Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-26T04:35:32.895Z Has data issue: false hasContentIssue false

Defects Induced by Helium Implantation: Interaction with Boron and Phosphorus

Published online by Cambridge University Press:  01 February 2011

F. Cayrel
Affiliation:
LMP, 16, rue Pierre et Marie Curie, B.P. 7155, F37071 TOURS Cedex, France STMicroelectronics, 16, rue Pierre et Marie Curie, B.P. 7155, F37071 TOURS Cedex, France
D. Alquier
Affiliation:
LMP, 16, rue Pierre et Marie Curie, B.P. 7155, F37071 TOURS Cedex, France
F. Roqueta
Affiliation:
STMicroelectronics, 16, rue Pierre et Marie Curie, B.P. 7155, F37071 TOURS Cedex, France
L. Ventura
Affiliation:
LMP, 16, rue Pierre et Marie Curie, B.P. 7155, F37071 TOURS Cedex, France
C. Dubois
Affiliation:
L.P.M. - INSA Lyon, 20 rue A. Einstein, F-69621 Villeurbanne Cedex, France.
D. Mathiot
Affiliation:
PHASE / CNRS, 23 rue du loess, B.P. 20, F67037 Strasbourg Cedex, France
Get access

Abstract

High dose He implantation, followed by a thermal annealing, is a suitable technique for metal gettering. Nevertheless, a strong interaction between the dopants and the defect layer has been evidenced. This can largely influence the dopant distribution. In order to study this interaction, p and n-type samples uniformly doped were implanted with helium (40 keV, 5×1016 He+.cm-2) and furnace annealed for various times and temperatures. In this paper, we shed light on the evolution of the dopant segregation. Using isochronal treatment, we found a large dependence of the dopant gettering phenomenon upon annealing temperature. Moreover, stability of the gettered fraction is observed for isothermal annealing. This study permits also to investigate the origin of the trapping mechanism involved for both boron and phosphorus.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hugo, S.M. and Hielsmair, H., in Electrical and Electronics Engineering, vol 8, Ed. Webster, J.G., Wiley-Interscience Publication, (1998), p 388.Google Scholar
2. Roqueta, F.: Ph. D. thesis, Tours, France, (2000).Google Scholar
3. Myers, S.M. and Follstaedt, D.M., J. Appl. Phys 79 (1996), p. 1337.Google Scholar
4. Roqueta, F., Grob, A., Grob, J.J., Dubois, C., J.Fauré and Ventura, L., Solid State Phenomena Vols 69-70 (1999) p. 241.Google Scholar
5. Myers, S.M., Petersen, G.A. and Seager, C.H., J. Appl. Phys. 80 (1996), p. 3717.Google Scholar
6. Roqueta, F., Alquier, D., Ventura, L., Dubois, C., Jerisian, R., Nucl. Instr. and Meth. B, 183 (2001) pp 318322.Google Scholar
7. Roqueta, F., Alquier, D., Ventura, L. and Lopez, B., Solid State Phenomena, Vols. 82-84 (2002) pp. 279284.Google Scholar
8. Cayrel, F., Alquier, D., Roqueta, F., Ventura, L., Dubois, C., Jerisian, R. and Mathiot, D., Solid State Phenomena, Vols. 82-84 (2002) pp. 309314 Google Scholar
9. Bergaud, C., Mathiot, D., Lâanab, L., Claverie, A. and Martinez, A., Proceedings of IIT 94 Catania (1994), p. 756.Google Scholar
10. Xia, J., Saito, T., Kim, R., Aoki, T., Kamakura, Y., Tanigushi, K., J. Appl. Phys. 85, (1999), p. 7597.Google Scholar
11. Fukarek, W. and Kaschny, J.R., J. Appl. Phys. 86 (1999), p 4160.Google Scholar
12. Myers, S.M. and Follstaedt, D. M., J. Appl. Phys. 86 (1999), p. 3048.Google Scholar
13. Philibert, J., in Atom movements, diffusion and mass transport in solids, (Les editions de physique, Les Ulis, 1991), chap. I.Google Scholar
14. Bullough, R. and Newman, R.C., Rep. Prog. Phys. 33 (1970), pp 101148.Google Scholar