NON-CONVEXITY IN BEST COMPLEX CHEBYSHEV APPROXIMATION BY RATIONAL FUNCTIONS

BY

CHARLES B. DUNHAM

In real Chebyshev approximation by generalized rational functions, constraining denominators to be positive guarantees that the set of best coefficients is convex [1, 181]. We show by means of an example that denominators must be constrained to be of constant argument for such a convexity result to hold in complex Chebyshev approximation.

Let X be a set of 3 points $\{x, y, z\}$ and approximations be of the form
where

$$
R(A, t)=P(A, t) / Q(A, t)=a_{1} /\left(a_{2} \psi_{1}(t)+a_{3} \psi_{2}(t)\right)
$$

$$
\begin{array}{ll}
\psi_{1}(x)=\psi_{1}(y)=1 & \psi_{1}(z)=0 \\
\psi_{2}(x)=\psi_{2}(y)=0 & \psi_{2}(z)=1
\end{array}
$$

and a_{1}, a_{2}, a_{3} are complex. Let $f(x)=0, f(y)=2$, and $f(z)$ be chosen later. Let μ, v be given, $-\pi \leq \mu<\nu \leq \pi$ and

$$
P=\{A: Q(A, t) \neq 0, \mu<\arg (Q(A, t))<v, t \in X\}
$$

The approximation problem is to find $A^{*} \in P$ for which

$$
e(A)=\max \{|f(t)-R(A, t)|: t \in X\}
$$

is minimized over $A \in P$. Such a parameter A^{*} is called best.
In [2] is considered the general problem of this type with $(\mu, \nu)=(-\pi / 2, \pi / 2)$ and $(\mu, v)=(-\pi / 2,0)$.

Since $R(\alpha A,)=.R(A,$.$) for all \alpha \neq 0$, it is not difficult to see that there is no loss of generality in having (μ, v) of the form $(-\gamma, \gamma)$, where $2 \gamma=\nu-\mu$. We assume this is the case.

Theorem. Let $\gamma>0$ then there is a value for $f(z)$ such that the set of coefficients which are best to f is not convex.

Proof. By choice of $\psi_{1}, \psi_{2}, R\left(A\right.$, .) equals a_{1} / a_{2} on $\{x, y\}$ and so approximations are constant on $\{x, y\}$. It follows from standard arguments in complex linear approximation that the best approximation to f on $\{x, y\}$ is the constant 1 , with absolute value of error $=1$. From this it follows that A is best if $e(A)=1$. Let $\gamma>0$ then there exists $\eta>0$ such that $-\gamma<\arg (1-\eta i)<\arg (1+\eta i)<\gamma$. Now

$$
\frac{1}{1+\eta i}=\frac{1-\eta i}{1+\eta^{2}} \quad \frac{1}{1-\eta i}=\frac{1+\eta i}{1+\eta^{2}}
$$

so both of these have absolute value <1. There exists real $\alpha<0$ such that

$$
\begin{equation*}
\left|\alpha-\frac{1}{1+\eta i}\right|<1 \quad\left|\alpha-\frac{1}{1-\eta i}\right|<1 . \tag{1}
\end{equation*}
$$

Let $f(z)=\alpha$ and $A=(1,1,1+\eta i), B=(1,1,1-\eta i)$. We have by (1) $e(A)=e(B)=1$ and A, B are best. Let $C=(A+B) / 2=(1,1,1)$ then $|f(z)-R(C, z)|=|\alpha|+1$ and $e(C)=1+|\alpha|$. Thus the set of best coefficients is non-convex.

If we instead define

$$
P=\{A: Q(A, t) \neq 0, \mu \leq \arg (Q(A, t)) \leq \nu, t \in X\}
$$

exactly the same thing happens if $\mu<\nu$.

References

1. B. Brosowski, Über die Eindeutigkeit der rationalen Tschebysheff-Approximationen, Numer. Math. 7 (1965), 176-186.
2. R. L. Dolganov, The approximation of continuous complex-valued functions by generalized rational functions, Siberian Math. J. 11 (1970), 932-942.

Computer Science Department, University of Western Ontario, London 72, Canada

