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OPTIMALITY CONDITIONS FOR MULTIOBJECTIVE AND
NONSMOOTH MINIMISATION IN ABSTRACT SPACES

L. COLADAS, Z. Li AND S. WANG

In this paper we study optimality conditions for an efficient solution in various
senses of a general multiobjective optimisation problem in abstract spaces. We
utilise properties of the Clarke's generalised differential and properties of a cone-
subconvexlike function to derive a few necessary and/or sufficient conditions for
a feasible solution to be a weak minimum (a minimum, a strong minimum or a
proper minimum) of the vector optimisation problem. The results in this paper
are extensions and refinements of some known results in vector optimisation.

1. INTRODUCTION

In the last two decades, much attention has been paid to optimisation problems
with multiple objectives because multicriteria decision models can be better applied to
real world problems. Several concepts about optimal solutions have been proposed for
a multiobjective programming problem since Yu published his well-known paper [15].
See [9] and [12] for a survey of the solution concepts and theory of vector optimisation.

Most of the publications in the field of vector optimisation discuss problems in finite
dimensional spaces and assume that the functions involved in the problems are differen-
tiable. But in some situations, we have to solve a nondifferentiable and multiobjective
optimisation problem in abstract spaces [6]. Hence, there are requirements of study-
ing nonsmooth and multiobjective optimisation. A few works on optimality conditions
for nondifferentiable and multiobjective optimisation in abstract spaces have appeared
recently, see [8], [9] and [10]. In this paper, we study a general multiobjective minimisa-
tion problem in abstract spaces. Using properties of the Clarke's generalised differential,
we give one necessary condition for a feasible solution to be a weak minimum, a mini-
mum, a strong minimum and a proper minimum of the problem respectively. Under a
very mild assumption, we prove that the necessary conditions are also sufficient. The
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results in this paper are extensions and refinements of some corresponding results in
the literature.

We organise this paper as follows. We introduce a few concepts on a solution to
the multiobjective optimisation problem, the Clarke's generalised differential and the
generalised convexity in the second section. Two lemmas on properties of a pre-invex
function and a fundamental optimality condition are proved in Section 2. In Sections 3,
4, 5 and 6, we give a necessary condition and a sufficient condition for a weak minimum,
a minimum, a strong minimum and a proper minimum respectively.

2. PRELIMINARIES

In this section, we introduce a few notations, definitions and lemmas.

Let X be a real Banach space with norm ||-|| and Y a real locally convex separable
topological vector space. We denote the topological dual spaces of X and Y by X*

and Y* respectively, which are assumed to be equiped with the weak * topology. Let
fl be a nonempty subset of X and K a closed convex cone of Y. For set A C Y, its
interior and its closure are denoted by int A and cl A respectively, its dual cone A~*~

and its strict dual cone A'+ are respectively defined as

(2.1) A+ = {y* e Y* : (y, y*) > 0, Vy 6 A}

and

(2.2) A'+ = {y* G Y* : (y, y») > 0, Vy e A\{0}}.

The cone generalised by A and the tangent cone to A at y G cl A are defined, respec-
tively as

(2.3) P(A) = {ay: y€A,a> 0}

and

(2.4)

T(A,y) - {d e Y : 3tk > 0 and yk £ A such that yk^y and tk(yk - y) -> d).

Let h be a locally Lipschitz function defined on X. We denote by h°{x;v) and d"h{x)

the Clarke's generalised directional derivative of h at x in the direction v and the
Clarke's generalised sub differential of h at x, respectively.

We quote here some properties of h°(x;v) and d°h{x). See [3] for a detailed
discussion.
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LEMMA 2 . 1 . [3, Propositions 2.1.1 and 2.1.2]

(1) d°h(x) is a nonempty convex weak * compact subset of X;
(2) h°(x;v) = max{(t»,x') : x* G d°h(x)} ;

(3) h°(x; •) is a positively homogeneous, convex and continuous function on

X ;

(4) d°h{x) = dh(x), Vx G X when h is convex on X, where dh(x) denotes
the subdifferential of h at x .

The vector minimisation problem considered in this paper can be formulated as

f V-minimise f(x)

subject to x G ft

where / : X —• Y satisfies that k*f — k* o / is locally Lipschitz and regular on ft for

each k* G K+, ft is a nonempty subset of X and K is a closed convex cone in Y with

The convex cone K defines a partial order on Y. We give the concepts of the
following five types of solutions to (VP).

DEFINITION 2.1: Let x G ft.

(1) x is called a weak minimum of (VP) if

(2) x is called a minimum of (VP) if

(3) x is called a strong minimum of (VP) if

(VZGO) / (x) - fix) G K;

(4) i" is called a Borwein's proper minimum of (VP) if

(5) x is called a Benson's proper minimum of (VP) if
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A cone K is said to be pointed if A" PI (-K) = {0}. Prom the above definition, we can
easily prove the following relations.

LEMMA 2 . 2 .

(1) A Benson's proper minimum ==>• a Borwein's proper minimum =>• a

minimiim =>• a weak minimum-

(2) A strong minimum is a minimum if K is pointed.

Denote Rij. = {y G R* : y< ̂  0, i = 1,2,••• ,p}.
Next we quote the definitions of a cone-pre-invex function, a cone-convexHke func-

tion and a cone- sub con vexlike function.

DEFINITION 2.2: [14] / : X -» Y is said to be if-pre-invex on SI if there exists
a function rj : SI x SI —> X such that for any z,y G fi and A G [0,1], y + \r)(x,y) G f2
and

(2.5) A/(«) + (1 - A)/(y) - /(y + Ai|(xlV)) € K.

Definition 2.3. [5] / : X —* Y is said to be Jf-convexlike on fl if for any x,y G Cl
and A G [0,1] there exists a z G Q such that

(2.6) Xf(x) + (l-X)f(y)-f(z)eK.

DEFINITION 2.4: [7] / : X —> Y is said to be X-subconvexhke on ft if there
exists 9 G int K such that for any x,y £ Q, A G [0,1] and e > 0 we can find a ? £ fi
satisfying

(2.7) eO + Xf(z) + (1 - A)/(y) - /(») G /f.

By Definitions 2.2 - 2.4, we get immediately,

LEMMA 2 . 3 . K-convexity => K-pre-invexity =$• K-convex-likeness =^-
K-subconvexlikeness.

However, it should be mentioned that the converse of the conclusions in the above
lemma is not true. Three corresponding counterexamples can be found in [14], [5] and
[7].

LEMMA 2 . 4 .

(1) IS f is K-pre-invexon SI and k* G K+, then k*f is M.+-pre-invexon SI,
where R+ = {a G R : a ^ 0};

(2) If f is K-subconvexHke on SI, then f(Sl) + int if is convex.

Lemma 2.4 (1) follows from Definition 2.2 and the definition of K+; see [8] for a
proof of Lemma 2.4(2).
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LEMMA 2 . 5 . [8, Theorem 1] If f is K-subconvexlike on ft, then exactly one of
the following holds:

(2.8) (3s en) -f(x)eintK;

(2.9) (31b* e K+ \ {0}) (**/ ) (") C R+.

Let x G ft. The cone of all feasible directions to ft at x is denned as

(2.io) ^ ( n . s ) = {vex •. (3t0 > o) (v* e [o,*0]) x + tve ft}.

It is obvious that if fi is convex, then

(2.11) F(ft, x) = {t(y -x):y€ft,t^0} = P(ft-x)

which is a convex cone.

LEMMA 2 . 6 . Suppose that h : X —» R is locally Lipschitz and regular on 0 .
If h is R+-pre-invex on ft, then there exists an t] : ft x ft —> X such that for any

x,y G ft, v(y,x) e F(ft,x) and

(2.12) h(y)-h(x)>{V(y,x),x*), Vx'

PROOF: Assume that h is R+-pre-invex on ft. By Definition 2.2, we can find an

7) : ft x ft —> X such that for any x,y € ft and A £ [0,1], x + \j]{y,x) G ft and

(2.13) A % ) + (1 - X)h{x) - h(x + XV(y, x))^0.

Hence, T)(y, x) £ F(ft,x) and

(2.14) A(%) - h(x)) > h(x + Xr,(y, x)) - fc(s).

Dividing the above inequality by A > 0 and then letting A | 0, we get

(2.15) h{y)-h{x)>h\x;V{y,x)).

Because h is regular on ft,

*'(s;i,(y,s)) - h°(x;f,{ytx)) > (r,(y,x),x*),Vx* £ d°h(x).

Therefore,

(2.16) h(y)-h{x)^(r,(y,x),x*), Vx*£d°h(x).

This completes the proof. D

It should be mentioned that (2.12) is a generalised version of the invexity related
to a definition

f(y)-f{x)2f{x;r,{y,x))

given in [4].

Our next lemma generalises one of the main results in [11].
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LEMMA 2 . 7 . Suppose that h : X —> K is locally Lipschitz and regular on fi .
Tien

(1) h gets a minimum over fi at x if h is R+ -pre-invex on Cl and d°h(x) D

(2) d°h(x) n F(Cl,x)+ ^ Q if £1 is convex and if h gets a minimum over Q

at x.

PROOF: First assume that h is R+-pre-invex on Q, and d°h(x) (~l F(Cl,x)+ ^ 0,
but x is not a minimum of h over f2. Thus there exists a y 6 fl such that

(2.17) % ) - h(x) < 0.

Let

(2.18) x* ed°h{x)nF{n,x)+.

Since h is R+-pre-invex on Q, by Lemma 2.6, there exists an T) : £2 x f2 —> X such that

v(y>x) G -^(0,3;) and

(2.19) h(y)-h(x)>{T](y,x),x*)>0.

This contradicts (2.17). Hence, a; is a minimum of h over f2.

Next we prove conclusion (2) in this lemma. Assume that (7 is convex and h gets
a minimum over H at z, but d°h{x) D F(Cl, x) = 0. By Lemma 2.1 and the definition
of a dual cone, d°h(x) is a weak * compact convex set and F(£l,x)+ is a closed convex
cone. By the separation theorem of two convex set [1], we can find an x° £ X such
that

(2.20) (*o,3/)^0, Vy

and

(2.21) (z°,x*) <0, Vx*ed°h(x).

By (2.11), F(£l,x) is a convex cone since Q is convex. So we have x" £ ((F(Cl,x)) J =

clF(Cl,x). Hence, there exist xk £ F(Cl,x), k = 1,2,-•• , such that xk -> x" as
k —> oo. From the definition of .F(n, x), for each fc, we can find a tk > 0 such that

(2.22) x + txken, vte[o,tk}-

Noting that x is a minimum of h over fl, we have

(2.23) h(x + txk) - h(x) ̂ 0 , Vie [0,tk].
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Since h is regular over X,

(2.24) h°(x;xk) = h'(x;xk) > 0, k = l,2,--

By Lemma 2.1, h°(x; •) is continuous. Letting k —> oo, we get

(2.25) h°(x;x°)^0.

However, (2.21) implies

h°(x;x°) = max{{x°,x*) : x* £ d°h(x)} < 0

which contradicts (2.25). Hence, d°h(x) H F(U,x)+ ^ 0. This completes the proof. D

3. W E A K MINIMA

For a weak minimum to the vector minimisation problem (VP), we have a sufficient
condition and a necessary condition as follows.

THEOREM 3 . 1 . IS f is K-pre-invex on ft and if there exists a k* £ K+ \ {0}
such that d°(k*f)(x) D F(n,x)+ ^ 0, then x is a weak minimum of (VP).

PROOF: Suppose that / is if-pre-invex on fi and that there exists k* £ K+ \ {0}
such that d°(k*f)(x)nF(n,x)+ £ 0. By Lemma2.4, k*f is R+-pre-invexon ft. From
the condition d"(k*f)(x) f) F(U,x)+ ^ 0 and Lemma 2.7(1),

(3.1) < / (*) - f(y),k*) = k*f{x) - * • / (» ) < 0 , VyGft.

Hence, there exists no y £ Q such that

(3.2) /(*)

because k* £ K+ \ {0} implies that {k,k*) > 0, Vfc £ in t i f . Therefore, x is a weak
minimum to (VP). U

THEOREM 3 . 2 . Suppose that £1 is convex and that f is K-subconvexHke on
f2. If x is a weak minimum of (VP), then there exists a &* £ K+ \ {0} such that

d°(k*f)(x)nF(n,x)+ ^Q.

PROOF: Define F : X -» Y as

(3-3) F(y) = f(y)-f(x), y £ X.

Since / is iT-subconvexlike on Q, F is Jif-subconvexlike on il. Assume that a; is a
weak minimum of (VP). By Definition 2.1(1), the system

(3.4) -F(y) eintK, y £ il
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has no solution. According to Lemma 2.5, there exists a ib* 6 K+ \ {0} such that

(3.5) k*F(y)>0, Vj/en

that is,

(3.6) k*f(y) > *•/(*), Vy € ft.

Using Lemma 2.7(2), we have

(3.7) «•(*•/)(*) nf(n,z)+^0.

The proof is completed. U

Prom Lemma 2.3, Theorems 3.1 and 3.2, we can immediately get the following
corollary.

COROLLARY 3 . 1 . Suppose that Q is convex and that f is K-pre-invex on Cl.
Then x is a weak minimum of (VP) if and only if there exists a k* £ K+ \ {0} such
that d°(k*f)(x)nF(Q,x)+ ^ 0 .

The above corollary generalises [13, Theorem 2.1].

4. MINIMA

A sufficient condition and a necessary condition for a minimum of (VP) will be
given in this section.

THEOREM 4 . 1 . Let K be pointed and x E fl. If f is K-pre-invex on fi and
if there exists a k* G K+ \ {0} such that d°{k*f){x) D F(Q,x)'+ ^ 0, then x is a

minimum of (VP).

PROOF: Suppose that / is if-pre-invex on fi and that there exists a. k* £ iif+\{0}
such that d°(k*f){x)nF(n,x)'+ ^ 0. Assume that x is not a minimum of (VP). Thus
there exists a y £ Cl such that

(4.1) / ( * ) - / ( y ) e # \ { 0 } .

Since / is A"-pre-invex on f2, there exists an r) : il x fi —• X such that for any
A G (0,1), x + \r)(y, it) 6 fi and

(4.2) A/(y) + (1 - A)/(«) - f(x + Xr,(y, x)) € K.

We can rewrite (4.2) as

(4.3) A(/(y) - / ( * ) ) + /(*) - /(x- + \r,(y, x)) € K.
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Because K is pointed, by (4.1) and (4.3),

(4.4)

/(*) - /(* + XV(y,x)) = \(f(x) - f(y)) + [A(/(y) - /(*)) + /(*) - f(x + \V(y,*))]

Hence, T)(y,x) ^ 0. By the Jf-pre-invexity of / on fl, k* € K+ \ {0} and Lemma 2.4,
k*f is R+-pre-invex on f2. Hence, from Lemma 2.6, r)(y, x) £ F(fl,x) \ {0} and

(4.5) k*f(y)-k*f(x)>

In particular, if we choose x* G d°(k*f)(x) D F(Sl, x)'+, then

(4.6) (r,(y,x),x*) > 0.

So, from (4.5), we get

(4.7) k*f(y) - k'f(x) > 0.

But (4.1) and k* € K+ imply that

(4.8) k*f(x)-k'f(y)>0

which contradicts (4.7). Therefore, a; is a minimum of (VP). D

From the above theorem, we have the following corollary.

COROLLARY 4 . 1 . Let x eSl,Y = Rn,K = R$ and f = (h,---,fn). H f is

R"-pre-invexon fl and if there exists an i such that d°fi(x) D F(Sl,x)'+ ^ 0, tAen x
is a minimum of (VP).

This corollary can be viewed as an extension of [13, Theorem 3.1].

THEOREM 4 . 2 . Suppose that fi is convex and that / is K-subconvexhlce on fi.
If x is a minimum of (VP), then there exists a k* € K+ \ {0} such tiat d°(k*f)(x) D
F(n,x)+^(D.

PROOF: This follows directly from Lemma 2.2 and Theorem 3.2. D

5. STRONG MINIMA

For a strong minimum of (VP), we have the following analogues of Theorems 3.1
and 3.2 and Corollary 3.1.
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THEOREM 5 . 1 . Suppose that f is K-pre-invex on il. If z £ ft and
d°(k*f) (x) D F(fl,x)+ ^ 0 for each k* £ K+, then x is a strong minimum of (VP).

PROOF: Assume that x £ ft and d°(k*f)(x)nF(Sl,x)+ ^ 0 for all k* £ A". Thus

for each k* £ if+, there exists

(5.1) x* = «•(*') £ d°(k*f)(x) D F(ft,z)+.

By Lemma 2.4(1) and the if-pre-invexity of / , k*f is Jif-pre-invex on ft. By Lemma

2.6, there exists an T\ : ft x ft —> X such that for any y £ ft, Tj(y,x) £ .F(ft,a;) and

(5.2) k*f{y) - k*f{x) > (1,(1,,x),x')>0.

So,

(5.3) (/(») - /(*),*•) = **/(y) " *'/(*) > 0, VF £ K+, Vy £ ft.

Hence,

(5.4) f(y)-f(x)e(K+)+=dK = K, Vy £ ft.

This implies that a; is a strong minimum of (VP). Q

THEOREM 5 . 2 . Suppose that ft is convex. If x is a strong minimum of (VP),
then

(5.5) d°(k*f)(x)nF(n,x)+ ^<b, Vk*eK+.

PROOF: Assume that x is a strong minimum of (VP). Thus

(5.6) f(y)-f(x)eK, Vj,£ft.

For each Jb* £ K+,

(5.7) *V(V)-**/(*) = </(v)-/(*),**) > 0 , Vy£ft.

By Lemma 2.7(2), we have

(5.8) d°{k*f)(x) n *•(«, x)+ / 0.

The proof is completed. D

From Theorems 5.1 and 5.2, we have the following corollary.

COROLLARY 5 . 1 . Suppose that ft is convex and that f is K-pre-invex on ft.
Tien x £ ft is a strong minimum of (VP) if and only if d°(k*f)(x) D F(ft,z)+ ^
0, VkEK+.

This corollary generalises [13, Theorem 4.1].
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6. PROPER MINIMA

A necessary condition and a sufficient condition for a proper minimum are proved
in this section.

We first give three propositions.

PROPOSITION 6 . 1 . Let k* e K'+. If x is optimal to

{ minimise k* fix)

subject to x G £2

then x is a Benson's proper.minimum of (VP).

PROOF: Let h G P(f(to + K- f{x))). Thus there exist a ^ 0, y £ SI and k E K
such that

(6.1) h = a(f(y) + k-f{x)).

If x is optimal to (P(Jfe*)), because k* G K'+ C K+,

(6.2) k*h = a(*7fo) - **/(*) + **(*)) ̂  afc*(fc) > 0.

Hence,

(6.3) k*h>0, V h G P(/(O) + AT - /(*)).

It follows that

(6.4) Jfe*/i^0, Vfc€dP( / (n )+ « • - / ( « ) ) .

Therefore,

(6.5) {-K) n cl P(/(fl + A" - /(*))) = {0}.

By Definition 2.1(5), x is a Benson's proper minimum of (VP). D

PROPOSITION 6 . 2 . Suppose that f is K-subconvexlike on fl. If x is a Bor-
wein's proper minimum of (VP), then there exists a fc* G K'+ such that x is optimal

to(P(k*)).

PROOF: Assume that x is a Borwein's proper minimum of (VP). Thus,

(6.6) (-K)nc\T(f(Q) + K,f(x)) = {0}.

Hence,

(6.7) (-int K) n clT(/(fi) + K,f(x)) = 0.
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By Lemma 2.4 and the Jf-subconvexlikeness of / , /(fi) + int K is convex. It can
be shown that in this case,

(6.8) /(ft) + int if - f(x) C clT(/(ft) + int K,f{x))

and dT(/(f t) + int K,f(x)) is a convex cone. By (6.9) and the separation theorem of
two convex sets [1, Theorem 1.11], we have a k* G K'+ satisfying

(6.9) k* e (clT(/(ft) +intK,f{x)))+.

By (6.8) and (6.9),

(6.10) k*(f(y) + tk- f{x)) > 0, VyGft, VfceintA-, V t > 0 .

Letting k G int K be fixed and letting 1j 0, we get

(6.ii) k*(f(y) - / (*)) ^ o, v j e n .

Therefore, a; is optimal to (P(&*)). The proof is completed. D

PROPOSITION 6 . 3 . Suppose that f is K-subconvexlike on ft. The following
statements are equivalent:

(1) a; is a Borwein's proper minimum of (VP);
(2) x is a Benson's proper minimum of (VP);
(3) x is optimal to (P(k* )) for some k* G K'+.

PROOF: It follows direcly from Propositions 6.1 and 6.2 and the observation that
a Benson's proper minimum of (VP) is always a Borwein's proper minimum of (VP). D

By Proposition 6.3, we know that a Benson's proper minimum is equivalent to a
Borwein's proper minimum if / is if-subconvexhke on ft. In this case, we simply call a
proper minimum in the sense of Benson or in the sense of Borwein "a proper minimum".
Propositions 6.1, 6.2 and 6.3 are generalisations of [2, Theorem 1], [2, Theorem 2] and
[12, Theorems 3.1.1 and 3.4.2], respectively.

Now we can give a necessary condition and a sufficient condition for a proper
minimum of (VP).

THEOREM 6 . 1 . Suppose that f is K-pre-invex on ft, K is pointed and x G ft •
If there exists a k* G K'+ such that d"(k*f){x) n F(Cl,x)+ ^ 0, then x is a proper
minimum of (VP).

PROOF: Assume that there exists a Jb* G K'+ such that d°(k*f)(x)nF(£l,x)+ ^
0. By the iif-pre-invexity of / and Lemma 2.4(1), k*f is R+-pre-invex on ft. By
Lemma 2.7(1),

(6.12) **/(*)< *7(V), Vje f l .
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Hence, x is an optimal solution to (P(fc*)). But since fc* G K'+, by Lemma 2.3 and
Proposition 6.3, a; is a proper minimum of (VP). Q

THEOREM 6 . 2 . Suppose that fi is convex and that f is K-subconvexHke on 0 .
If x is a proper minimum of (VP), then there exists a k* £ K'+ such that

(6.13) d°{k'f)(x) D F{il,x)+ £ 0.

PROOF: Assume that x is a proper minimum of (VP). By Proposition 6.3, there
exists a i ' £ K'+ such that x is optimal to (P(fc*)). Noting Lemma 2.7(2), we have

This completes the proof. D

Because JT-pre-invexity implies if-subconvexlikeness, we get the following corollary
immediately.

COROLLARY 6 . 1 . Suppose that 0 is convex and that f is K-pre-invex on SI.
x is a proper minimiim of (VP) if and only if x £ Cl and there exists a k* G K'+ such
that
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