, condition (4.40) must be satisfied for our
kinetic model to be valid; otherwise, the velocity of all ions transitioning from closed
to open orbits is not known to lowest order in α, making the ion density incorrect in
a large region. The ordering (4.7) includes the validity condition (4.40).

Assuming that x is sufficiently close to the wall that most ions are in open orbits,
ni(x)' ni,op(x), the ion fluid velocity is

ux(x)=−
√

2(χc − χ(x, x̄c))+O(τ 2v2
Bρ

2
B/ρ

2
x ). (4.42)

Then, from (4.42) and the continuity equation ni,op(x)ux(x)=−αn∞vB, we obtain an
expression for the open orbit density,

ni,op(x)=
αn∞vB√

2(χc −
1
2Ω

2(x− x̄c)2 −Ωφ(x)/B)+O(τ 2v2
Bρ

2
B/ρ

2
x )

. (4.43)

In § E.2, we derive (4.43) by expanding ni,op(x) in (3.23) to lowest order in τ� 1. In
order for (4.43) to be valid, we require the error term to be small, implying ni,op�

(αn∞/τ)(ρx/ρB). Moreover, since ρx here quantifies the characteristic size of closed
orbits while the ion is transitioning from a closed to an open orbit, the ion density
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changes from ni,cl � n∞τ 2/ε2 (recall (4.38) and the fact that ni,cl ∼ n∞ exp(eφ/Te))
to ni,op� (αn∞/τ)(ρx/ρB) over a length scale of ρx. If the validity condition (4.40)
is satisfied, this drop in density corresponds to a decrease of ln(τ 3/α) ∼ 1/ε in the
normalized electrostatic potential eφ/Te. In order to be consistent with the lowest-
order electric field obtained from (4.36) and (4.37), eφ′/Te =−(x−C)/ρ2

B ∼ 1/
√
ερB,

transitioning ions must have ρx ∼ ρB/
√
ε.

Inserting (4.43) into (3.34) with ni,cl(x)= 0, or inserting (4.42) into (4.4), we obtain

eφ
Te
+

1
2
α2 exp

(
−

2eφ
Te

)
=K −

3
2
−
(x− x̄c)

2

2ρ2
B
+O(ετ 2). (4.44)

The constants
K =

χc

v2
B
+

3
2

(4.45)

and x̄c are to be determined; they are related by the boundary condition eφ(0)/Te =

ln α, giving
x̄c ' ρB

√
−2 ln α − 4+ 2K ∼

ρB
√
ε
. (4.46)

Note that far from the wall, equation (4.44) gives

eφ
Te
'K −

3
2
−
(x− x̄c)

2

2ρ2
B

. (4.47)

For (4.47) to be valid, we require α2 exp(−2eφ/Te) ∼ α2 exp((x − x̄c)
2/ρ2

B) ∼
exp(−xx̄c/ρ

2
B+ x2/2ρ2

B)�1, where we have used x̄c'ρB
√

2/ε; hence, the electrostatic
potential becomes well approximated by (4.47) for x�ρB

√
ε. The derivation of (4.44)

fails when ni,op ∼ αn∞/
√
ετ (recall (4.43) with ρx ∼ ρB/

√
ε), and so the validity of

(4.44) is restricted to

exp
(

eφ
Te

)
�

α
√
ετ
. (4.48)

From (4.47) and (4.48), we obtain the estimate (4.11) for the region where (4.44) is
valid. Outside of the validity region (4.11), the velocity of a typical ion is of the order
of the gyration velocity,

√
2(χM(x̄)− χ(x, x̄))∼wx, and so the assumption that all ions

are in open orbits is invalid.

4.1.3. Intermediate region
With the ordering (4.40), there is a finite region where (4.35) and (4.44) are not

valid: from (4.10) and (4.11), this region is√
2
ε
−

√
2
ε
− 2|ln τ |6

x
ρB

6

√
2
ε
−
√

4|ln τ |. (4.49)

However, the solution of (4.35) tends to (4.36) for
√

2/ε − x/ρB � 1 and (4.44)
tends to (4.47) for x/ρB �

√
ε. Hence, we proceed by assuming that in the

intermediate region (4.12), which includes the region (4.49), the electrostatic potential
is simultaneously given by the parabolas in (4.36) and (4.47) to lowest order in α
and τ . This provides the value of K, K = κτ � 1, and the equality C = x̄c. Using
(4.46) with K ' 0, the value of C and x̄c is

C= x̄c ' ρB

√
−2 ln α − 4. (4.50)

The neglected term κτ causes a small constant correction to the value of C, as we
had claimed in the discussion following (4.34).
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From (3.13), the effective potential curves associated with the parabolic electrostatic
potential of (4.36) are a set of straight lines,

χ(x; x̄)'− 3
2v

2
B +

1
2Ω

2(x̄2
−C2)−Ω2(x̄−C)x. (4.51)

In figure 2, a family of effective potential curves χ(x; x̄) are plotted for different
values of the orbit position x̄ for α = 0.05: the curves shown are indeed close to
straight lines in the shaded region, as (4.51) suggests. Since straight lines do not have
a local minimum – which is necessary to approximate the ion motion as a periodic
orbit – the small non-parabolic piece of the electrostatic potential,

φnp(x)= φ(x)− φp(x), (4.52)

must be retained. In (4.52), φ(x) is the solution to the quasineutrality equation (3.34)
for a given value of τ and α. In the intermediate region we take φ(x) ' φp(x) and
calculate φnp(x) as a higher-order asymptotic correction from the following equation:

ni,cl[φp + φnp](x)+ ni,op[φp + φnp](x)= n∞ exp
(

eφp(x)
Te

)(
1+O

(
eφnp

Te

))
. (4.53)

On the right-hand side of (4.53), we neglected terms small in eφnp/Te� 1 to simplify
the expression for the electron density. On the left-hand side, we included the
non-parabolic piece φnp because no effective potential minima exist – and so no
closed or open ion orbits can be solved for – when φ = φp.

At the beginning of this section, we noted that (4.35) and (4.44) do not have
a common region of validity. Therefore, it is crucial that (4.35) and (4.53) be
simultaneously valid in some overlap region of finite size; the same has to be true
for (4.44) and (4.53). Equation (4.35) is valid in region (4.10), and equation (4.53)
is valid in the region (4.12). Hence, the overlap region in which both equations are
valid is

1�

√
2
ε
−

x
ρB
<
√

4|ln τ |, (4.54)

where we re-expressed the lowest-order inequality x/ρB <
√

2/ε to the more precise
form 1�

√
2/ε − x/ρB in order to emphasize the necessity of the ordering |ln τ | ∼

1/ε� 1. We proceed to calculate φnp(x) in this region. Inserting φ=φp+φnp in (4.31)
and rearranging the error term, we obtain

φ′′np(x)

2ΩB
= exp

(
−

3
2
−
(x−C)2

2ρ2
B

)
+O

τρB

l2

√
eφ′′np

Te

 , (4.55)

where we have used φ' φp in the denominator to get
√
v2

B − (φ
′(x)/B)2 − 2Ωφ(x)/B

' 2vB. From the definition of l in (4.14) and using χ ′′ = Ωφ′′np/B with equation
(4.55), we obtain l ∼ ρ2

B/(C − x) ∼ ρB
√
ε, consistent with our previous estimate

for l in this region (before equation (4.38)). Integrating (4.55) twice and imposing
φ′np(x) = φnp(x) = 0 at (C − x)/ρB →∞ (where the electrostatic potential becomes
more parabolic) gives

eφnp(x)
Te

= 2 exp
(
−

3
2
−
(x−C)2

2ρ2
B

)
−
√

2π(C− x) exp
(
−

3
2

)(
1− erf

(
C− x
√

2ρB

))

+O

(
τ
√
ε

√
eφnp

Te

)
, (4.56)
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where we have used that the double integral of the term O((τρB/l2)
√

eφ′′np/Te) is
O((τρB/l)

√
eφnp/Te). We proceed to consider the part of the intermediate region that

is closest to the wall. Equation (4.44) is valid in the region (4.11) near the wall and
equation (4.53) is valid in the intermediate region (4.12). Hence, the region in which
these two equations are both valid is the overlap of (4.11) and (4.12),

√
ε�

x
ρB
<

√
2
ε
−

√
2
ε
− 2|ln τ |. (4.57)

From (4.44) and using eφnp/Te � 1 (the assumption behind equation (4.53)), we
extract

eφnp(x)
Te

=−
1
2
α2 exp

(
3+

(x−C)2

ρ2
B

)
+O(τ 2ε). (4.58)

In the region (4.49), equation (4.53) cannot be simplified further. Ion orbits are
large, ρB

√
ε.ρx .ρB/

√
ε, and the non-parabolic piece of the electrostatic potential is

small, −τ 2ε. eφnp(x)/Te . τ 2/ε (consistent with the errors in (4.56) and (4.58), noting
that φnp is positive in (4.56) and negative in (4.58)). From the previous paragraph
we deduce that l ∼

√
ερB, and so the double derivative of the effective potential is

small, −τ 2 . χ ′′(x)/Ω2
= ρ2

Beφ′′np/Te . τ 2/ε2. The characteristic size of the periodic
piece of the ion velocity is obtained from the relation µ ∼ ρxwx ∼ τv

2
B/Ω (which

holds provided the adiabatic invariant is still conserved), giving τ
√
ε.wx/vB . τ/

√
ε.

The characteristic size of the drift of closed ion orbits is obtained from (4.28), giving
αε2/τ 2 . vd/vB . α/τ 2. Ignoring the dependences on ε and focusing only on how
quantities scale with α and τ (which, from (4.7), are both exponentially small in ε),
we obtain ρx ∼ l∼ ρB, wx ∼ τvB and vd ∼ αvB/τ

2. Hence, the condition vd/l�wx/ρx

(4.24), which is necessary for the ion motion to be approximately periodic, implies
that vd/wx∼ α/τ

3
� 1. In (4.40) α/τ 3 is required to be small in α to ensure that the

motion remains periodic to lowest order in α. The scaling with τ 3 in (4.40) implies
that the kinetic model is not valid for relatively large values of τ�1. This unfortunate
scaling arises because of the growth of the ion orbits: if small ion orbits reached x=0,
we would expect l∼ ρx ∼ ρi, χ ′′(x)∼Ω2, wx ∼

√
τvB, vd ∼ αvB, and so the condition

(4.24) would give the weaker requirement α �
√
τ for the model to be valid near

x= 0. Hence, the orbit growth and the associated large polarization drift have a strong
negative effect on the condition for validity of the model, multiplying the power by
which τ is raised by a factor of six. It is for this reason that, as we will see in § 5,
we do not obtain numerical solutions of (3.34) for values of τ lower than τ = 0.2.

4.1.4. Uniformly valid solution
We proceed to obtain an expression for φ(x), equation (4.6), that is uniformly valid

across the whole magnetic presheath to lowest order in α and τ . In order to do this,
we first make a change of variables: guided by the form of (4.44), we introduce the
function

ψ(x)=
eφ(x)

Te
+

1
2
α2

(
exp

(
−

2eφ(x)
Te

)
− 1
)
. (4.59)

The term −α2/2 is small but is included in the definition (4.59) in order to have
the desirable exact property that φ = 0 when ψ = 0: then, far from the wall, where
−eφ/Te� 1/ε, the relation ψ = (eφ/Te)(1+O(α2)) is satisfied.
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We proceed to show that the equation

ρ2
Bψ
′2
+ 3+ 2ψ = 4 exp(ψ)− exp(2ψ)+O(τ , τψ exp( 1

2ψ), τ
2) (4.60)

is equivalent to the equations describing the electrostatic potential in the three regions
of the magnetic presheath. All the errors on the right-hand side of (4.60) are exactly
equal to zero at ψ = 0. Moreover, the O(τ ) error tends to a constant for −ψ � 1,
and this constant does not have an effect on the functional form of ψ(x). Hence, we
retain the smaller errors O(τψ exp(ψ/2), τ 2). First, we compare equation (4.60) with
equation (4.35), valid in the region (4.10). Since, from (4.38), α2 exp(−2eφ/Te)�
α2/τ 4 in this region, it follows that eφ/Te = ψ + O(α2/τ 4). Hence, equation (4.60)
directly follows from (4.35), after noting that the O(α2/τ 4) error term is smaller than
the O(τ 2) error term (the smallest in (4.60)) because of the validity condition (4.40).
Next, we compare the solution to equation (4.60) with equation (4.44) (recall that K=
κτ , where κ is an unknown constant of order unity, and x̄c =C), valid in the region
(4.11) close to the wall. From (4.59), in this region −eφ/Te =−ψ +O(1)∼ 1/ε and
so, from (4.48), exp(ψ/2)�

√
α/τ � τ . Therefore, all terms on the right-hand side

of (4.60), except for the constant O(τ ) term, become smaller than the O(τ 2) term.
Re-expressing the constant O(τ ) error term as κτ and integrating gives

ψ =−
3
2
+ κτ −

(x−C)2

2ρ2
B
+O

(
ετψ exp

(
1
2
ψ

)
, ετ 2

)
. (4.61)

The size of the error terms in (4.61) is obtained as follows. From ψ ∼ 1/ε and
l∼ψ ′′/ψ ′′′∼ ρ2

B/(x−C)∼
√
ερB, the error terms in the expression for ψ ′ are smaller

by a factor of
√
ε compared with the error terms in the expression for ψ ′2, equation

(4.60). Upon integrating the expression for ψ ′ to obtain ψ , we multiply these error
terms by a factor of l∼

√
ερB. Using (4.59), and remembering that in the region (4.11)

the size of the largest error term in (4.61) is O(ετ 2), observe that equation (4.61) is
equivalent to (4.44).

It only remains to be shown that (4.60) is valid in the part of the intermediate
region (4.49) where neither (4.35) (the equation determining φ far from the wall) nor
(4.44) (the equation determining φ close to the wall) are valid. From the equation
φ=φp+φnp, equation (4.36) for φp, and the fact that e|φnp|/Te . τ 2/ε, the electrostatic
potential in this region is given by eφ/Te = −3/2 + κτ − (x − C)2/2ρ2

B + O(τ 2/ε).
From (4.38) for the size of the electrostatic potential in the region far from the wall,
and equation (4.48) for the size of the electrostatic potential in the region close to
the wall, we obtain the ordering α/

√
ετ . exp(eφ/Te) . τ 2/ε2 for the size of the

electrostatic potential in this region. Hence, the first error term in (4.61) becomes
O(τ 2/ε). Moreover, from ε4α2/τ 4 . α2 exp(−2eφ/Te) . ετ 2 we obtain eφ/Te = ψ +
O(ετ 2). Hence, from equation (4.61) and the associated O(τ 2/ε) error in this region,
we obtain eφ/Te = −3/2 + κτ − (x − C)2/2ρ2

B + O(τ 2/ε). Equation (4.60) is thus a
good approximation also in the region (4.49).

Using the definition (4.59), and (4.5), the boundary condition at the wall is ψ(0)=
ln α+ 1/2− α2/2. This can be used to integrate equation (4.60) (neglecting the error
terms) and obtain the approximate electrostatic potential solution, as in (4.6).

4.2. Hot ions (τ � 1/α)
In the limit of very hot ions, τ � 1/α, we assume that the ion distribution function
is a half-Maxwellian at the magnetic presheath entrance,

f∞(v)=
2n∞

π3/2v3
t,i

exp
(
−
|v|2

v2
t,i

)
Θ(vz), (4.62)
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where we introduced the Heaviside step function

Θ(s)=

{
1 for s > 0,
0 for s< 0.

(4.63)

Since φ(∞)= 0, U = |v|2/2 and we re-express (4.62) to

F= 2n∞

(
mi

2πTi

)3/2

exp
(
−

miU
Ti

)
. (4.64)

Equation (4.62) is one of many choices that could be made. The reason we choose
this distribution function is that it was also used in Cohen & Ryutov (1998) in the
equivalent limit of small electron temperature. We consider the limit τ � α2mi/me in
order to be consistent with condition (2.10) for an electron-repelling sheath.

For τ→∞, ion orbits are undistorted by the presheath potential drop necessary to
repel the electrons. We expect eφ(x)/Te ∼ 1, and therefore the ion flow and density
can be computed using Zeφ(x)/Ti= (1/τ)eφ(x)/Te' 0 across the magnetic presheath.
The effective potential is a parabola with its minimum at xm = x̄,

χ(x, x̄)= 1
2Ω

2(x− x̄)2. (4.65)

This is an effective potential whose maximum for x< xm is given by

χM(x̄)= χ(0, x̄)= 1
2Ω

2x̄2. (4.66)

The minimum value of x̄ necessary for an ion at position x to be in a closed orbit or
an open orbit is, using (3.25) and (3.26) with φ(x)= 0,

x̄m,o(x)= x̄m(x)= 1
2 x. (4.67)

Moreover, the adiabatic invariant is µ=U⊥/Ω .
Inserting the distribution function (4.64) into (3.22), the closed orbit density is

ni,cl(x)= 2n∞

(
mi

2πTi

)3/2

×

∫
∞

x/2
Ω dx̄

∫ (1/2)Ω2 x̄2

(1/2)Ω2(x−x̄)2

2 dU⊥
√

2(U⊥ − χ(x, x̄))

∫
∞

U⊥

exp(−miU/Ti) dU
√

2(U −U⊥)
. (4.68)

Changing variables to ṽy = (x̄ − x)/ρi, Ũ⊥ = mi(U⊥ − (1/2)Ω2(x − x̄)2)/Ti and Ũ =
mi(U −U⊥)/Ti gives

ni,cl(x) =
n∞
π3/2

∫
∞

−x/2ρi

dṽy exp(−ṽ2
y )

∫ (x/ρi)(2ṽy+x/ρi)

0
Ũ−1/2
⊥ exp(−Ũ⊥) dŨ⊥

×

∫
∞

0
Ũ−1/2 exp(−Ũ) dŨ. (4.69)

Evaluating the integral over Ũ and the integral over Ũ⊥ leads to

ni,cl(x)=
n∞
√

π

∫
∞

−x/2ρi

exp(−ṽ2
y )erf

(√
x
ρi

(
2ṽy +

x
ρi

))
dṽy, (4.70)
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where we introduced the error function,

erf(s)=
2
√

π

∫ s

0
exp(−s′2) ds′. (4.71)

For x � ρi, the integral in (4.70) simplifies in the following ways: (i) the lower
limit of integration can be set to ṽy = 0, since the contribution to the integral from
the integration range [0,∞] is dominant; (ii) the factor

√
(x/ρi)(2ṽy + x/ρi) in the

argument of the error function can be replaced by
√

2ṽyx/ρi, since this replacement
is accurate in most of the integration range except where ṽy∼ x/ρi� 1; (iii) the error
function can be approximated by erf(

√
2ṽyx/ρi) ' 2

√
2ṽyx/ρi/

√
π for x/ρi � 1/ṽy,

which holds everywhere except in the region ṽy & ρi/x� 1, where the integrand is
exponentially small. Hence, equation (4.70) becomes, for x� ρi,

ni,cl(x)'
2n∞
π

√
2x
ρi

∫
∞

0

√
ṽy exp(−ṽ2

y ) dṽy. (4.72)

Re-expressing the integral over ṽy in terms of the standard gamma function Γ ,∫
∞

0

√
ṽy exp(−ṽ2

y ) dṽy =
1
2

∫
∞

0

exp(−ξ)
ξ 1/4

dξ =
1
2
Γ

(
3
4

)
, (4.73)

we simplify (4.72) to

ni,cl(x)'

√
2

π
Γ

(
3
4

)√
x
ρi

n∞. (4.74)

The density of open orbits is given by

ni,op(x)=
∫
∞

(1/2)x
Ω dx̄

∫
∞

(1/2)Ω2 x̄2

F(Ω2x̄2/2,U)
√

2(U − χM(x̄))

× (
√

2(χM(x̄)− χ(x, x̄)+∆M(x̄,U))−
√

2(χM(x̄)− χ(x, x̄))) dU. (4.75)

Note that, in (4.75), we have used

µ= 1
2Ω x̄2 (4.76)

for the adiabatic invariant of ions with U⊥ = χM(x̄)= χ(0, x̄)=Ω2x̄2/2. Using (3.30),
we obtain

∆M = 2απΩ x̄
√

2(U − 1
2Ω

2x̄2). (4.77)

Then, using the dimensionless integration variables ṽz =
√

mi(U −Ω2x̄2/2)/Ti and
˜̄x= x̄/ρi, equation (4.75) reduces to

ni,op(x) =
2n∞
π3/2

∫
∞

x/2ρi

d ˜̄x exp(−˜̄x2)

∫
∞

0
exp(−ṽ2

z )

×

(√
x
ρi

(
2 ˜̄x−

x
ρi

)
+ 4απ ˜̄xṽz −

√
x
ρi

(
2 ˜̄x−

x
ρi

))
dṽz. (4.78)
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Equation (4.78) does not simplify further for general values of x, but can be simplified
for x� αρi. Evaluating the ion density at x= 0 using (4.78), we obtain

ni,op(0)=
1
π
Γ 2

(
3
4

)
√
αn∞. (4.79)

We then proceed to evaluate ni,op(x)−ni,op(0) for x�αρi. In this ordering, (x/ρi)(2 ˜̄x−
x/ρi)� 4απ ˜̄xṽz and so

ni,op(x)−ni,op(0)'−
2n∞
π3/2

∫
∞

x/2ρi

d ˜̄x exp(−˜̄x2)

√
x
ρi

(
2 ˜̄x−

x
ρi

)∫
∞

0
exp(−ṽ2

z ) dṽz. (4.80)

Note that there is a small integration region, ṽz . x/αρi, where (x/ρi)(2 ˜̄x − x/ρi) &
4απ ˜̄xṽz, but the contribution to the integral from this region is higher order in x/αρi�

1. In (4.80) we take
√
(x/ρi)(2 ˜̄x+ x/ρi)'

√
2 ˜̄xx/ρi, since this is accurate everywhere

except where ˜̄x∼ x/ρi� α, and evaluate the integrals over ṽz and ˜̄x to obtain

ni,op(x)− ni,op(0)'−

√
2

2π
Γ

(
3
4

)√
x
ρi

n∞. (4.81)

From (4.81), the open orbit density near x= 0 decreases proportionally to
√

x, but the
increase of the closed orbit density in (4.74) is faster by a factor of 2, leading to the
total ion density increasing proportionally to

√
x,

ni(x)− ni(0)'

√
2

2π
Γ

(
3
4

)√
x
ρi

n∞, (4.82)

for x� αρi.
The ion density profile for τ →∞ is, according to (3.24), the sum of (4.70) and

(4.78). The potential profile is obtained by imposing quasineutrality and inverting the
Boltzmann relation for the electron density, to find

eφ(x)
Te
= ln

(
ni(x)
n∞

)
. (4.83)

The potential drop across the magnetic presheath can be calculated by using
ni,cl(0)= 0 (from (4.70)) and (4.79),

eφ(0)
Te
= ln

(
Γ 2(3/4)

π

√
α

)
' ln(0.48

√
α). (4.84)

Inserting the distribution function (4.64) and the value of x̄m,o in (4.67) into (3.40),
the distribution of the ion velocity component perpendicular to the wall at x= 0 is

f0x(vx)=
n∞
vt,iπ

Θ(−vx)

∫
∞

0
exp(−˜̄x2)

[
1− erf

(
v2

x

4πα ˜̄xv2
t,i

)]
d ˜̄x. (4.85)
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Inserting the distribution function (4.64) into (3.41), the distribution of the ion velocity
components parallel to the wall at x= 0 is

f0yz(vy, vz)=
4
√
αn∞
π

√
vyvz

v3
t,i

exp

(
−
v2

y + v
2
z

v2
t,i

)
Θ(vy)Θ(vz). (4.86)

To conclude, we briefly point out and resolve an apparent contradiction in the
validity of our kinetic model when τ� 1/α. In Geraldini et al. (2018), we found that
the self-consistent electrostatic potential prohibits the presence of ions entering the
Debye sheath with zero velocity normal to the wall. This is in apparent contradiction
with the situation described in this section: when undistorted circular orbits reach
the wall, there are ion trajectories tangential to the wall and thus there is a finite
number of ions which have a normal component of the velocity equal to zero. This is
reflected in the fact that, from (4.85), f0x(0) 6= 0. In reality, there is a small region near
x= 0 in which the electric field distorts ion orbits just before they reach the wall, so
that χM(x̄)= χ(xM, x̄) with xM� ρi. The quasi-tangential ions (with vx ' 0) must be
accelerated to values of vx such that the Bohm condition (3.42) is satisfied with the
equality sign. If these very slow ions do not accelerate to large enough values of vx,
the integral on the left-hand side of (3.42) becomes too large and the Bohm condition
cannot be satisfied. Conversely, if these ions are accelerated too much towards the
wall, the Bohm condition cannot be satisfied with the equality sign, as in (3.42),
which is in contradiction with our theory. Thus, one can think of the real distribution
function as the distribution function in (4.85) (which is plotted as a dashed line in
figure 6c), but shifted in such a way that the peak of the distribution function is at
vx=−v̄ instead of vx= 0, and the distribution function is effectively equal to zero for
|vx|< v̄�

√
αvt,i.4 Since the width of the distribution function,

√
αvt,i, is much larger

than vB for τ�1/α, the Bohm integral on the right-hand side evaluates approximately
to f0x(v̄)/v̄ for the real distribution function. Then, approximating f0x(v̄)∼ ni(0)/

√
αvt,i,

we obtain the estimate v̄∼ vB/
√
ατ to satisfy the Bohm condition (3.42). Hence, the

final piece of the electrostatic potential drop, which is responsible for distorting the
ion orbits enough to satisfy the kinetic Bohm condition, is smaller than the total
electrostatic potential drop by a factor of miv̄

2/Te ∼ 1/ατ � 1. Note that the pair of
conditions (2.10) and 1/ατ � 1 require mi/me � τ 3 to be satisfied. The size h of
the region near x= 0 where this final potential drop occurs is obtained by balancing
the electric force, Zeφ′ ∼ ZTe/hατ , with the magnetic force ZevyB ∼ miΩvt,i, giving
h/ρi ∼ 1/ατ 2

� 1. The spatial resolution necessary to resolve this region can be
prohibitively high even for 1/ατ ∼ 1, since τ � 1, and it is for this reason that, as
we will see in § 5, we do not obtain numerical solutions for values of τ larger than
τ = 10.

5. Numerical results
In this section, we study the magnetic presheath at finite values of τ using

numerical simulations. First, in § 5.1, we parameterize a set of magnetic presheath
entrance distribution functions using τ in a way that is consistent with the limits of
small (τ � 1) and large (τ � 1/α) ion temperature studied in the previous section.
Then, in § 5.2, we present numerical solutions of the electrostatic potential profile
and of the ion distribution function at the Debye sheath entrance.

4In Geraldini et al. (2018) we found that the distribution decreases to zero exponentially fast as vx→ 0.
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5.1. Boundary conditions
The ion distribution function, f∞(v), that enters the magnetic presheath is determined
by a kinetic solution of the bulk plasma or of the collisional presheath. Without such
a solution, there is an infinite possible number of distribution functions we could
choose as boundary conditions. We proceed to parameterize a set of such distribution
functions using τ = Ti/ZTe. We design them to recover the two limits studied in § 4.

We proceed to make a number of observations about the properties that an
appropriate set of distribution functions must satisfy. Considering the strong
resemblance of the kinetic Chodura condition (3.35) with the kinetic Bohm condition,
whose equality form is (3.42), we choose that (3.35) be satisfied with the equality
sign, ∫

f∞(v)
v2

z

d3v =
n∞
v2

B
. (5.1)

The assumption behind equation (5.1) is that, just as the magnetic presheath solution
self-consistently satisfies the kinetic Bohm condition with the equality sign, the
collisional presheath will self-consistently satisfy the kinetic Chodura condition with
the equality sign. In order to be consistent with the models in § 4 in the limits τ→ 0
and τ→∞, we also choose a set of distribution functions that,

(i) for τ→ 0 is a Maxwellian that peaks at vz = vB;
(ii) for τ→∞ is a half-Maxwellian that peaks at vz = 0.

A set of distribution functions that has all the above properties is

f∞(v)=


N n∞

4v2
z

π3/2v5
t,i

exp
(
−
|v − uvt,iẑ|2

v2
t,i

)
Θ(vz) for τ 6 1,

N n∞
4v2

z

π3/2v3
t,i(v

2
t,i + rv2

z )
exp

(
−
|v|2

v2
t,i

)
Θ(vz) for τ > 1,

(5.2)

where Θ is the Heaviside step function defined in (4.63). The values of u and r in
(5.2) are chosen such that condition (5.1) is satisfied. For τ 61, decreasing τ increases
the parameter u, which increases the flow velocity of the distribution function. For
τ � 1 and u� 1, the distribution function tends to a shifted Maxwellian with flow
velocity given by uvt,i. For τ >1, the parameter r increases from 0 to ∞ for increasing
τ . For r > 1, the distribution function becomes small for values of vz smaller than
vt,i/
√

r, and thus the parameter r determines the region of velocity space around vz=0
where there are almost no particles. For τ � 1 and r� 1, the distribution function
at the entrance of the magnetic presheath is a half-Maxwellian with a very narrow
region around vz = 0 where the distribution function vanishes. The quantity N is a
normalization constant that ensures that

n∞ =
∫

f∞(v) d3v. (5.3)

Note that, from (3.20), (3.21) and (5.2), we can write the distribution function in the
form F(µ,U),

F(µ,U)=


N n∞

8(U −Ωµ)
π3/2v5

t,i
exp

[
−

2
v2

t,i
(Ωµ+ (

√
2(U −Ωµ)− uvt,i)

2)

]
for τ 6 1,

N n∞
8(U −Ωµ)

π3/2v3
t,i(v

2
t,i + 2r(U −Ωµ))

exp
(
−

2U
v2

t,i

)
for τ > 1.

(5.4)
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The value of the normalization constant N is, from (5.3),

N =


[
(1+ 2u2)(1+ erf(u))+

2u
√

π
exp(−u2)

]−1

for τ 6 1,

r3/2

[
2
√

r− 2
√

π exp
(

1
r

)(
1− erf

(
1
√

r

))]−1

for τ > 1.

(5.5)

The values of u and r are, from (5.1), given by

1+ erf(u)= τ
[
(1+ 2u2)(1+ erf(u))+

2u
√

π
exp(−u)

]
, (5.6)

r
√

π exp
(

1
r

)(
1− erf

(
1
√

r

))
= τ

[
2
√

r− 2
√

π exp
(

1
r

)(
1− erf

(
1
√

r

))]
, (5.7)

and are plotted as functions of τ in figure 4. The fluid velocity in the z direction at
the magnetic presheath entrance, uz∞, is given by the equations

uz∞

vt,i
=

u(3+ 2u2)(1+ erf(u))+
2
√

π
exp(−u2)(1+ u2)

(1+ 2u2)(1+ erf(u))+
2
√

π
u exp(−u2)

for τ 6 1, (5.8)

and

uz∞

vt,i
=

2
√

πr

r− exp
(

1
r

)
E1

(
1
r

)
2
√

r− 2
√

π exp
(

1
r

)(
1− erf

(
1
√

r

)) for τ > 1. (5.9)

In (5.9), we have introduced the exponential integral,

E1(ξ)=

∫
∞

ξ

exp(−η)
η

dη. (5.10)

Using (5.6)–(5.9), in figure 4 we plot the value of uz∞ as a function of τ . Equations
(5.5)–(5.9) are derived in appendix F.

To conclude this subsection, we verify that the distribution functions have the
required properties at τ→ 0 and τ→∞. From (5.6), note that taking the limit τ→ 0
leads to u '

√
1/2τ � 1, so that the ion distribution function f∞ in (5.2) is indeed

a Maxwellian that peaks at vz = vt,i/
√

2τ = vB. Moreover, note that taking the limit
τ→∞ in (5.7) leads to r' (2τ)2/π� 1, so that f∞ is a half Maxwellian that peaks
at vz = 0. In the next subsection, we present the numerical results obtained for finite
values of τ .
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(a) (b)

FIGURE 4. (a) The numbers ln r and ln u as a function of the parameter ln τ . (b) The
flow velocity at the magnetic presheath entrance, uz∞, as a function of the parameter τ .
The dashed line corresponds to τ > 1, where r (instead of u) is used to parameterize the
distribution functions in (5.2). Note that uz∞/vt,i→ 1/

√
2τ for τ→ 0, uz∞/vt,i = 2/

√
π≈

1.13 for τ = 1 and uz∞/vt,i→ 1/
√

π≈ 0.56 for τ→∞.

5.2. Numerical solutions
The numerical scheme presented in Geraldini et al. (2018) is used to obtain numerical
solutions to the quasineutrality equation (3.34) for values of α and τ in the range
0.01 6 α 6 0.2 (approximately corresponding to 0.57◦ 6 α 6 11◦) and 0.2 6 τ 6 10.
We define a quantity

ñ(x)= 1−
Zni(x)
ne(x)

. (5.11)

In the numerical scheme, all quantities are discretized and so ñν = ñ(xν) is a set of
values defined on a grid of values of xν , where ν is an index running from 0 to
some value η. The exact solution to equation (3.34) has ñ(x) = 0 everywhere, but
numerically ñν cannot be made to be arbitrarily small at all grid points. Hence, we
use the following convergence criterion to define what constitutes a valid numerical
solution to equation (3.34), (

1
η+ 1

η∑
ν=0

ñ2
ν

)1/2

< E, (5.12)

where E is a small number. An iteration scheme, outlined in Geraldini et al. (2018), is
performed to find the numerical electrostatic potential solution φν = φ(xν) for a given
value of α and τ . The solution numerically satisfies the quasineutrality equation with
an error E= 0.7 % for all values of τ except for τ = 0.2, where E= 1.2 %.

The electrostatic potential drop across the magnetic presheath is shown in
figure 5(a) as a function of α and τ . The numerical results approaching τ = 0.2
and τ = 10 are consistent with the results obtained using (4.5) (valid for small τ ,
3/|lnα|< 1/|ln τ |� 1) and using (4.84) (valid for ατ � 1), shown with dashed lines.
The shaded region is where we expect the assumption of an electron-repelling wall
not to be suitable for deuterium ions, α.

√
1+ τ

√
me/mi∼ 0.02

√
1+ τ . Considering

the unshaded region in figure 5(a), the potential drop with finite ion temperature is
up to 10 %–15 % smaller than the cold ion (τ = 0) potential drop. For a fixed angle,
α = 0.05 rad ≈ 3◦, the electrostatic potential profiles for different values of τ are
shown in figure 5(b). The blue dashed curve labelled ‘0’ in figure 5(b) is obtained
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(a) (b)

FIGURE 5. (a) The electrostatic potential drop across the magnetic presheath φ(0) is
shown as a function of the angle α and the parameter τ . The region where α .
√

1+ τ
√

me/mi, and therefore the ordering (2.10) breaks down, is shaded. (b) Electrostatic
potential profiles for α = 0.05 at different values of τ , marked on the curves.

from (4.6), while the red dashed curve marked ‘∞’ is obtained from (4.83). The
numerical profiles are consistent with the limits τ = 0 and τ =∞.

While the solution to a fluid model can give a good estimate of the electrostatic
potential profile in the magnetic presheath at some range of finite temperatures, it
provides no information on the velocity distribution of the ions. The ions hitting the
wall can cause sputtered neutral impurities to be thrown back into the plasma, and the
sputtering yield is sensitively dependent on the kinetic energy and angle of incidence
of the ion on the target. Hence, it is important to predict the ion distribution function
at the wall. Since in the Debye sheath ions only undergo an acceleration towards the
wall, see e.g. Riemann (1991), the distribution function of ions at the Debye sheath
entrance is expected to be similar in shape to the distribution function at the wall. For
different values of τ , in figure 6 we plot the distribution function f0x(vx) (defined in
(3.40)) and compare it with the boundary condition f∞z(vz) =

∫
∞

−∞

∫
∞

−∞
f∞(v) dvy dvx.

Equation (4.85) is the dashed curve in figure 6(c). The equality form of the kinetic
Bohm condition (3.42) (Riemann 1991) is approximately numerically satisfied for all
distribution functions in the parameter range of the presented simulations; recall that
(3.42) is an analytical property of the self-consistent solution of (3.34) (Geraldini
et al. 2018). Note that at values of τ larger than τ = 10, it becomes computationally
expensive to resolve the sharp gradient of the distribution function near vx = 0, as
discussed at the end of § 4.2. In all of our simulations, the distribution f0x(vx) is found
to be both narrower and more centred around vB than f∞z(vz). In figure 7, we plot the
functions f∞yz(vy, vz) =

∫
∞

−∞
f∞(v) dvx and f0yz(vy, vz). Equation (4.86) is the bottom

right panel in figure 7. For τ .1, the ions have very large tangential velocities at x=0
(compared with x=∞) due to the large increase in the y-component of the velocity,
related to the E×B drift acquired by the ion orbit in the magnetic presheath.

We can summarize the numerical results for the distribution function as follows:

(i) for τ � 1, the velocity components tangential to the wall, vy and vz, remain
unaffected while the velocity component normal to the wall, vx, becomes of the
order of whichever is largest between

√
αvt,i and vB ∼ vt,i/

√
τ ;

(ii) for τ . 1, all velocity components are affected by the magnetic presheath electric
field and become of order vB (ignoring factors of |lnα|).
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(a) (b)

(c) (d)

FIGURE 6. The distributions of the component vz of the ion velocity at the magnetic
presheath entrance x→∞ (a,b) and the component vx of the velocity at the Debye sheath
entrance x= 0 (c,d) are shown for α= 0.05 for three different values of the parameter τ ,
labelled next to the corresponding curve. The velocities are normalized to vt,i in (a,c) and
to vB in (b,d). Magnetized ions at the magnetic presheath entrance move parallel to the
magnetic field. Hence, vz is responsible for the flow of ions to the wall. At the Debye
sheath entrance, the ion flow towards the wall is determined by |vx|. The red dashed lines
in (a,c) are the distribution functions in the limit τ→∞. The blue vertical dashed lines
in (b,d) are the cold ion distribution functions, τ = 0.

For large ion temperatures, τ & 5, the velocity component normal to the wall at the
Debye sheath entrance is small because the electrostatic potential necessary to repel
electrons barely affects the ions. In this case, there are two regimes of interest. Firstly,
if 1� τ � 1/α, most ions are accelerated to |vx| ' vB ∼ vt,i/

√
τ � vt,i, as expected

if the Bohm condition (3.42) is to be satisfied, and the spread of the ion distribution
function in the x direction, f0x(vx), is vB. The numerical solution for τ = 5 and α =
0.05, where f0x(vx) is shown in figure 6(c,d), is adequately described by this regime.
Secondly, if τ is such that τ � 1/α, the velocity spread of the distribution function
is
√
αvt,i, satisfying vB�

√
αvt,i� vt,i; this regime corresponds to the limit taken in

§ 4.2, where f0x(vx) is given in (4.85) and plotted in figure 6(c) as a red dashed line.
For α∼ 1/τ , the velocity spread is

√
αvt,i ∼ vB� vt,i, as both of the estimates above

are valid. The tangential velocity of a typical ion with τ & 5 remains roughly of the
same size, vy ∼ vz ∼ vt,i, and therefore the angle between the ion trajectory and the
wall is shallow at the Debye sheath entrance. For τ . 1, the typical size of all the
velocity components is vB and thus the angle between the ion trajectory and the wall
is of order unity. Hence, an ion is expected to impinge on the wall at an angle whose
size is small when τ � 1 and order unity when τ . 1.
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(a) (b)

FIGURE 7. The ion distribution functions f∞yz(vy, vz) (a) and f0yz(vy, vz) (b) for α = 0.05
and, from top to bottom, for τ = 0.2, τ = 1, τ = 5 and τ =∞ (see § 4.2). The Bohm
speed vB/vt,i = 1/

√
2τ is marked as a horizontal line in all panels, and also as a vertical

line on the right panels.

6. Conclusion

In this paper we have studied the dependence of a grazing-angle electron-repelling
magnetic presheath on ion temperature using the kinetic model in Geraldini et al.
(2017, 2018). The cold ion limit, τ = Ti/ZTe � 1, is described by Chodura’s fluid
model, giving the solution (4.6) to lowest order in α. In the limit 3/|lnα|< 1/|ln τ |� 1,
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we have analytically shown that the solution of the shallow-angle kinetic model is
asymptotically equivalent to the fluid solution in (4.6) to lowest order in τ and α.
The numerical results for τ = 0.2, shown in figure 5, confirm that the kinetic solution
tends to the fluid solution at small τ . We have also shown that, despite the ordering
ρi� ρB for τ � 1, the characteristic spatial extent of ion gyromotion in the direction
normal to the wall grows to ρB

√
|lnα| as the ion approaches the wall, thus becoming

comparable to the size of the magnetic presheath. The growth of ion gyro-orbits is
accompanied by a decrease in the gyration velocity in order to conserve the adiabatic
invariant, as can be seen in figure 3. Hence, if the ion thermal energy is too small, the
gyration velocity of ion orbits becomes comparable to the orbit drift, thus invalidating
the gyrokinetic assumption underlying our kinetic model. For the largest orbits, our
kinetic model breaks down if τ 3 . α.

In the hot ion limit, τ →∞, our model corresponds to a model briefly studied in
Cohen & Ryutov (1998), which we described in § 4.2. From the electrostatic potential
results shown in figure 5, the largest values of ion temperature, τ = 5 and τ = 10,
are consistent with the large ion temperature limit. Our results for the distribution
function at the Debye sheath entrance (shown in figures 6 and 7, for α= 0.05) show
that the angle between a typical ion trajectory and the wall is smaller at large values
of τ . Correspondingly, ions that have traversed the magnetic presheath tend to have a
smaller spread of the normal component of the velocity, vx. The latter effect, which
is also present for τ ∼ 1 and |lnα| � 1 (to be treated in a future publication), is
particularly prominent for τ � 1. For 1� τ � 1/α ions reach the wall with a range
of velocities that is centred at vx ≈ vB (consistent with the kinetic Bohm condition
(3.42)) and whose spread is vB ∼ vt,i/

√
τ (see, for example, α = 0.05 and τ = 5 in

figure 6). For τ � 1/α, ions reach the wall with a range of velocities that is peaked
at vx ∼ vB/

√
ατ � vB (essentially vx ' 0), and whose spread is α1/2vt,i (see the plot

for α = 0.05 and τ→∞ in figure 6).
Chodura’s fluid model of the magnetic presheath can give electrostatic potential

profiles that are qualitatively similar to the ones obtained using our kinetic model
for τ . 1 (see figure 5). At larger values of τ , the quantitative difference between
the fluid profile and the kinetic profile becomes more evident. For very large values
of τ , the potential drop normalized to electron temperature is up to 30 % smaller
than for τ = 0. However, at such large values of τ the electrons would not be
adiabatic, as was assumed here, since the assumption α/

√
1+ τ �

√
me/mi would

not be satisfied. In this case, the Debye sheath would not repel most of the electrons
back into the magnetic presheath, and a kinetic treatment of both ions and electrons
would be necessary. The ordering α/

√
1+ τ ∼

√
me/mi has mostly been avoided

in the literature to date, but is becoming more relevant for fusion devices since
√

me/mi ∼ 0.02 rad≈ 1◦ for deuterium plasmas, τ & 1 near divertor targets (Mosetto
et al. 2015) and α ∼ 2.5◦ is expected in ITER (Pitts et al. 2009).
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Appendix A. Glossary of notation
Here, we provide a glossary of some of the notation used in this paper. For each

symbol, we give a brief description and a reference to the equation where the symbol
first appears.

Symbol Name or description Appears in equation

τ Ion temperature/Z × electron temperature (1.1)
α Angle between magnetic field and target (2.1)
φ Electrostatic potential (2.2)
vB Bohm speed (2.4)
cs Sound speed (2.6)
ρs Sound gyroradius (2.7)
ρB Bohm gyroradius (2.8)
x̄ Orbit position (3.7)
U⊥ Perpendicular energy (3.8)
U Total energy (3.9)
Vx Absolute value of vx as a function of x, x̄ and U⊥ (3.10)
V‖ vz as a function of U⊥ and U (3.12)
χ Effective potential appearing in the function Vx (3.13)
χm [xm] Effective potential minimum [position] (3.16)
µ [µgk] Adiabatic invariant [functional form] (3.17)
ρx Periodic piece of ion position for τ � 1 (3.18)
wx Periodic piece of ion velocity for τ � 1 (3.19)
ni,cl Number density of ions in closed orbits (3.22)
ni,op Number density of ions in open orbits (3.23)
x̄m Minimum allowed x̄ for closed orbit crossing x (3.25)
x̄m,o Minimum allowed x̄ for open orbit crossing x (3.26)
x̄c [xc] Minimum allowed x̄ [stationary pt. of χ(x̄c, x)] (3.27)
χM [xM] Effective potential maximum [position] (3.28)
χc χ(x̄c, xc) (3.29)
∆M Spread of values of v2

x/2 of open orbits (3.30)
n∞ Number density of ions at x→∞ (3.33)
ux Fluid velocity component normal to target (3.36)
ux∞, uz∞ Fluid velocity components at x→∞ (3.37)
f0 Ion distribution function at x= 0 (3.38)
Π̂ Top hat function (3.39)
ε 1/|lnα| (4.7)
l Length scale of φ′′(x) (4.14)
vd x-component of ion drift velocity= ẋm (4.28)
C [κ] Constant parameters of parabolic piece of φ (4.36)
K Dimensionless constant related to χc (4.45)
φnp Non-parabolic piece of electrostatic potential (4.53)
ψ Function related to φ (4.59)
Θ Heaviside step function (4.63)
ṽy, Ũ⊥, Ũ Dimensionless vy, U⊥, U (integration variables) (4.70)
˜̄x, ṽz Dimensionless x̄, vz (integration variables) (4.75)
f∞ Ion distribution function at x→∞ (5.2)
F Ion distribution function in magnetic presheath (5.4)
N Normalization of f∞ (5.5)
u Parameter of f∞ for τ 6 1 (5.6)
r Parameter of f∞ for τ > 1 (5.7)
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Appendix B. Derivation of (3.30)
In Geraldini et al. (2017) the quantity ∆M appearing in the open orbit density (3.23)

was expressed as

∆M(x̄,U)= 2αΩ2V‖(χM(x̄),U)
∫ xt,M

xM

x− xM

Vx(x, x̄, χM(x̄))
dx. (B 1)

We proceed to show that (B 1) and (3.30) for ∆M are equivalent.
Open orbits have U⊥ = χM(x̄) to lowest order. Hence, their orbit position x̄

determines the perpendicular energy U⊥. Every ion in an open orbit must have
come from a closed orbit which had an adiabatic invariant equal to µ=µgk(x̄, χM(x̄)),
where µgk is defined in (3.17). Taking the total derivative of µ with respect to x̄
leads to

dµ
dx̄

∣∣∣∣
open

=
∂µgk

∂U⊥
(x̄, χM)

dχM

dx̄
+
∂µgk

∂ x̄
(x̄, χM). (B 2)

Using (3.10), we obtain the partial derivatives ∂Vx/∂U⊥ = 1/Vx, ∂Vx/∂ x̄ = Ω2(x −
x̄)/Vx. Then, differentiating equation (3.17) under the integral sign (which is possible
because the limits of integration are points where the integrand vanishes), we get

∂µgk

∂U⊥
(x̄,U⊥)=

1
π

∫ xt

xb

1
Vx(x, x̄,U⊥)

dx, (B 3)

and
∂µgk

∂ x̄
(x̄,U⊥)=

1
π

∫ xt

xb

Ω2(x− x̄)
Vx(x, x̄,U⊥)

dx. (B 4)

To obtain dχM/dx̄, we first write

χM(x̄)= χ(xM, x̄)=
1
2
Ω2(xM − x̄)2 +

Ωφ(xM)

B
. (B 5)

As was argued in Geraldini et al. (2018), one of the two terms in dχM/dx̄ is
χ ′(xM, x̄) dxM/dx̄= 0, because χ ′(xM, x̄)= 0 if the maximum is a stationary point of
χ , and dxM/dx̄= 0 if the maximum is the non-stationary point xM = 0. Hence, only
one term is left when differentiating equation (B 5),

dχM

dx̄
=Ω2(x̄− xM). (B 6)

Inserting (B 3), (B 4) and (B 6) into (B 2), we obtain

dµ
dx̄

∣∣∣∣
open

=
Ω2

π

∫ xt,M

xM

x− xM

Vx(x, x̄, χM)
dx. (B 7)

Then, equation (3.30) follows from (B 7) and (B 1).

Appendix C. Chodura’s fluid model
In this appendix, we first recap Chodura’s fluid model, valid for any angle α, and

derive the differential equation (4.3). We then proceed to expand the fluid model to
lowest order in α using the ordering α � 1. We thus derive equation (4.6), which
coincides with the solution of the kinetic model in the ordering (4.7) to lowest order
in α and τ .
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C.1. General oblique angles: derivation of (4.3)
In this appendix subsection, we consider general oblique angles, α∼1 (in radians). For
τ = Ti/Te = 0, all ions have the same velocity, the ion fluid velocity u= (ux, uy, uz),
and thus the ion equations of motion (3.1)–(3.3) reduce to

uxu′x =−
Ωφ′

B
+Ωuy cos α, (C 1)

uxu′y =−Ωux cos α −Ωuz sin α, (C 2)

uxu′z =Ωuy sin α. (C 3)

Here, ′ indicates differentiation with respect to x. The fluid equations (C 1)–(C 3)
follow from the particle equations of motion (3.1)–(3.3) by setting v = u and using
ux= ẋ to write u̇=uxu′ (thus changing the time derivative of every velocity component
to a spatial derivative).

Adding (C 1)–(C 3) multiplied by ux, uy and uz respectively, dividing by ux and
integrating leads to

1
2
v2

B =
1
2

u2
x +

1
2

u2
y +

1
2

u2
z +

Ωφ

B
, (C 4)

where we used φ(∞)= 0 and the boundary condition (4.1). We proceed to obtain a
differential equation for φ(x) from (C 4), following the derivation in Riemann (1994).5
Differentiating (4.2) gives

u′x =
eφ′

Te
vB exp

(
−

eφ
Te

)
sin α. (C 5)

Inserting (C 5) in (C 1) and re-arranging gives

uy =
φ′

B cos α

(
1− exp

(
−

2eφ
Te

)
sin2 α

)
. (C 6)

Equations (4.2) and (C 6) are substituted in (C 3) to obtain

u′z =−
vB

cos α

(
exp

(
eφ
Te

)
− exp

(
−

eφ
Te

)
sin2 α

)
eφ′

Te
. (C 7)

Using the boundary conditions in (4.1), equation (C 7) integrates to

uz =
vB

cos α

[
2− exp

(
eφ
Te

)
− exp

(
−

eφ
Te

)
sin2 α

]
. (C 8)

Substituting (4.2), (C 6) and (C 8) into the energy equation (C 4) results in (4.3), which
is solved by imposing a boundary condition at x= 0, the Debye sheath entrance.

We proceed to discuss this boundary condition. First, we note that equation (4.3) has
a singularity at |ux|/vB= sinα exp(eφ/Te)= 1 and that our boundary condition at x→
∞ imposed |ux|/vB= sin α exp(eφ/Te)= sin α < 1. Since a crossing of the singularity
in (4.3) would not be physical, it follows that the quantity |ux|/vB= sin α exp(eφ/Te)
should stay below unity or reach unity at x= 0, |ux(0)|/vB 6 1. However, the Bohm
condition for a stationary Debye sheath requires that |ux(0)|/vB > 1. Therefore, the
only way to match the magnetic presheath with the Debye sheath is by using the

5In Riemann (1994) (originally in Chodura (1982)) the corresponding differential equation for ux(x) was
derived.
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boundary condition ux(0)/vB = sin α exp(eφ(0)/Te) = 1. The electrostatic potential
profile in the magnetic presheath can then be obtained by numerically integrating (4.3)
using eφ(0)/Te = ln(sin α) as a boundary condition.

C.2. Shallow angles: derivation of (4.6)
We proceed to expand equation (4.3) for α� 1, with the aim of obtaining eφ(x)/Te
correct excluding terms that are small in α. The electrostatic potential φ in (4.3)
changes from φ(∞)= 0 to eφ(0)/Te' ln(α) at x= 0. Neglecting terms that are small
in α over the entire range of values of φ, equation (4.3) becomes(

α2 exp
(
−

2eφ
Te

)
− 1
)2

v2
B

Ω2

(
eφ′

Te

)2

=−3− α2 exp
(
−

2eφ
Te

)
−

2eφ
Te

+ 4 exp
(

eφ
Te

)
− exp

(
2eφ
Te

)
+O

(
α2 exp

(
−

eφ
Te

))
. (C 9)

By substituting the definition of ψ in (4.59), equation (C 9) becomes

ρ2
Bψ
′2
=−3− 2ψ + 4 exp(ψ)− exp(2ψ)+O(α2 exp(−ψ)). (C 10)

Notice that equation (C 10) satisfies ψ ′=0 for ψ =0 and therefore also satisfies φ′=0
for φ= 0, a condition which is satisfied by the exact equation (4.3)6 but is not exactly
satisfied by (C 9). There are two terms of equal size that give rise to the error in
(C 10). One is the error in (C 9), and the other arises from the non-equivalence of ψ
and eφ/Te, giving

exp(ψ)− exp
(

eφ
Te

)
∼ α2 exp (−ψ). α. (C 11)

Hence, equation (4.6) gives the uniformly valid magnetic presheath electrostatic
potential in Chodura’s fluid model to lowest order in α.

In figure 8, we plot the electrostatic potential, φ(x), that results from solving (4.3)
(exact) and (4.6) (approximate) for four different values of α: the approximate solution
is different from the exact solution for α= 0.4, is very close to the exact solution for
α = 0.2 and almost overlaps with the exact solution for α = 0.1 and α = 0.05.

Appendix D. Alternative derivation of drift velocity of closed ion orbits into the
wall

The drift velocity vd = ẋm can be obtained using the relation

ẋm =
dxm

dx̄
˙̄x. (D 1)

From (3.14) we have

x̄= xm +
φ′(xm)

BΩ
, (D 2)

6As Riemann (1994) showed, the derivative of the right-hand side of (4.3) evaluated at φ = 0 is equal to
zero, and the second derivative is equal to zero when the Chodura condition is marginally satisfied (which is
the case we consider). Equation (C 10) has both of these properties, while (C 9) has neither of them.
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FIGURE 8. Electrostatic potential φ(x) for four different values of α. The solid line
results from solving the exact equation (4.3), while the dashed line results from the
approximation (4.6).

which can be differentiated to obtain

dx̄
dxm
=
χ ′′(xm)

Ω2
. (D 3)

Therefore, the drift velocity is

vd =
Ω2 ˙̄x
χ ′′(xm)

. (D 4)

Inserting ẋ= vx and equation (3.5) into ˙̄x= ẋ+ v̇y/Ω , we obtain the relation ˙̄x=−αvz.
As a final step, we insert ˙̄x = −αvz into (D 4), and we use (4.21) for vz to recover
(4.28).

Appendix E. Alternative derivation of closed and open orbit ion density for
small τ

For τ→ 0, the ion distribution function F tends to

F(µ,U)=
n∞vB

2πΩ
δ(µ)δ

(
U −

1
2
v2

B

)
. (E 1)

We proceed to use this distribution function to derive equations (4.30) and (4.43).
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E.1. Closed orbit density

Using (4.13), the adiabatic invariant of an ion in a closed orbit is given by

µ'

√
2(U⊥ − χm(x̄))

π

∫ xt

xb

√
1−

χ ′′(xm)(x− xm)2

2(U⊥ − χm(x̄))
dx
(

1+O
(
ρ2

x

l2

))
, (E 2)

with xb = xm −
√

2(U⊥ − χm(x̄))/χ ′′(xm) and xt = xm +
√

2(U⊥ − χm(x̄))/χ ′′(xm). In
(E 2), the O(ρ2

x /l
2) error comes from the fourth-order term of the Taylor expansion of

χ around xm, since the third-order term integrates to zero. Equation (E 2) thus reduces
to

µ'
U⊥ − χm(x̄)
√
χ ′′(xm)

(
1+O

(
ρ2

x

l2

))
. (E 3)

Inserting the distribution function of (E 1) into the closed orbit integral (3.22) and
changing from U⊥ to µ using (E 3) gives

ni,cl(x) =
n∞vB

2π

∫
∞

x̄m(x)
Ω dx̄

∫
∞

0

2
√
χ ′′(xm)δ(µ) dµ√

2(
√
χ ′′(xm)µ+ χm(x̄)− χ(x, x̄))

×

∫
∞

Ωµ

δ(U − v2
B/2) dU

√
2(U − χm(x̄)− χ ′′(xm)µ)

(
1+O

(
ρ2

x

l2

))
. (E 4)

In (E 4), the upper limit of integration in µ was extended to ∞ because δ(µ) is zero
for µ 6= 0 (in practice, F(µ,U) is small for orbits with µ� τv2

B/Ω).
To calculate the integral in (E 4), we change variable from x̄ to xm and change

the order of integration so that the integral over xm is carried out first. By using the
relation (D 3) for dx̄/dxm, and taking χ ′′(xm) = χ

′′(x)(1 − ρx/l + O(ρ2
x /l

2)), equation
(E 4) becomes

ni,cl(x) =
n∞vBχ

′′(x)
2πΩ2

∫
∞

0
δ(µ) dµ

∫
∞

Ωµ

δ(U − v2
B/2) dU√

2(U − 1
2(φ

′(x)/B)2 −Ωφ(x)/B)

×

∫ x+
√

2µ/(χ ′′(x))1/4

x−
√

2µ/(χ ′′(x))1/4

2
√
χ ′′(x) dxm√

2
√
χ ′′(x)µ− χ ′′(x)(x− xm)2

(
1+O

(
ρ2

x

l2

))
. (E 5)

Note that, when Taylor expanding the integrand, the terms linear in ρx= x− xm coming
from the correction to χ ′′(xm)'χ

′′(x) integrate to zero. Hence, the size of the relative
error has remained O(ρ2

x /l
2). The right-most integral evaluates to 2π, and thus (E 5)

becomes

ni,cl(x)=
n∞vBχ

′′(x)
Ω2

∫
∞

0
δ(µ) dµ

∫
∞

Ωµ

δ(U − v2
B/2)(1+O(ρ2

x /l
2)) dU√

2(U − 1
2(φ

′(x)/B)2 −Ωφ(x)/B)
. (E 6)

The straightforward integrals over Dirac delta functions give the density of closed
orbits in (4.30).
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E.2. Open orbit density
Expanding the integrand in (3.23) gives

√
2(∆M(x̄,U)+ χM(x̄)− χ(x, x̄))−

√
2(χM(x̄)− χ(x, x̄))'

∆M(x̄,U)
√

2(χM(x̄)− χ(x, x̄))
.

(E 7)
By changing variable from x̄ to µ, substituting (E 7) and inserting χM(x̄)− χ(x, x̄)=
χc−χ(x, x̄c)+O(τ 2εv2

B) (recall the discussion preceding equation (4.41)), where χc=

χ(xc, x̄c), the integral (3.23) simplifies to

ni,op =
1√

2(χc − χ(x, x̄c))+O(τ 2εv2
B)

∫
∞

0

dµ
dx̄

∣∣∣∣−1

open

Ω dµ

×

∫
∞

Ωµ

F(µ,U)∆M(x̄c,U) dU
√

2(U − χc)
. (E 8)

Inserting the relation (3.30) into (E 8) gives

ni,op =
2πα√

2(χc − χ(x, x̄c))+O(τ 2εv2
B)

∫
∞

0
Ω dµ

∫
∞

Ωµ

F(µ,U) dU. (E 9)

Using (E 1) for the distribution function, the density of open orbits becomes (4.43).

Appendix F. Integrals of distribution functions (5.2)

We proceed to derive equations (5.5)–(5.9) for the values of N , u, r and uz∞

associated with the distribution functions in (5.2). Integrating (5.2) over vy and vz,
we obtain the functions

f∞z(vz)=

∫
f∞(v) dvx dvy =


N n∞

4v2
z

√
πv3

t,i
exp

(
−
(vz − uvt,i)

2

v2
t,i

)
Θ(vz) for τ 6 1,

N n∞
4v2

z
√

πvt,i(v
2
t,i + rv2

z )
exp

(
−
v2

z

v2
t,i

)
Θ(vz) for τ > 1.

(F 1)
All the integrals in this appendix are carried out using the dimensionless variables
w̃z = vz/vt,i − u and ṽz = vz/vt,i.

Using (F 1), the normalization condition (5.5) is

n∞ =
∫
∞

0
f∞z(vz) dvz. (F 2)

Evaluating equation (F 2) for τ 6 1, and changing integration variable to w̃z gives

n∞ =N n∞
4
√

π

∫
∞

−u
(w̃z + u)2 exp(−w̃2

z ) dw̃z. (F 3)

Thus,
4N
√

π

∫
∞

−u
(w̃2

z + 2w̃zu+ u2) exp(−w̃2
z ) dw̃z = 1. (F 4)
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The integral in (F 4) evaluates to∫
∞

−u
(w̃2

z + 2w̃zu+ u2) exp(−w̃2
z ) dw̃z =

√
π

4
(1+ 2u2)(1+ erf(u))+

u
2

exp(−u2). (F 5)

Hence, equation (5.5) for τ 6 1 follows.
Evaluating equation (F 2) for τ >1, one finds, after changing the integration variable

to ṽz,

n∞ =
4N n∞
√

π

∫
∞

0

ṽ2
z exp(−ṽ2

z )

1+ rṽ2
z

. (F 6)

The last integral in (F 6) is calculated in the following way. First, one can obtain the
integral of the function exp(−ṽ2

z )/(1+ rṽ2
z ) (which will be useful when imposing the

kinetic Chodura condition (5.1) in the next paragraph). Re-expressing 1/(1 + rṽ2
z ) =∫

∞

0 exp(−η(1+ rṽ2
z )) dη, one has∫

∞

0

exp(−ṽ2
z )

1+ rṽ2
z

dx =
∫
∞

0
dη exp(−η)

∫
∞

0
exp(−(1+ ηr)ṽ2

z ) dṽz

=

√
π

2

∫
∞

0

exp(−η)
√
ηr+ 1

dη. (F 7)

Changing the integration variable to ξ =
√
η+ 1/r gives∫

∞

0

exp(−ṽ2
z )

1+ rṽ2
z

dx =
√

π

r
exp

(
1
r

) ∫
∞

1/
√

r
exp(−ξ 2) dξ

=
π

2
√

r
exp

(
1
r

) [
1− erf

(
1
√

r

)]
. (F 8)

Then, using the relation∫
∞

0

exp(−ṽ2
z )

1+ rṽ2
z

dṽz + r
∫
∞

0

ṽ2
z exp(−ṽ2

z )

1+ rṽ2
z

dṽz =

∫
∞

0
exp(−ṽ2

z ) dṽz =

√
π

2
, (F 9)

the integral ∫
∞

0

ṽ2
z exp(−ṽ2

z )

1+ rṽ2
z

dṽz =

√
π

2r
−

π

2r3/2
exp

(
1
r

) [
1− erf

(
1
√

r

)]
(F 10)

is obtained. Inserting this integral into (F 6), we obtain the expression for N in (5.5).
Equation (5.1) is used to obtain the values of the positive constants u and r. For

τ 6 1, one inserts the distribution function (F 1) into (5.1) and changes variable to
w̃z = vz/vt,i − u to obtain

v2
t,i

v2
B
=

4N
√

π

∫
∞

−u
exp

(
−w̃2

z

)
dw̃z = 2N [1+ erf(u)]. (F 11)

Rearranging (F 11) and inserting the value of N gives equation (5.6). For τ > 1, one
changes variable to ṽz = vz/vt,i in the integral (5.1) to obtain

v2
t,i

v2
B
=

4N
√

π

∫
∞

0

exp(−ṽ2
z )

1+ rṽ2
z

dṽz. (F 12)

Inserting the value of N and the integral in (F 8) gives equation (5.7).
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The ion fluid velocity is evaluated using

uz∞ =
1

n∞

∫
f∞z(vz)vz dvz. (F 13)

For τ 6 1 one has

uz∞

vt,i
=

4N n∞
√

π

∫
∞

−u
(w̃z + u)3 exp(−w̃2

z ) dw̃z. (F 14)

The integrals in (F 14) evaluate to∫
∞

−u
(w̃z + u)3 exp(−w̃2

z ) dw̃z =

∫
∞

−u
(w̃3

z + 3w̃2
z u+ 3w̃zu2

+ u3) exp(−w̃2
z ) dw̃z

=

√
πu
4
(3+ 2u2)[1+ erf(u)] +

1
2
(u2
+ 1) exp(−u2), (F 15)

giving (5.8). For τ > 1, one has

uz∞

vt,i
=

4N n∞
√

π

∫
∞

0

ṽ3
z

1+ rṽ2
z

exp(−ṽ2
z ) dṽz. (F 16)

The integral in (F 16) is calculated, as before, by expressing 1/(1+ rṽ2
z ) as a definite

integral,∫
∞

0

ṽ3
z

1+ rṽ2
z

exp(−ṽ2
z ) dṽz =

∫
∞

0
dη exp(−η)

∫
∞

0
ṽ3

z exp(−ṽ2
z (1+ ηr)) dṽz

=

∫
∞

0

exp(−η)
2(1+ ηr)2

dη. (F 17)

Then, integrating by parts and changing the integration variable to ξ = η+ 1/r gives∫
∞

0

ṽ3
z

1+ rṽ2
z

exp(−ṽ2
z ) dṽz =

1
2r
−

1
2r

∫
∞

0

exp(−η)
1+ ηr

dη

=
1
2r
−

exp(1/r)
2r2

∫
∞

1/r

exp(−ξ)
ξ

dξ . (F 18)

Using the definition of the exponential integral in (5.10), we obtain∫
∞

0

ṽ3
z

(1+ rṽ2
z )

exp(−ṽ2
z ) dṽz =

1
2r
−

exp(1/r)
2r2

E1

(
1
r

)
, (F 19)

leading to equation (5.9).
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