ON A GEOMETRIGAL THEOREM IN EXTERIOR ALGEBRA

DANIEL PEDOE
To my friend Donald Coxeter on the occasion of his sixtieth birthday

In this paper we shall give necessary and sufficient conditions for three lines, passing respectively through the vertices of a proper triangle $P Q R$ in the real Euclidean plane, to be concurrent. Of course, the theorem of Ceva deals with this problem, but it is useful to have a criterion which involves only vectors localized at a point O of the plane, and the exterior products of these vectors. Applications are made to theorems which are not easily proved by other methods. We begin with a brief discussion of the exterior product of two vectors.

1. Let V be a two-dimensional vector space over the field of the real numbers. We construct a vector space Λ^{2} over the field of the reals. We call this space the space of 2 -vectors on V.

It consists of all sums $\sum x_{i}\left(u_{i} \wedge v_{i}\right)$, where the x_{i} are real numbers, and the u_{i}, v_{i} are vectors in V. The following rules are to hold for the "wedge" product, or "exterior product" \wedge :
and

$$
\begin{aligned}
\left(x_{1} u_{1}+x_{2} u_{2}\right) \wedge v & =x_{1}\left(u_{1} \wedge v\right)+x_{2}\left(u_{2} \wedge v\right) \\
u \wedge\left(y_{1} v_{1}+y_{2} v_{2}\right) & =y_{1}\left(u \wedge v_{1}\right)+y_{2}\left(u \wedge v_{2}\right), \\
u & \wedge u=0 \\
u \wedge v & +v \wedge u=0 .
\end{aligned}
$$

The fourth rule is derivable from the third. Since the exterior product $u \wedge v$ is a member of a vector space over the field of the reals, the equation $k u \wedge v=0$, where the vector on the right is the zero vector of the vector space Λ^{2}, leads to the two possibilities $k=0$ or $u \wedge v=0$.

If u and v are dependent, so that $v=k u$, then

$$
u \wedge v=u \wedge(k u)=k(u \wedge u)=0
$$

We shall prove below that if this is not the case, then $u \wedge v \neq 0$.
A geometrical interpretation of the exterior product is easy to find. Let e_{1}, e_{2} be orthogonal unit vectors, and let

$$
u=x_{1} e_{1}+x_{2} e_{2} \quad \text { and } \quad v=y_{1} e_{1}+y_{2} e_{2} .
$$

Received April 28, 1967.

Then

$$
\begin{aligned}
u \wedge v & =\left(x_{1} e_{1}+x_{2} e_{2}\right) \wedge\left(y_{1} e_{1}+y_{2} e_{2}\right) \\
& =\left(x_{1} y_{2}-x_{2} y_{1}\right) e_{1} \wedge e_{2} .
\end{aligned}
$$

The number multiplying the exterior product of e_{1} and e_{2} is twice the measure of the area of the triangle formed by the origin and the points $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)$. The equation for $u \wedge v$ also shows us that the exterior product $e_{1} \wedge e_{2}$ of the basis vectors e_{1} and e_{2} is a basis for the space Λ^{2} of 2 -vectors on V. Since we do not wish the vector space Λ^{2} to consist only of the zero vector, we assume that $e_{1} \wedge e_{2} \neq 0$. It then follows that $u \wedge v=0$ if and only if u and v are linearly dependent, which means that $\left(x_{1}, x_{2}\right)=k\left(y_{1}, y_{2}\right)$.

It is now easy to give a criterion for three points to be collinear. Let $a=\left(x_{1}, x_{2}\right), b=\left(y_{1}, y_{2}\right)$, and $c=\left(z_{1}, z_{2}\right)$ be three points in the plane, and at the same time let a, b, and c also represent the vectors issuing from the origin to these points. Then we have:

Theorem I. The points a, b, and c are collinear if and only if

$$
a \wedge b+b \wedge c+c \wedge a=0
$$

Proof. As vectors, we write $a=x_{1} e_{1}+x_{2} e_{2}, b=y_{1} e_{1}+y_{2} e_{2}$, and $c=z_{1} e_{1}+z_{2} e_{2}$. Then, evaluating, our criterion gives us

$$
\left[\left(x_{1} y_{2}-x_{2} y_{1}\right)+\left(y_{1} z_{2}-y_{2} z_{1}\right)+\left(z_{1} x_{2}-z_{2} x_{1}\right)\right] e_{1} \wedge e_{2}=0
$$

and therefore an equivalent criterion is the determinantal expression:

$$
\left|\begin{array}{lll}
x_{1} & x_{2} & 1 \\
y_{1} & y_{2} & 1 \\
z_{1} & z_{2} & 1
\end{array}\right|=0,
$$

which we know is a necessary and sufficient condition for the collinearity of the points $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)$, and $\left(z_{1}, z_{2}\right)$.

This theorem is well known, and is merely given here for completeness.
As a final result, let $\mid u$ denote the supplement of the vector u, that is, the vector u rotated from the $O x_{1}$-axis towards the $O x_{2}$-axis through a right angle. If $u=x_{1} e_{1}+x_{2} e_{2}$, then $\mid u=-x_{2} e_{1}+x_{1} e_{2}$. It is immediate that if:

$$
v=y_{1} e_{1}+y_{2} e_{2},
$$

then

$$
\begin{aligned}
u \wedge|v=v \wedge| u & =\left(x_{1} y_{1}+x_{2} y_{2}\right) e_{1} \wedge e_{2} \\
& =(u . v) e_{1} \wedge e_{2},
\end{aligned}
$$

where $u . v$ stands for the inner product of the vectors u and v.
2. Let us now suppose that the points P, Q, and R, which are respectively end points of the localized vectors p, q, and r, form a proper triangle; that through the point P, and originating at P, there passes a free vector p^{*};
that through the point Q, and originating at Q, there passes a free vector q^{*}; and that through the point R, and originating at R, there passes the free vector r^{*}.

These free vectors determine lines through P, Q, and R, and we seek conditions for these lines to be concurrent. We replace the vectors p^{*}, q^{*}, and r^{*} by free vectors p^{\prime}, q^{\prime}, and r^{\prime} respectively, along the same lines and also originating at the respective points P, Q, and R. We now have

Theorem II. A necessary and sufficient condition for the lines of action of the vectors p^{*}, q^{*}, and r^{*} to be concurrent is the existence of vectors p^{\prime}, q^{\prime}, and r^{\prime} such that

$$
p \wedge p^{\prime}+q \wedge q^{\prime}+r \wedge r^{\prime}=0, \quad \text { where } p^{\prime}+q^{\prime}+r^{\prime}=0
$$

Proof. Necessity: We suppose that the lines of action of the vectors p^{*}, q^{*}, and r^{*} do intersect in a point W. Then if W is the end point of the localized vector w, we may write

$$
w=x p+y q+z r, \quad \text { where } x+y+z=1 .
$$

Since p^{*}, q^{*}, and r^{*} are along the lines $P W, Q W$, and $R Q$, respectively, we may choose $p^{\prime}=x(w-p), q^{\prime}=y(w-q)$, and $r^{\prime}=z(w-r)$. On adding, we find that

$$
\begin{aligned}
p^{\prime}+q^{\prime}+r^{\prime} & =(x+y+z) w-x p-y q-z r \\
& =w-x p-y q-z r=0
\end{aligned}
$$

and we also find that

$$
p \wedge p^{\prime}+q \wedge q^{\prime}+r \wedge r^{\prime}=(p x+q y+r z) \wedge w=w \wedge w=0
$$

so that the necessity of the theorem is established.
Sufficiency: We are told that vectors p^{\prime}, q^{\prime}, and r^{\prime} satisfying the given conditions exist. Let the line of action of p^{*} through P intersect the line of action of q^{*} through Q in the point W. Then if W is the end point of the localized vector w, we may determine x and y so that

$$
p^{\prime}=x(w-p) \quad \text { and } \quad q^{\prime}=y(w-q)
$$

since, by hypothesis, p^{\prime} is along p^{*} and q^{\prime} is along q^{*}. Since

$$
\begin{gathered}
p \wedge p^{\prime}+q \wedge q^{\prime}+r \wedge r^{\prime}=0 \\
p x \wedge(w-p)+y q \wedge(w-q)+r \wedge r^{\prime}=0
\end{gathered}
$$

Also, $\quad p^{\prime}+q^{\prime}=(x+y) w-(p x+q y)=-r^{\prime}$, so that $\quad p x+q y=(x+y) w+r^{\prime}$, and on substituting in

$$
\begin{array}{r}
p x \wedge(w-p)+y q \wedge(w-q)+r \wedge r^{\prime} \\
=(p x+y q) \wedge w+r \wedge r^{\prime}=0
\end{array}
$$

we obtain the equation

$$
\left[(x+y) w+r^{\prime}\right] \wedge w+r \wedge r^{\prime}=0
$$

which simplifies to

$$
r^{\prime} \wedge w+r \wedge r^{\prime}=0
$$

which can be written

$$
r^{\prime} \wedge(w-r)=0
$$

Hence, since the exterior product of two non-zero vectors is only the zero vector when they are linearly dependent, we must have $r^{\prime}=z(w-r)$, for some definite z, and since r^{\prime} is along r^{*}, the line of action of r^{*} passes through W. The sufficiency of the theorem is therefore established.

Remarks. The theorem continues to hold if W is not a finite point. If p^{\prime} is parallel to q^{\prime}, the condition $p^{\prime}+q^{\prime}+r^{\prime}=0$ shows that r^{\prime} is also parallel to p^{\prime} and to q^{\prime}, so that p^{*}, q^{*}, and r^{*} are all parallel. If we are given, on the other hand, that p^{*}, q^{*}, and r^{*} are all parallel, it is simple to prove the necessity of the given conditions.

Applications. We naturally test the theorem on the medians of triangle $P Q R$. The medians are parallel to the vectors

$$
p^{\prime}=p-(q+r) / 2, \quad q^{\prime}=q-(r+p) / 2, \quad r^{\prime}=r-(p+q) / 2
$$

Evidently $p^{\prime}+q^{\prime}+r^{\prime}=0$, and we also have

$$
p \wedge p^{\prime}+q \wedge q^{\prime}+r \wedge r^{\prime}=0
$$

If we consider the perpendiculars from P, Q, and R respectively onto the sides $Q R, R P$, and $P Q$, these are parallel to

$$
p^{\prime}=\left|(q-r), \quad q^{\prime}=\right|(r-p), \quad \text { and } r^{\prime}=\mid(p-q),
$$

and $p^{\prime}+q^{\prime}+r^{\prime}=\mid(0)=0$. On the other hand, using the theorem that $u \wedge \mid v=(u . v) e_{1} \wedge e_{2}$, we find that $p \wedge p^{\prime}+q \wedge q^{\prime}+r \wedge r^{\prime}=k e_{1} \wedge e_{2}$, where

$$
k=p \cdot(q-r)+q \cdot(r-p)+r \cdot(p-q)=0,
$$

so that the three perpendiculars are concurrent.
A more severe test of the theorem is its application to the theory of orthologic triangles. $A B C, P Q R$ are two triangles such that the sides $Q R, R P$, and $P Q$ of $P Q R$ are respectively perpendicular to $D A, D B$, and $D C$, for some point D. Then we wish to show that lines through P, Q, and R which are respectively perpendicular to $B C, C A$, and $A B$ are concurrent at a point S. With small letters representing localized vectors whose end points are at the points considered, we have

$$
(q-r) \cdot(d-a)=(r-p) \cdot(d-b)=(p-q) \cdot(d-c)=0 .
$$

If we add these equations, we obtain the equation

$$
(q-r) \cdot a+(r-p) \cdot b+(p-q) \cdot c=0
$$

which may be written as $p \cdot(c-b)+q \cdot(a-c)+r \cdot(b-a)=0$. But this last equation may now be written in the form

$$
p \wedge|(c-b)+q \wedge|(a-c)+r \wedge \mid(b-a)=0
$$

Hence if we choose $p^{\prime}=\left|(c-b), q^{\prime}=\right|(a-c)$, and $r^{\prime}=\mid(b-a)$, we not only have $p^{\prime}+q^{\prime}+r^{\prime}=0$, but also $p \wedge p^{\prime}+q \wedge q^{\prime}+r \wedge r^{\prime}=0$, so that vectors in the directions of p^{\prime}, q^{\prime}, and r^{\prime} through the vertices P, Q, and R respectively of $P Q R$ are concurrent. But these vectors are perpendicular to $B C$, $C A$, and $A B$, respectively, which is what we wish to prove.

Similar methods give an immediate proof of a theorem Forder ascribes to Casey: If triangles $A_{1} A_{2} A_{3}$ and $B_{1} B_{2} B_{3}$ are orthologic, and C_{1}, C_{2}, and C_{3} divide $A_{1} B_{1}, A_{2} B_{2}$, and $A_{3} B_{3}$ in the same ratio, then the triangle $C_{1} C_{2} C_{3}$ is orthologic both to $A_{1} A_{2} A_{3}$ and to $B_{1} B_{2} B_{3}$.
3. This paper owes its inspiration to the remarkable book by H. G. Forder, The Calculus of Extension (New York: Chelsea Publishing Company, 1960). Theorem I can be found there, but not Theorem II. In any case, the interpretation given here in terms of linear algebra is different. Forder introduces many concepts which I find difficult to bring down to earth. But the methods developed in his book are powerful ones, and it is evident that much work can usefully be done in simplifying and interpreting some of the concepts he uses.

For those fortunate beings, like Coxeter and myself, who have survived the Cambridge Mathematical Tripos, and are therefore among the small number of mathematicians who have studied the science of Statics, my Theorem II may have a familiar ring! If the sum of three coplanar forces acting on a rigid body is zero, their resultant is zero, and if they all pass through a point, their effect on a rigid body is zero: that is, they are in equilibrium. But three forces may add to zero, and yet be equivalent to a couple. The moment of a couple about any point is the same constant. The first condition of Theorem II is merely that the sum of the moments of the free vectors p^{\prime}, q^{\prime}, and r^{\prime}, acting at the points P, Q, and R, taken about the origin, should be zero. This, together with the condition that $p^{\prime}+q^{\prime}+r^{\prime}=0$ is sufficient to ensure equilibrium, which ensures the three free vectors being concurrent or parallel.

Curiously enough, the theorem was not discovered via Statics, but subconsciously a knowledge of Statics made itself felt!

[^0]
[^0]: University of Minnesota, Minneapolis

