
Appendix L
Josephson effect

Josephson (1962) proposed that there should be a contribution to the current through
an insulating barrier between two superconductors which would behave like direct tun-
nelling of condensed pairs from one condensed gas of bound pairs at the Fermi surface to
the other. The measurement of such an effect has provided a beautiful scenario where the
collective rotational degree of freedom in gauge space manifests itself, let alone some
of the most accurate measurements of the electron charge (Anderson (1964)).

Before proceeding further let us briefly discuss a technical detail which, aside from
being essential to microscopically understanding the mechanism which is at the basis of
the effect, also clarifies the long-range order induced by pairing correlations. Because
one is interested in calculating the tunnelling of Cooper pairs across the barrier separating
the two superconductors, it is natural to start by assuming that it is the pairing interaction
that is the source of this transfer, by annihilating a pair in superconductor 2 and creating
a pair in superconductor 1 (see Fig. L.1). Although this is what effectively happens,
it can be shown that the pairing interaction leads to a negligible contribution to pair
transfer, and that essentially all the transfer proceeds through the single-particle mean
field acting twice. Note that this reaction mechanism leading to a (successive) two-
particle tunnelling does not destroy the correlation existing between the pair of fermions
of a Cooper pair participating in the condensate. In fact, aside from the fact that ξ is much
larger than typical particle distances (see equation (1.32) and (1.39)), successive transfer
mediated by the single-particle field is essentially equivalent to simultaneous transfer,
being only one of the different choices of representations used to describe the process
to properly take into account the non-orthogonality of the wavefunctions describing the
motion of the fermions in each of the superconductors: prior-prior, post-prior, post-post
representations (see Cohen et al. (1962), Prange (1963), Anderson and Rowell (1963),
Götz et al. (1975), Broglia and Winther (1991)). Let us now come back to the main
subject of this appendix, i.e. the Josephson effect.

Owing to the macroscopic number of paired electrons which are present in a
superconductor, it is not possible to observe so directly as in the case of a finite sys-
tem like the nucleus the individual states of the (pairing) rotational spectrum (in gauge
space) shown, for example, in Fig. 4.2. The so-called Josephson junction consists of two
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Figure L.1. Schematic representation of a Josephson junction.

superconductors which are separated by a thin dioxide (insulating) layer, through which
the electrons can penetrate. Each of the superconductors can, because of the analogy
discussed in connection with Fig. 4.1 (see also Sections 1.2, 3.8, 4.2, equation (4.14), as
well as Appendix I), be thought of as a rotor (see Fig. L.1). These two rotors are coupled
together through the exchange of pairs

P†
1 P2 = e2iφ1 P ′1

†e−2iφ2 P ′2, (L.1)

where

a′ν
† = G(φ)a†

νG−1(φ) = e−iφa†
ν, (L.2)

and thus

a†
ν = eiφa′ν

†
. (L.3)

This implies

P†
1 =

∑
ν1>0

a†
ν1

a†
ν̄1
= e2iφP ′1

†
, (L.4)

and similarly for P2.
Consequently, the coupling between the superconductors is

Hcoupl ∼ e2iφ1 e−2iφ2 eiδ + h.c.

∼ cos(2(φ1 − φ2)+ 2δ), (L.5)

where φ1 and φ2 are the gauge phases of the superconductors and δ a phase shift,
associated with barrier penetration. The rate at which the quanta are exchanged between
the two superconductors is thus given by

Ṅ1 = (−Ṅ2) = i

�
[H, N1] = i

�

(
i
∂H

∂φ

)
= −1

�

∂H

∂φ

∼ sin (2(φ1 − φ2)+ 2δ) . (L.6)
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The rotational frequency of the rotors corresponds to the chemical potential of the
superconductors (see Appendix I, Section I.3)

φ̇1 = 1

�

∂H

∂N1
= 1

�
λ1 (L.7)

and

φ̇2 = 1

�

∂H

∂N2
= 1

�
λ2. (L.8)

Introducing φ = φ̇t = λ
�

t in equation (L.6) one obtains

Ṅ1 ∼ sin

(
2

�
(λ1 − λ2) t + 2δ

)
. (L.9)

This means that if there is a difference in chemical potential between the two
superconductors, which can be obtained by applying an external voltage, there will
be an oscillating current running between the superconductors. In terms of the voltage
differential V1 − V2, equation (L.9) can be written as

Ṅ1 ∼ sin

(
2e

�
(V1 − V2) t + 2δ

)
. (L.10)

This shows that the frequency of the oscillating current is determined by the applied
voltage, the carriers having charge 2e. Note that to make this point evident we have used
the function G(φ) = e−iN̂φ to induce a gauge transformation (see equation (L.2)), and

not ei N̂
2 φ as introduced in equation (4.12).

The remarkable confirmation of the picture of deformation and of rotation in gauge
space provided by the Josephson effect is an example of the general fact that, ar-
guably, the most successful approach to physics is a combination of phenomenology
with microscopic theory, and of experiment with both. From this kind of approach one
can arrive at a degree of understanding of phenomena which essentially amounts to
certainty. Superconductivity and superfluidity are likely to belong to this category of
phenomena, of whose basic nature one is virtually certain, primarily because of the
large variety of phenomena which can be correlated by one form or another of BCS
theory.

In general, a condensation phenomenon is characterized by a new parameter in the
condensed phase leading to emergent properties which were not present in the original
system nor in the particles which compose it. For example, below its Curie point a
ferromagnet has magnetization in the absence of a field. The long-range order of a solid
is not present in the liquid. The order parameter of a superconductor is the energy gap
itself.

All these systems and their order parameters have an important feature in common: the
condensed system does not have the full symmetry of the Hamiltonian describing it. Su-
perfluidity and superconductivity can be considered particular examples of this general
theory, letting the order parameter be 〈BCS|G P†|BCS〉 = e2iφ� and fixing the magni-
tude and the phaseφ. Then, it is gauge invariance which is violated in the superconductor.
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Clearly, general gauge invariance is not violated, but from the point of view of individual
fermions it is, in the sense that the phase of the field operator with which we insert
additional particles is relevant.

It is of course physically obvious that the full symmetry of the original Hamiltonian
still governs the system, in the sense that it is only the state of the system which is taken
to be non-invariant, and one considers all other states to which the assumed state can
be carried by symmetry operations as degenerate with a given one (see Section 4.2.1, in
particular equation (4.14)).

These ideas seem rather evident and general. Now, however, one comes to the real
distinction among the different situations. In a few cases – ferromagnetism being an
obvious example – the order parameter is a constant of motion. Then, of course, the non-
invariant states are, rigorously, degenerate eigenstates of H , and no serious questions of
principle arise: all the consequences of the true symmetry of H can be retained in the
most direct fashion.

More common is the opposite case: the order parameter is not a quantum-mechanical
constant of the motion. The orientation of the solid in space, for instance, and its position,
are not constants of the motion; the correct constants are total momentum and angular
momentum. In the superconductor we find the phase variable is not only not a constant
of motion, but is normally assumed to be meaningless.

In the cases of the solid or the ferroelectric one can understand the physics of the
situation. What happens is that the condensation has given the system one form or
another of long-range order, so that ≈ 1023 different atoms must move as a unit rather
than individually. Under such circumstances the system is so large that its behaviour is
essentially classical, and one may fix the value of the order parameter even though it is
not a constant of motion – the coordinate or orientation of the solid, for instance. There
is indeed zero-point motion of a macroscopic solid, but it is so small that one does not
need to deal with it.

Another aspect of the situation is that in general the usual type of condensed system
finds itself in the presence of external fields which fix the order parameter at some
preferred value. Because of the long-range order, only a very small external force is
necessary to do this. A small external field can align a ferromagnet, a small external
force pin down the orientation and position of a crystal (see final paragraph of Section
4.2.4, Weinberg’s chair).

In actual fact one seldom deals with condensed systems in the absence of external
fields, so that one is accustomed to think of such systems as having definite values
of such order parameters as the orientation. But this is because we are accustomed to
working with measuring instruments which are themselve rigid, i.e. have a long-range
positional order. Thus it does not seem extraordinary that a solid has a fixed position
and orientation. In the case of magnets, again one is used to instruments which violate
time-reversal symmetry themselves, and thus we do not find it unusual for a system to
have a definite value of ferromagnetic order.

In the case of superconducting systems things are quite different. The internal long-
range order parameter – the phase – is not a parameter for which suitable measurement
instruments exist. A superconductor, or a superfluid, has rather perfect internal phase
order, but as has been shown in Section 4.2.1 (equation (4.39)) (see also Appendix I),

https://doi.org/10.1017/9781009401920.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401920.024


360 Appendix L

the zero-point motion of the total order parameter of an isolated superconductor is large
and rather rapid.

The importance of the Josephson effect is that it provides for the first time an
instrument which can act like a clamp for a solid: it can pin down the order para-
meter, making superfluidity and superconductivity one more example of condensation
phenomena.

Summing up, condensation is a self-consistent choice by the system of a state – and
a corresponding mean self-consistent field – which does not have the full symmetry of
the Hamiltonian. Fluctuations of the order parameter will, in the absence of asymmetric
external forces, restore the original symmetry. The external forces needed to ‘pin down’
the quantum fluctuations can only come from systems which themselves violate the
given symmetry: in the case of a superconductor, another superconductor.

The possibility to study the transfer of Cooper pairs between superfluid nuclei in a
heavy ion collision (transient Josephson junction), has been extensively discussed (see
e.g. von Oertzen (1994), Broglia and Winther (1991) and references therein)
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