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GENERALISED SOLUTIONS OF HESSIAN EQUATIONS

ANDREA COLESANTI AND PAOLO SALANI

We introduce a definition of generalised solutions of the Hessian equation S,, (Dzu)
= f in a convex set Q@ C R"™, where S (Dzu) denotes the m-th symmetric
function of the eigenvalues of D*u, f € LP(Q), p > 1, and m € {1,...,n}.
Such a definition is given in the class of semi-convex functions, and it extends the
definition of convex generalised solutions for the Monge-Ampére equation. We
prove that semiconvex weak solutions are solutions in the sense of the present

paper.

0. INTRODUCTION

In this note we deal with the so-called Hessian equations:
(0.1) Sm(D?u)=f>0 inQ.

Here S,,(D%u) denotes the m-th symmetric function of the eigenvalues of the Hessian
matrix of ¥, m € {1,...,n}, and € is an open bounded subset of R".

The aim of the present paper is introducing a definition of generalised solution of
equation (0.1). To do this, we restrict ourselves to the class of semiconvex functions
defined over a convex set 2 and we prove that if u belongs to such class, n + 1 Borel
real measures oo(u;-),...,0n(¥; ), can be defined, which generalise the integrals of the
functions S, (D?u). Namely, if u € C%(Q), then

(:)ak(u;n>=/nsk(D2u)y k=0,.m,

for every Borel subset 7 of 2. Then we say that u is a generalised solution of (0.1) if

<:L) om(u;n) = /nf,

for every Borel subset 7 of 2 (see Definition 4.1).
Notice that, if u is convex, then o, (u;-) is the measure of the subgradient map of u
(see Section 2 for details). Hence for m = n, that is, when (0.1) is the Monge- Ampére
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equation, the above definition coincides with the usual notion of convex generalised
solution of the Monge-Ampére equation, introduced by Aleksandrov (see for instance
(2, 12] and references therein).

The present paper originated from a private communication between the authors
and professor Neil Trudinger, during a conference on Elliptic PDE held in Cortona
(Ttaly) in May 1996. Trudinger [11] establishes existence and uniqueness results for
weak solutions of certain Dirichlet problems involving equations (0.1); such solutions
are limit of solutions of smooth approximating problems. In Theorem 4.2 we prove that
a semiconvex weak solution of (0.1) is also a generalised solution.

In Section 1 we give some preliminaries on semiconvex functions, while in Section
2 and Section 3 we state and then prove the existence of the measures o (u;-). Finally,
in Section 4, we give the definition of the generalised solutions and we prove Theorem
4.2.

1. SEMICONVEX FUNCTIONS

In this section we recall briefly the notion of a semiconvex function. This class of
functions was studied by several authors: see for instance [3] and [7].

Throughout, €2 is an open convex and bounded subset of R and ||-|| denotes the
Euclidean norm. L™ stands for the n-dimensional Lebesgue measure and B(A) is the
family of Borel subset of a measurable set A C R™.

DEFINITION: A real-valued function u, defined in €, is semiconver if there exists
¢ > 0 such that the function u(z) + c||z||® /2 is convex in .

If u is semiconvex in €2, we call the real number

2
(1.1) se(u, ) = inf{c 20 u+ @ is convex in Q}

the semiconvezity modulus of u in Q.

We denote the class of semiconvex functions in 2 by W(£2) and set W(Q,¢) =
{fue W(Q) : sc(u,) < ¢} for every ¢ 2 0.

For a convex function v let u(z) be the subdifferential of v at z. If u is semicon-
vex we denote by Ou(z) the set {w—cz : we d(u+(c ||.7:||2)/2) (z)}, which coincides
with the Clarke generalised gradient of u at z (see [7] for references). By well-known
properties of the subdifferential of a convex function, du(z) is a nonempty closed and
convex set for every x € €.

2. GENERALISED SYMMETRIC FUNCTIONS OF THE HESSIAN

We recall that, for real numbers 8;,...,08,, and 1 < m < n, the m-th symmetric
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function of Bi,..., Oy, is defined by

Sm(/gl)"",@ﬂ): Z ﬁilﬁiz"’ﬂim’

1<) <ig< - <imKn

Furthermore, we set So(B1,...,0n) = 1.

If u is of class C2, we denote by Sm(D?u) the m-th symmetric function of the
eigenvalues of the Hessian matrix D?u of u. For a Borel subset 1 of Q, and for p > 0,
consider the set P,(u;n) = {z + pVu(z) : z € n}. If u € C*(Q), then by the area
formula, for sufficiently small p, we get

) = a1+ 0% =3 ([ 5079 )
i=0 n

n

here I stands for the n x n identity matrix.

Now let u € W(); for any nonnegative p and for any subset 7 C €2, we set
Pyuin)={2€R" : z=x+ pv,z €1, v € Ou(z)}.

Clearly if u € C1(Q) N W(R) this definition coincides with the one given above.
The following result generalises [4, Theorem 1.1] (see also [8, Proposition 3.1]}.

THEOREM 2.1. Let Q be an open bounded convex set in R™, let u € W(Q,¢)
for some ¢ > 0, and let uw be Lipschitz. Then, for every Borel subset n C {2 and for
every p € [0,1/c), the set P,(u;n) is Lebesgue measurable. Moreover, there exist n+1
real-valued Borel measures o;(u;-), i =0,...,n, such that:

(2.1) £ z::( )oj (wn)p?

for every p € [0,1/c] and for every Borel subset 1 of Q2.

If u is convex, then, as proved in [4, Theorem 3.1] on,{w;n) = L*({ve R" :
v € Ou(z), z € n}), for every n € B(2). Thus o,(y;-) is the measure of the subgradi-
ent map of u.

REMARK. In [6] Federer established a well-known Steiner formula for sets with positive
reach. Formula (2.1) can be seen as a counterpart of such formulas in the context of
semiconvex functions. Note that, as proved by Fu [7], sets of positive reach can be
characterised as sublevel sets of semiconvex functions.
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3. PROOF OF THEOREM 2.1

In order to prove Theorem 2.1 we need some preliminary results.

LEMMA 3.1. Let u € W(Q,c), ¢ 2 0, and let 0 < pc < 1. There exists a
Lipschitz map =, from P,(u;2) to Q, such that for every z € P,(u;Q), 2 = m,(2) +pv,
where v € du(m,(2)).

PROOF: Let 2,2’ € P,(u;2) and let z,z’ € Q be such that z = z+ pv, v € du(z),
and 2/ =z’ + pv’, v' € du(z’). We prove that there exists a constant L > 0 such that
lx —2'|| € L||z2—2'||. We choose a coordinate system such that z = (0,0,...,0)
and z’ = (¢',0,...,0), ¢’ 2 0. Let uw*(¢) = u(¢,0,...,0): such a function is defined
and semiconvex, with semiconvexity modulus not greater than ¢, on an open interval
(—e,t' +¢), for some € > 0. Moreover, if v = (vq,vg,...,v,) and v’ = (v{,v5,...,v}),
then v; € 9u*(0) and v; € Ou*(t’). By the definition of subgradient, this implies
vy —wv1 2 —ct’, and, if ¢p < 1, then

|z =2l 2 (z = 2/, e)| = (z + pv,e) — (&’ + pv', €}
=lp(v) — v} + [ 2t (L —cp) = |lz — || (1 — cp),
where e = (1,0,...,0). Thus m, is well defined and |l — 2’| = |7y (2) — 7mu(2)]]
< L)lz—- 2, with L =1/(1 — ¢cp).
REMARK. The continuity of m, implies that P,(u;n) = 73 (n) is measurable for any
Borel subset 7 of Q.

For a positive R, let B(R) be the open ball centred at the origin with radius R.

LEMMA 3.2. Let ue W(,c), ¢ > 0, and let u be Lipschitz. Then there exists
a semiconvex function w € W(R", ¢) which extends u to R™. Furthermore w is radially
symmetric and C* in the complement of B(R), for some R > 0.

PROOF: We consider the function k(z) = u(z) + (c||z||*) /2, which is convex and
Lipschitz in €. [4, Lemma 2.3] ensures that k¥ can be extended by a convex and
Lipschitz function k*, defined in R", which is radially symmetric and C* in the
complement of B(R), for a suitable R. Consequently w(z) = k*(z) — (c]|x|]2)/2
provides the required extension of u. 0

LEMMA 3.3. Let w be a semiconvex and Lipschitz function defined in R™, such
that w is radially symmetric and C* in the complement set of B(R), R > 0. Then, for
every p such that 1/p > sc(w,R™), P,(w; B(2R)) = B(2R + pL), where L = ||Dw(z)||
for ||z|| = 2R.

PrROOF: By the continuity of m,, we get
P,(w; BR)) = 75 (B(2R)) = 3} (B(zR))
= m-Y(B(2R) UOB(2R)) = n;*(B(2R)) U 7' (0B(2R)).
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On the other hand P,(w; B(2R)) = n;'(B(2R)) is open, hence 8P,(w; B(2R)) C
7, (0B(2R)) = OB(2R + pL). Since the only open sets whose boundary is contained
in 9B(2R + pL) are B(2R + pL) and its complement, and since the Lipschitz continuity
of w entails that P,(w;n) is bounded for every bounded 7, the assertion follows. 0

Let ue = ¢.*u be the standard mollification of u. As usual ¢.(z) = (1/e™)¢ (z/€),
€ > 0, where ¢ € C§°(R™) is a radially symmetric function supported in the unit ball,
such that 0 < ¢ <1 and fRn(ﬁ: 1.

It is easily seen that if u € W(R",c), then u. € W(R",¢c) for every ¢ > 0, and
ue converges uniformly to u on compact sets as ¢ — 0. For brevity, we set u; = uy;,
1€N.

PROOF OF THEOREM 2.1: Let w be a function which extends u to R”, radially
symmetric and C* outside a ball B(R); such a function exists by Lemma 3.2. Consider
the sequence w;, 1 € N. It is easily seen that, for sufficiently large ¢, w; is radially
symmetric outside the ball B(2R); let B = B(4R) throughout.

For a fixed p € [0,1/c) and for every Borel subset n C Q, the sets P,(w;n) and
P,(w;;n) are measurable for every i € N. (See the remark following Lemma 3.1.)

Let ©(p,n) = L™(P,(w;n)) and ©;(p,n) = L™ (Pp(wi;n)), Vn € B(B), Vie N.

We first prove that the sequence of measures ©;, converges weakly to © in B.
(We refer to [1] for the notion of weak convergence of measures and related properties.)
By (1, Theorem 4.5.1] it suffices to prove that 11_1)1& ©;(p, B) = O(p, B), and that for

every closed 7 C B we have limsup ©;(p,n) < ©(p,n).

1—00
By Lemma 3.3 we get ©(p, B) = L™(B(4R + pL)) and ©;(p, B) = L™(B(4R + pL;)),
where L; = ||Dw;(z)|l, for £ € dB. By the uniform convergence of the sequence w; to
w on compact sets, we have lim L; = L where L = |Dw(z)|| for z € 8B. Hence it
1—00

follows that lim ©;(p, B) = ©(p, B).
1—00
Next we prove that, if € > 0, 7 is a closed subset of B and i is sufficiently large,
then

(3.1) (Bp(w;m), D Pp(wisn)

where A, = {z € R" : dist(z, A) < €} for a set A C R®. We argue by contradiction:
assume for every ¢ there exist A; 2 ¢ and z,, € 17 such that

(3.2) Ty, + pDwy, (IE,\i) ¢ (Pp(w;m)), -

Since 7 is compact and the functions w; are uniformly Lipschitz, the sequences z,; and
Dwy, (m ,\i), are both bounded. Thus there exists a subsequence z,, of x,,, such that
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z,, & ¢ € n and Dw,, (z,,) = v € Ow(z). Hence lim z,, + pDw,,(z,,) = z + pv
11— 00
which contradicts (3.2) since z + pv € P,(w;n). Thus (3.1) is proved.
As i tends to infinity in (3.1), we obtain

limsup ©;(p,n) < L™((P,(w;n)),)

i—00
for an arbitrary €. On the other hand, since P,(w;n) is closed,
— 9 n .
©(p,m) = inf L7 ((Py(w;m)).) -
Finally we proved that
lim sup @i(p, T’) < @(p» 7’) .

1—00

Hence we conclude that the sequence ©;, ¢ € N, converges weakly to the measure

©.
Formula (2.1) applies to w;, for every i:
n n )
(3.3 oo =3 (T)ostwsne, vneB®),
7j=0
where o (w;n) = (;.‘)_1 fn S;(D*w;)dz, j =0,1,...,n, are real bounded measures.

For a fixed m > 0 such that n/m < 1/c, let px = k/m, k = 0,...,n. Writing
equality (3.3) for p = po, p1,---,Pn, for every i we get the linear system

n

O:{pk,m) = Z (?)aj(wi;n)p,’;, VneB(B), k=01,...,n.

=0
The square matrix ((?)p{c) is invertible, indeed it can be written as the product of a

diagonal invertible matrix times a matrix of Vandermonde type. If (a;x) denotes its
inverse matrix, we can write

n
oi(wiin) =Y Oilpk,mage, YneB(B), Vi=0,1,...,n.
k=0
Notice that the coefficients a;jx are independent of ¢ and 7. Consequently, the sequence
of measures oj(w;; ), @ € N, converges weakly for every j = 0,1,...,n, as i — 0.
Denote by o;(w;-) the weak limit of o;(w;;-): o;(w;-) is a real bounded measure.
The weak limits of the left and the right hand-sides of (3.3) must coincide, then

n

e eptwin) = 3 (2)ostwin, vneB(), Voo,

i=1
Finally, since u = w in 2, and © is open, for every = € Q we have Ju(z) = dw(z)
and consequently P,(u;n) = P,(w;n) for every Borel set  and for every p > 0. ad

REMARK. Notice that the measures o;(u;-) are uniquely determined by virtue of the
identity principle for polynomials.
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4. GENERALISED SOLUTIONS OF THE HESSIAN EQUATIONS

Consider the following Dirichlet problem involving the Hessian equations:

Sn(D*u) = f>0 in 2,
(4.1) (D*u) = 1 "
u=g on 99 .

Solvability of this problem in the classical sense is studied in [5] and [10]; while in
[11] weak solutions are considered. The measures o;(u; ), introduced in the previous
section, allow us to give a notion of generalised solution of this problem.

DEFINITION 4.1: Let @ C R™ be a bounded convex open set, f € L} () and
g € C(89); a semiconvex function u € C(f) is said to be a generalised solution of (4.1)

if

(4.2)

(mom(uin) = [, f(@)de,  Vne BQ),
u=g on 0f).

We prove that a semiconvex function which is limit of classical solutions, is a
generalised solution in the sense of Definition 4.1. This implies in particular that if u
is a weak solution of problem (4.1) in the sense of Trudinger [11], and u is semiconvex,
then u is also a generalised solution.

THEOREM 4.2. Let Q C R™ be a bounded convex open set and let ; be a
sequence of smooth bounded convex open sets, converging to §} in the Hausdorff metric.
Moreover, let u; € C*(£2;) and f; = Sy, (Dzu,') in ;, 1 € N. If u; converges uniformly
on compact subsets of  to a semiconvex function u and f; converges to f in L}(Q),
then u Is a generalised solution of the equation

Sm(D2u) =f inQ.
REMARKS. Here the functions f;, ¢ € N are assumed to be extended as zero in R"\ ;.
For the notion of Hausdorff metric, see {9].

PrOOF: First consider the sequence of measures
mm=/ﬁ@M,
7

defined for every Borel subset n C Q. Since f; — f in L}(£2), this sequence converges
strongly to the measure

u(n) = / f(@)de;

thus nlLr{:o pi(n) = p(n) for every n € B(Q).

On the other hand, from the uniform convergence of the sequence u; to w, using
the same argument as in the proof of Theorem 2.1, it follows that y;(-) converges weakly
to (;)Um(u; -} in Q. By the uniqueness of the weak limit, this concludes the proof. a
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