
17 An introduction to general relativity

Even as the evidence for the Standard Model became stronger and stronger in the 1970s
and beyond, so the evidence for general relativity grew in the latter half of the twentieth
century. Any discussion of the Standard Model and physics beyond it must confront
Einstein’s theory at two levels. First, general relativity and the Standard Model are very
successful at describing the history of the universe and its present behavior on large scales.
General relativity gives rise to the big bang theory of cosmology, which, coupled with
our understanding of atomic and nuclear physics, explains – indeed predicted – features
of the observed universe. But there are features of the observed universe which cannot
be accounted for within the Standard Model and general relativity. These include dark
matter and dark energy, the origin of the asymmetry between matter and antimatter, the
origin of the seeds of cosmic structure (inflation) and more. Apart from these observational
difficulties, there are also serious questions of principle. We cannot simply add Einstein’s
theory onto the Standard Model. The resulting structure is not renormalizable and cannot
represent in any sense a complete theory. Black holes, when combined with quantum
mechanics, raise further puzzles. In this book we will encounter both these aspects of
Einstein’s theory. Within extensions of the Standard Model, in the next few chapters
we will attempt to explain some features of the observed universe. The second, more
theoretical, level is addressed in the third part of this book. String theory, our most
promising framework for a comprehensive theory of all interactions, encompasses general
relativity in an essential way; some would even argue that what we mean by string theory
is the quantum theory of general relativity.

The purpose of this chapter is to introduce some concepts and formulas that are essential
to the applications of general relativity in this text. No previous knowledge of general
relativity is assumed. We will approach the subject from the perspective of field theory,
focusing on the dynamical degrees of freedom and the equations of motion. We will not
give as much attention to the beautiful – and conceptually critical – geometric aspects of
the subject, though we will return to some of these in the chapters on string theory. Those
interested in a more in-depth treatment of general relativity will eventually want to study
some of the excellent texts listed in the suggested reading at the end of the chapter.

Einstein put forward his principle of relativity in 1905. At that time, one might quip, half
the known laws, those of electricity and magnetism, already satisfied this principle with
no modification. The other half, Newton’s laws, did not. In considering how one might
reconcile gravitation and special relativity, Einstein was guided by the observed equality
of gravitational and inertial mass. Inertia has to do with how objects move in space–time
in response to forces. Operationally, the way we define space–time, our measurements of
length, time, energy and momentum, depends crucially on this notion. The fact that gravity
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232 An introduction to general relativity

couples to precisely this mass suggests that gravity has a deep connection to the nature
of space–time. Considering this equivalence, Einstein noted that an observer in a freely
falling elevator (in a uniform gravitational field) would write down the same laws of nature
as an observer in an inertial frame without gravity. Consider, for example, an elevator full
of particles interacting through a potential V(�xi − �xj). In the inertial frame,

m
d2�xi
dt2

= m�g − �∇iV(�xi − �xj). (17.1)

The coordinates of the accelerated observer are related to those of the inertial observer by

�xi = �x′
i + 1

2
�gt2; (17.2)

so, substituting with the equations of motion (17.1), we obtain

m
d2�x′

i
dt2

= −�∇iV(�x′
i − �x′

j). (17.3)

Einstein abstracted from this thought experiment a strong version of the equivalence
principle: the equations of motion should have the same form in any frame, inertial or not.
In other words, it should be possible to write down the laws so that in any two coordinate
systems, xμ and x′μ(x), they take the same form. This is a strong requirement. We will see
that it is similar to gauge invariance, where the requirement that the laws take the same
form after gauge transformations determines the dynamics.

17.1 Tensors in general relativity

To implement the equivalence principle, we begin by thinking about the invariant element
ds of distance. In an inertial frame, in special relativity,

ds2 = d �x2 − dt2 = ημνdxμdxν . (17.4)

Note here that we have changed the sign of the metric, as we said we would do, from
that used earlier in this text. This is the convention of most workers and texts in general
relativity and string theory. The above coordinate transformation for the accelerated
observer alters the line element. This suggests we consider the generalization

ds2 = gμν(x)dxμdxν . (17.5)

The metric tensor gμν encodes the physical effects of gravitation. We will see that there is
a non-trivial gravitational field when we cannot find coordinates which make gμν = ημν

everywhere.
To develop a dynamical theory, we would like to write down invariant actions (which

will yield covariant equations). This problem has two parts. We need to couple the fields
that we already have to the metric in an invariant way. We also require an analog of the
field strength for gravity, which will determine the dynamics of gμν in much the same way
as the field strength Fμν determines the dynamics of the gauge field Aμ. This object is the
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233 17.1 Tensors in general relativity

Riemann tensor, Rμνρσ . We will see later that the formal analogy can be made very precise:
An object, the spin connection ωμ, constructed out of the metric tensor plays the role of
Aμ. The close analogy will also be seen when we discuss Kaluza–Klein theories, where
higher-dimensional general coordinate transformations become lower-dimensional gauge
transformations.

We first describe how derivatives and gμν transform under coordinate transformations.
Writing

xμ = xμ(x′) (17.6)

we have

∂ ′
μφ(x

′) = ∂xρ

∂xμ′ ∂ρφ(x) = � ρ
μ (x)∂ρφ(x). (17.7)

An object which transforms like ∂ρφ is said to be a covariant vector. An object which
transforms like ∂ρ1φ∂ρ2φ · · · ∂ρnφ is said to be an nth rank covariant tensor; gμν is an
important example of such a tensor. We can obtain the transformation law for gμν from the
invariance of the line element:

g′
μνdxμ

′
dxν

′ = gμν
∂xμ

∂xρ′
∂xν

∂xσ ′ dxρ′dxσ ′, (17.8)

so

g′
μν = gρσ

∂xρ

∂xμ′
∂xσ

∂xν′
. (17.9)

Now, dxμ transforms according to the inverse of �:

dx′μ = ∂x′μ

∂xρ
dxρ , (17.10)

where dxμ is said to be a contravariant vector. Indices can be raised and lowered with gμν ;
if Vν is a contravariant vector then gμνVν transforms as a covariant vector, for example.

Another important object is the volume element, d4x. Under a coordinate transformation,

d4x =
∣∣∣∣ ∂x
∂x′

∣∣∣∣ d4x′. (17.11)

The object in between the vertical lines is the Jacobian of the coordinate transformation,
|det�|. The quantity

√−det g transforms in exactly the opposite fashion. So the four-
volume, is invariant. ∫

d4x
√−det g. (17.12)

We will consider a real scalar field φ. The action, before the inclusion of gravity, is

S =
∫

d4x
1
2
(−∂μφ ∂νφ ημν − m2φ2). (17.13)

To make this invariant we can replace ημν by gμν and include a factor
√

det(−g) along
with d4x. Then

S =
∫

d4x
√

det(−g)
1
2
(−∂μφ ∂νφ gμν − m2φ2). (17.14)
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234 An introduction to general relativity

The equations of motion should be covariant. They must generalize the equation

∂2φ = −V ′(φ). (17.15)

The first derivative of φ, we have seen, transforms as a vector, Vμ, under coordinate
transformations, but the second derivative does not transform simply:

∂μVν = ∂μ
(
∂xρ′

∂xν
V ′
ρ

)
= ∂xρ′

∂xν
∂xσ ′

∂xμ
∂ ′
σV ′
ρ + ∂2xρ′

∂xμ∂xν
Vρ . (17.16)

To compensate for the extra, inhomogeneous, term we need a covariant derivative, as in
gauge theories. Rather than look at the equations of motion directly, however, we can
integrate the scalar field Lagrangian by parts to obtain second derivatives. This yields√−g(gμν∂μ∂νφ + ∂μgμν∂νφ)+ gμν∂μ

√−gφ ∂νφ. (17.17)

To bring this into a convenient form, we need a formula for the derivative of a
determinant. We can work this out using a trick we have used repeatedly in the case of
the path integral. Write

det M = exp(Tr ln M) (17.18)

so that

det(M + δM) ≈ exp[Tr ln M + ln(1 + M−1δM)]
= (det M)(1 + M−1δM). (17.19)

Thus, for example,

d det M
dMij

= M−1
ij det M. (17.20)

Putting all this together, we have the quadratic term in the action for a scalar field:

φ

(
gμν∂μ∂νφ + ∂μgμν∂νφ + gμν

1
2

gρσ ∂μgρσ ∂νφ
)

. (17.21)

Writing this as

φgμνDμ∂νφ, (17.22)

we have for the covariant derivative

DμVν = ∂μVν − �λμνVλ. (17.23)

Here

�λμν = 1
2

gλρ(∂μgρν + ∂νgρμ − ∂ρgμν). (17.24)
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235 17.1 Tensors in general relativity

Note that �λμν is symmetric in μ, ν. The covariant derivative is often denoted by a
semicolon and a Greek letter in the subscript or superscript:

DμVν ≡ Vμ;ν . (17.25)

The reader can check that

�λμν = �λ′μν − ∂2xλ

∂xμ∂xν
, (17.26)

which just compensates the extra term in the transformation law (17.16). Here � is known
as the affine connection (the components of � are also sometimes referred to as the
Christoffel symbols and � itself as the Christoffel connection; it is sometimes written as{
μ
ν ρ

}
). With this definition,

DμVν = ∂μVν − �λμνVλ (17.27)

transforms like a tensor with two indices, Vμν . Similarly, acting on contravariant vectors:

DμV ν = ∂μV ν + �νμλVλ (17.28)

transforms correctly. You can also check that Vμ;ν;ρ transforms as a third-rank covariant
tensor, and so on.

To get some practice, and to see how the metric tensor can encode gravity, let us use the
covariant derivative to describe the motion of a free particle. In an inertial frame, without
gravity,

d2xμ

dτ 2 = 0, (17.29)

where τ = gμνdxμdxν is the proper time is made covariant by first rewriting it as

dxρ

dτ
∂

∂xρ

(
dxμ

dτ

)
= 0. (17.30)

We need to replace the derivative ∂/∂xρ by a covariant derivative. The covariant version
of the left-hand side of Eq. (17.29) is then

dxρ

dτ
Dρ

(
∂xμ

∂τ

)
. (17.31)

This becomes, using Eq. (17.28),

∂xρ

∂τ

∂2xμ

∂xρ∂τ
+ �μρσ

∂xσ

∂τ

∂xρ

∂τ
. (17.32)

So the equation of motion is

d2xμ

dτ 2 + �μρσ
∂xσ

∂τ

∂xρ

∂τ
= 0. (17.33)

This is known as the geodesic equation. Viewed as Euclidean equations, the solutions
are geodesics. For a sphere embedded in flat three-dimensional space, for example, the
solutions of this equation are easily seen to be great circles. We should be able to recover
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236 An introduction to general relativity

Newton’s equation for a weak gravitational field. For a weak static gravitational field we
might expect that

gμν = ημν + hμν , (17.34)

with hμν small. Since the gravitational potential in Newton’s theory is a scalar, we might
further guess that

g00 = −(1 + 2φ), gij = δij. (17.35)

Then the non-vanishing components of the affine connection are

�i
00 = 1

2
gij (∂0gi0 + ∂0g0i − ∂ig00)

= ∂iφ (17.36)

and, similarly,

�0
0i = −∂iφ. (17.37)

In the non-relativistic limit we can replace τ by t, and we have the equation of motion

d2xi

dt2
= −∂iφ. (17.38)

17.2 Curvature

Using the covariant derivative we can construct actions for scalars and gauge fields.
Fermions require some additional machinery; we will discuss this towards the end of the
chapter. Instead, we turn to the problem of finding an action for the gravitational field
itself. In the case of gauge fields the crucial object was the field strength, Fμν = [Dμ, Dν].
For the gravitational field we will also work with the commutator of covariant derivatives
operators. We write

[Dμ, Dν]Vρ = RσρμνVσ , (17.39)

where R is known as the Riemann tensor or curvature tensor. For a Euclidean space it
measures what we would naturally call the curvature of the space. It is straightforward to
work out an expression for R in terms of the affine connection:

Rλμνκ = ∂κ�
λ
μν − ∂ν�λμκ + �ημν�λκη − �ημκ�λνη. (17.40)

Unlike F, which is first order in derivatives of A, the Riemann tensor R is second order in
derivatives of g. As a result the gravitational action will be first order in R.

Note that R transforms as a tensor under coordinate transformations. It has important
symmetry and cyclicity properties. These are most conveniently described by lowering the
first index on R:
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237 17.3 The gravitational action

Rλμνκ = Rνκλμ, (17.41)
Rλμνκ = −Rμλνκ = − Rλμκν = Rμλκν , (17.42)

Rλμνκ + Rλκμν + Rλνκμ = 0. (17.43)

Starting with R we can define other tensors. The most important is the Ricci tensor. This
has only two indices:

Rμκ = gλνRλμνκ . (17.44)

The Ricci tensor is symmetric:

Rμκ = Rκμ. (17.45)

Also very important is the Ricci scalar:

Rs = gμκRμκ . (17.46)

Note that the Riemann tensor R also satisfies an important identity, similar to the Bianchi
identity for Fμν (which gives the homogeneous Maxwell equations):

Rλμνκ;η + Rλμην;κ + Rλμκη;ν = 0. (17.47)

17.3 The gravitational action

Having introduced, through the Riemann tensor R, a description of curvature, we are in a
position to write down a generally covariant action for the gravitational field. Terms linear
in R, as we noted, will be second order in the derivatives of the metric, so they can provide
a suitable action. The action must be a scalar, so we take

Sgrav = 1
2κ2

∫
d4x

√−gR. (17.48)

To obtain the equations of motion we need to vary the complete action, including the
parts involving matter fields, with respect to gμν . We first consider the variation of the
terms involving matter fields. The variation of the matter action with respect to gμν turns
out to be nothing other than the stress–energy tensor, Tμν . Once one knows this fact, this
gives what is often the easiest way to find the stress–energy tensor for a system. To see that
this identification is correct, we first show that Tμν is covariantly conserved, i.e.

DνTνμ = Tμν;ν = 0. (17.49)

By assumption the fields solve the equations of motion in the gravitational background,
so the variation of the action, for any variation of the fields, is zero. Consider, then, a
space–time translation:

xμ′ = xμ + εμ. (17.50)
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238 An introduction to general relativity

Starting with

g′
μν(x

′) = ∂xρ

∂xμ′ gρσ
∂xσ

∂xν′
, (17.51)

we have

g′
μν(x + ε) = gμν(x)− ∂μερgρν − ∂νεσgσμ. (17.52)

Thus

δgμν(x) = −gμλ∂νελ − gλν∂μελ − ∂λgμνελ. (17.53)

Defining
δSmatt

δgμν
= Tμν , (17.54)

under this particular variation of the metric we have

δSmatt = −
∫

d4x
√−gTμν

(
gμλ∂νελ + gλν∂μελ + ∂λgμνελ

)
. (17.55)

Integrating the first two terms by parts and using the symmetry of the metric (and
consequently the symmetry of Tμν), we obtain

δSmatt =
∫

d4x
[
∂μ(Tμλ

√−g)− 1
2
∂λgμνTμν

√−g
]
ελ. (17.56)

The coefficient of ελ vanishes for fields which obey the equations of motion; this object is
Tμν;μ. The reader can verify this last identification painstakingly or by noting that

�
μ
μλ = 1√−g

∂λ
√

g ; (17.57)

so, for a general vector, for example, we have

Vμ;μ = 1√−g
∂μ

(√−g Vμ
)

(17.58)

and similarly for higher-rank tensors.
As a check, consider the stress tensor for a free massive scalar field. Once more, the

action is

S =
∫

d4x
√−g

(
−1

2
gμν∂μφ ∂νφ − 1

2
m2φ2

)
. (17.59)

So, recalling our formula for the variation of the determinant,

Tμν = 1
2
∂μφ ∂νφ − 1

4
gμν(gρσ ∂ρφ ∂σφ − m2φ2). (17.60)

To find the full gravitational equation – Einstein’s equation – we need to vary also the
gravitational term in the action. This is best done by explicitly constructing the variation
of the curvature tensor under a small variation of the field. We leave the details for the
exercises, and merely quote the final result:

Rμν − 1
2

gμνRs = κ2Tμν . (17.61)
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239 17.4 The Schwarzschild solution

We will consider many features of this equation, but it is instructive to see how we obtain
Newton’s expression for the gravitational field, in the limit where gravity is not too strong.
We have already argued that in this case we can write

g00 = −(1 + 2φ), gij = δij. (17.62)

As we have seen, the non-vanishing components of the connection are

�i
00 = ∂iφ, �0

i0 = −∂iφ. (17.63)

Correspondingly, the non-zero components of the Riemann curvature tensor are

Ri
00j = ∂i∂jφ = −Ri

0j0 = R0
ij0, (17.64)

where the relations between the various components follow from the symmetries of the
curvature tensor. From these we can construct the Ricci tensor and the Ricci scalar:

R00 = ∇2φ, Rs = −∇2φ. (17.65)

So, we obtain

−∇2φ = κ2T00. (17.66)

Note that from this we can identify Newton’s gravitational constant in terms of κ ,

GN = κ2

8π
. (17.67)

17.4 The Schwarzschild solution

Not long after Einstein wrote down his equations for general relativity, Schwarzschild
constructed the solution of the equations for a static isotropic metric. Such a metric can
be taken to have the form

ds2 = −B(r)dt2 + A(r)dr2 + r2(dθ2 + sin2 θ dφ2). (17.68)

Actually, rotational invariance would allow other terms. In terms of vectors d �x the most
general metric has the form

−B(r)dt2 + D(r)�x · d �xdt + C(r)d �x · d �x + D(r)(�x · d �x)2. (17.69)

By a sequence of coordinate transformations, however, one can bring the metric to the form
(17.68).

We will solve Einstein’s equations with Tμν = 0. Corresponding to ds2, we have the
non-vanishing metric components

grr = A(r), gφφ = r2 sin2 θ , gtt = −B(r), gθθ = r2. (17.70)

Our goal is to determine A and B. The equations for them follow from Einstein’s equations.
We first need to evaluate the non-vanishing Christoffel symbols. This is done in the
exercises. While straightforward, the calculation of the connection and the curvature

https://doi.org/10.1017/9781009290883.023 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290883.023


240 An introduction to general relativity

is slightly tedious, and this is an opportunity to practise using the computer packages
described in the exercises. The non-vanishing components of the affine connection are

�r
rr = 1

2A(r)
A′(r), �r

θθ = − r
A(r)

, �r
φφ = − r sin2 θ

A(r)
,

�r
φφ = r sin2 θ

A(r)
, �r

tt = 1
2A(r)

B′(r), (17.71)

where the primes denote derivatives with respect to r. Similarly,

�θrφ = �θθr = 1
r

, �θφφ = − sin θ cos θ ,

�
φ
φr = �

φ
rφ = 1

r
, �

φ
φθ = �

φ
θφ = cos θ ,

�t
tr = �t

rt = B′

2B
. (17.72)

The non-vanishing components of the Ricci tensor are

Rrr = B′′

2B
− 1

4
B′′

B

(
A′

A
+ B′

B

)
− 1

r
A′

A
, (17.73)

Rθθ = −1 + r
2A

(
−A′

A
+ B′

B

)
+ 1

A
, (17.74)

Rφφ = sin2 θ Rθθ , Rtt = −B′′

2A
+ 1

4
B′

A

(
A′

A
+ B′

B

)
− 1

r
B′

A
. (17.75)

For empty space, Einstein’s equation reduces to

Rμν = 0. (17.76)

We will require that, asymptotically, the space–time is just flat Minkowski space, so we
will solve these equations with the requirement that

Ar→∞ = Br→∞ = 1. (17.77)

Examining the components of the Ricci tensor we see that it is enough to set Rrr = Rθθ =
Rtt = 0. We can simplify the equations with a little cleverness:

Rrr
A

+ Rtt
B

= − 1
rA

(
A′

A
+ B′

B

)
. (17.78)

From this it follows that A = 1/B. Then, from Rθθ = 0, we have

d
dr
(rB)− 1 = 0. (17.79)

Thus it follows that

rB = r + const. (17.80)
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241 17.5 Features of the Schwarzschild metric

Now B = −gtt, so, at a distance far from the origin, where the space–time is nearly flat,
B = 1 + 2φ, where φ is the gravitational potential. Hence:

B(r) = 1 − 2MG
r

, A(r) =
(

1 − 2MG
r

)−1
. (17.81)

17.5 Features of the Schwarzschild metric

Finally, then, we have the Schwarzschild metric:

ds2 = −
(

1 − 2MGN
r

)
dt2 +

(
1 − 2MGN

r

)−1
dr2 + r2dθ2 + r2 sin2 θ dφ2. (17.82)

Far from the origin, this clearly describes an object of mass M. While so far we have
discussed the energy–momentum tensor for matter, we have not yet discussed the energy
of gravitation. The situation is similar to the problem of defining charge in a gauge theory.
There, the most straightforward definition involves using the asymptotic behavior of the
fields to determine the total charge. In gravity, the energy is similar. There is no invariant
local definition of the energy density. But in spaces that are asymptotically flat, one can give
a global notion of the energy, known as the Arnowitt, Deser and Misner (ADM) energy.
Only the 1/r behavior of the fields enters. We will not review this here but, not surprisingly,
in the present case this energy P0 is equal to M.

The curvature of space–time near a star yields observable effects. Einstein, when he first
published his theory, proposed two tests of the theory: the bending of light by the Sun
and the precession of Mercury’s perihelion. In the latter case the theory accounted for a
known anomaly in the motion of the planet; the prediction of the bending of light was soon
confirmed.

A striking feature of this metric is that it becomes singular at a particular value of r,
known as the Schwarzschild radius (the horizon), given by

rh = 2MGN. (17.83)

At this point the coefficient of dr2 diverges, and that of dt2 vanishes. Both change sign,
in some sense reversing the roles of r and t. This singularity is a bit of a fake. No
component of the curvature becomes singular. One can exhibit this by choosing coordinates
in which the metric is completely non-singular (see the exercises at the end of the
chapter).

For most realistic objects, such as planets and typical stars, the rh value is well within
the star, where surely it is important to use a more realistic model of Tμν . But there are
systems in nature where the “material" lies well within the Schwarzschild radius. These
systems are known as black holes. The known black holes arise from the collapse of
very massive stars. It is conceivable that smaller black holes arise from more microscopic
processes. These systems have striking properties. Classically, light cannot escape from
the region within the horizon; the curvature singularity at the origin is real. Black holes are
nearly featureless. Classically, an external observer can only determine the mass, charge
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242 An introduction to general relativity

and angular momentum of the black hole, however complex the system which may have
preceded it.

Bekenstein pointed out that the horizon area has peculiar properties and behaves much
like a thermal system. Most importantly, it obeys a relation analogous to the second law of
thermodynamics,

dA > 0. (17.84)

Identifying the area with an entropy suggests that one can associate a temperature Tλ with
the black hole, known as the Hawking temperature. The black hole horizon is a sphere of
area 4πr2

h. So one might guess, on dimensional grounds, that

Th = 1
8πGNM

. (17.85)

The precise constant does not follow from this argument. The reader is invited to work
through an heuristic path-integral derivation in the exercises.

Quantum mechanically, Hawking showed that this temperature has a microscopic
significance. When one studies quantum fields in the gravitational background, one
finds that particles do escape from the black hole. These particles have a thermal
spectrum with characteristic temperature Th. This phenomenon is known as Hawking
radiation.

These features of black holes raise a number of conceptual questions. For the black
hole at the center of the galaxy, for example, with mass millions of times greater than
the Sun, the Hawking temperature is ludicrously small. Correspondingly, the Hawking
radiation is totally irrelevant. But one can imagine microscopic black holes which would
evaporate in much more modest periods of time. This raises a puzzle. The Hawking
radiation is strictly thermal. So one could form a black hole, say, in the collapse of a
small star. The initial star is a complex system, with many features. The black hole is
nearly featureless. Classically, however, one might imagine that some memory of the
initial state of the system is hidden behind the horizon; this information would simply be
inaccessible to the external observer. But owing to the evaporation, the black hole and its
horizon eventually disappear. One is left with just a thermal bath of radiation, with features
seemingly determined by the temperature (and therefore the mass). Hawking suggested
that this information paradox posed a fundamental challenge for quantum mechanics:
it would seem that pure states could evolve into mixed states, through the formation
of a black hole. For many years this question was the subject of serious debate. One
might respond to Hawking’s suggestion by saying that the information is hidden in subtle
correlations in the radiation, as would be the case for the burning of, say, a lump of
coal initially in a pure state. But more careful consideration indicates that things cannot
be quite so simple. Only in relatively recent years has string theory provided at least a
partial resolution of this paradox. We will touch on this subject briefly in the chapters
on string theory. In the suggested reading the reader will be referred to more thorough
treatments.
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17.6 Coupling spinors to gravity

In any theory ultimately intended to describe nature, both spinors and general relativity
will be present. Coupling spinors to gravity requires some concepts beyond those we have
utilized up to now. The usual covariant derivative is constructed for tensors under changes
of coordinates. In flat space, spinors are defined by their properties under rotations or more
generally, Lorentz transformations. To do the same in general relativity it is necessary, first,
to introduce a local Lorentz frame at each point. The basis vectors in this frame are denoted
ea
μ. Here μ is the Lorentz index; we can think of a as labeling the different vectors. The

eμs, in four dimensions are referred to as a tetrad or vierbein. In other dimensions they are
called vielbein.

Requiring that the basis vectors be orthonormal in the Lorentzian sense gives

ea
μ(x)eaν(x) = gμν(x) (17.86)

or, equivalently,

ea
μ(x)e

bμ(x) = ηab. (17.87)

The choice of vielbein is not unique. We can multiply e by a Lorentz matrix, �a
b(x). Using

e we can change indices from space–time (sometimes called “world”) indices to tangent
space indices:

V a = ea
μVμ. (17.88)

Using this we can work out the form of the connection which maintains the gauge
symmetry. We require that

DμV a = eaνDμVν . (17.89)

The derivative on the left-hand side is equal to

∂μV a + (ωμ)abV b. (17.90)

With a bit of work, one can find explicitly the connection between the spin connection and
the vielbein:

ωab
μ = 1

2
eνa(∂μeb

ν − ∂νeb
μ

) − 1
2

eνb(∂μea
ν − ∂νea

μ

) − 1
2

eρaeσb(∂ρeσc − ∂σ eρc)ec
μ.

(17.91)

Now we put this together. First, the curvature has a simple expression in terms of the
spin connection, which formally is identical to that of a Yang–Mills connection:

(Rμν)ab = ∂μ(ων)
a
b − ∂ν(ωμ)ab + [ωμ,ων]a

b. (17.92)

This is connected simply to the Riemann tensor by the basic vectors ea
σ :

(Rμν)ab = ea
σ eτb(Rμν)στ . (17.93)

We can now construct, also, a generally covariant action for spinors:∫
dDx

√
giψ̄�aeμa

(
∂μ + 1

2
ωbc
μ �bc

)
ψ . (17.94)
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Suggested reading

There are a number of excellent textbooks on general relativity, for example those of
Weinberg (1972), Wald (1984), Carroll (2004) and Hartle (2003). Many aspects of general
relativity that are important for string theory are discussed in the text of Green et al. (1987).
A review of black holes in string theory was provided by Peet (2000).

Exercises

(1) Show that gμν∂ν transforms like dxμ. Verify explicitly that the covariant derivative of
a vector transforms correctly.

(2) Derive Eq. (17.38) by considering the following action for a particle:

S = −
∫

ds = −
∫ √

−gμν
dxμ

dτ
dxν

dτ
. (17.95)

(3) Verify the formula (17.40) for the Riemann tensor R, its symmetry properties and the
Bianchi identities.

(4) Repeat the derivation of the conservation of the stress tensor, being careful with each
step. Derive the stress tensor for the Maxwell field of electrodynamics, Fμν . Derive
Einstein’s equations from the action. You will need to show first that

δRμν = (
δ�λμλ

)
;ν − (

δ�λμν
)

;λ.

(5) Download a package of programs for doing calculations in general relativity in
M A P L E , M A T H E M A T I C A or any other program you prefer. A Google search will
yield several choices. Practise by computing the components of the affine connection
and the curvature for the Schwarzschild solution.

(6) Here is an heuristic derivation of the Hawking temperature. Near the horizon one can
choose coordinates such that the metric is almost flat. Check this using

η = 2
√

rh(r − rh), (17.96)

ds2 = −4r2
hη

2dt2 + dη2 + r2
hd 2

2. (17.97)

Now take the time to be Euclidean, t → iφ/(2rh). Check that now this is the metric
of the plane times that of a two-sphere, provided that φ is an angle, 0 < φ < 2π
(otherwise, the space is said to have a conical singularity). Argue that field theory on
this sphere is equivalent to field theory at finite temperature Th (you may need to read
Appendix C, particularly the discussion of finite-temperature field theory).
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