
ON ©-APPROXIMATELY CONTINUOUS PERRON-STIELTJES

AND DENJOY-STIELTJES INTEGRAL

D. N. SARKHEL

(Received 6 January 1971, revised 29 September 1971)

Communicated by E. Strzelecki

1. Introduction

The aim of the present paper is to introduce a definition of the Perron-Stieltjes
integral employing the notion of approximate derivative with respect to a non-
decreasing function co and to study some of the properties of the integral. Various
authors have studied the Perron integral and Perron-Stieltjes integral in different
ways, most of which can be found in the references appended in the list of
the bibliography. Among them Ridder [10] uses the concept of approximate
co-derivative but he assumes that the monotone function a associated with co is
continuous. Finally we consider a more general type of integral, the co-approxi-
mately continuous Denjoy-Stieltjes integral, defined descriptively by the method
of Saks [11].

Let co be a finite non-decreasing function defined on the real line il. Following
the definitions of Jeffery [6], p. 617, the "outer co-measure" and the "co-measure"
of a linear set E are here denoted respectively by co*(£) and | E \a.

Throughout the paper we use the following notations. S denotes the set of
points of continuity of co, D = Q \ S, So denotes the union of the pairwise dis-
joint open intervals on each of which co is constant. SQ and Sg denote respectively
the sets of the left and the right end points of the intervals of So; Sx = S^ U S j ,
S2 = S O S t and S3 = S \ (So U S2). Then the sets D and St are countable and
for any two distinct points xu x2, at least one of which belongs to S3, we have
co(x,) ?t co(x2).

We require the following known results and definitions.

THEOREM 1.1. ([6], lemma 2, p. 618). Let E be a bounded linear set. Let
each point x of E be the left end-point of a sequence of closed intervals
[x,x + hXii~] for which hXti-* 0 and J denote the family of all intervals thus
associated with the set E. Then for every e > 0, there exists a finite family of
pairwise disjoint closed intervals AlyA2,---, AN in J such that
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S j l i a>*(E n Af) > co*(E) - £, S7=i | A,- |ra < co*(£) +

THEOREM 1.2. 77n's theorem is the analogue of Theorem 1.1. for closed
intervals with 'x ' as f/ie rigr/it end-point.

DEFINITION 1.1. ([4], §2, p. 347). Two sets A and B are said to be co-
separated if for every £ > 0 there exist open sets G, •=> A, G2-=> B such that
| Gi Pi G2 |ffl < s.

THEOREM 1.3. ([4], §2; [7], Th. 2.20, p. 59.). Let A = At U A2. If A is

co-measurable and A1, A2 are co-separated, then At and A2 are also co-measura-
ble. Let the bounded sets At and A2 be not co-separated. If Et czAt, E2 <=:A2

with co*(Et) sufficiently close to co*(Aj), i = 1,2, then E1 and E2 are not co-
separated.

THEOREM 1.4. ([4], §2; [7], Th. 3.9, p. 77 (Lusin's Theorem)). Let f(x)
be co-measurable on the co-measurable set A with \A\O< + oo. Then corre-

sponding to every e > 0 there exists a closed set E c A with \A \E\N < e such

that f(x) is continuous on E (relative to E).

2. co-density and co-approximate continuity

DEFINITION 2.1. (cf. [4], §3). Let A be any linear set and x be any given
real number. Let v = [x,x + K], v° — {x,x + h), h > 0. We set

if |o|» # 0 ,

if \v\m = 0 and Anv° # 0 ,

otherwise.

Then limh_0 sup d(x, h) and limj.-.o inf d(x, h) are called respectively the upper and
lower right co-densities of A at x. If these limits are equal, the common value is
the right co-density of A at x. Left co-densities are denned similarly. If all the
four co-densities of A at x are equal to one another, the common value is the
co-density of A at x.

When the co-density of A at x exists, x is called a point of dispersion (ct>) or a
point of density (co) according as the co-density is 0 or 1.

NOTE 2.1. If x e So and x is a limit point of A on both sides then clearly x
is a point of density (co) of A. If x e A n D, then x is a point of density (co) of A;
if x e D \ A then x is a point of dispersion (co) of A.

In [4] Chakrabarty has denned the co-density of subsets of S3 while our
definition is applicable to all linear sets. We can verify that for any two linear
sets A and B the theorems 3.1-3.6 of [4] are true. Whenever necessary we shall
refer them for the corresponding results of co-densities according to our definitions.
From theorems 3.1, 3.2 and 3.6 [4] we obtain the theorem
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THEOREM 2.1. An arbitrary linear set has co-density 0 or 1 a.e. (co) on H.

DEFINITION 2.2. (cf. [1], p. 267, [5], p. 793). Let <j>(x) be a finite function
defined on the set A cCl. For any real number £, the g.l.b. of the real numbers
k for which the set

{x; x e A, x ^ t, and (j>(x) > k}

has co-density 0 at ^ is denoted by M* {(j>, £) or simply by w* (£) and is called the
upper right approximate limit (of) of 4>(x) at /; relative to A. The l.u.b. of the
real numbers k for which the set

{x; xeA, x Si £ and 0(x) ^ fc}

has £ as a point of dispersion (co) is denoted by C(</>, ^) or simply by /*(£) and is
called the lower right approximate limit (co) of <p(x) at £ relative to A. The H/?/?er
and lower left approximate limits (co), u~(£) and /^(£), are defined analogously
The extended real numbers

ua(0 = max • K ( 0 , u~(0}, la(S) = min • {£({), l~(0}

are respectively the upper and lower approximate limits (co) of <j>(x) at £ relative
to A. If uro(0 = IJZ), the common value, &,(£), is the co-approximate limit
of $(x) at ^. If further #„(<!;) = (/>(<̂ ), then (^(x) is said to be co-approximately
continuous at ^ relative to A.

For the remaining part of this section we suppose that A is a fixed subset
of Q and 0(x) is a finite function on A. To avoid repetition we shall drop the
phrase "relative to A".

THEOREM 2.2. um(^) is the g.l.b. of real numbers kfor which the set

£*[<£] = {x; xeA and <j>(x) > k)

has co-density 0 at £; lm(^) is the l.u.b. of real numbers kfor which the set

£ ( M = {x;xeA and <£(*) S k}

has co-density 0 at £.

PROOF. Let M be the g.l.b. of real numbers k for which the set £*[$] has
co-density 0 at £. Then clearly

(1) M £ «„«) .

If «„({) = oo, then equality holds in (1). If «„({) = - oo, then w+(£) = M ~ ( 0
= — GO. This implies that for arbitrary large k > 0 the sets

{x; xeA, x ^ £ and <£(x) > — k}, {x; xsA, x t^ £, and < (̂x) > — k}
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have co-density 0 at <!;, which gives that £ is a point of dispersion (co) for the set
£~*[c6] so that M ^ - k. Since fc> 0 is arbitrary, M = - oo = «„(£).

Now let — oo < ura({) < + oo. Then for any e > 0, the set

{x;x<=A and </>(*) > uw(0 + e}

has co-density 0 at £. This gives M ^ um(<̂ ) + E. Since e > 0 is arbitrary,
M :g «<a(0- So from (1) we have M = ura(^). This completes the proof of the
first part. The proof of the other part is similar.

THEOREM 2.3. u~(x) = u*(x) and /~(x) = Z*(x) at almost all points (co) of SI.

The proof is analogous to that of the corresponding result of Chow Shu-Er
([5], p. 795, §2, lemma 1.).

NOTE 2.2. c6(x) is co-approximately continuous at each point of the set
AnD.

For, if t, e A O D, then each of the sets

{x; xe A and <p(x) g <£(£) -B},{X;XEA and c6(x) > ft® + e}

has i as a point of dispersion (co). This implies that

L(0 ^ HO ~ £ and ua{0 ^ HO + 6.

Since s > 0 is arbitrary, we have

UJLQ s HO ^ UO-

Again, ^ is a point of density (co) of each of the sets

{x; xe A and 0(x) > HO -e},{x;xeA and <f>(x) < <j>(£) + e},

which gives

whence
UO = 0(0 = «»«)•

LEMMA 2.1. If each point of a set B is a point of density (co) o/ t/ie set A,
then at any point a the four co-densities of A are greater than or equal to the
corresponding four co-densities of B.

PROOF. Let the upper right co-density of B at a be k> 0. If a E D, then by
Note 2.1 a must belong to B and therefore to A. If a e So U (S n SQ ), then a must
be a limiting point of B, and therefore of A, on the right. In these cases A and B
both have right co-density unity at a.

Next suppose that <xeS\(SoUSo). Choose e > 0 arbitrarily. Then there
exists a strictly decreasing sequence {an} converging to a such that
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(2) m*{B n [a, aj)/1 [a, «J \a > fe/(l + e), for all n.

Let P, = B n(a,a,.] and ef = | [a.aj j^, • A: • £2/(l + e), i = 1,2, •••. Take any
positive integer n. For every £ePn there exists a strictly decreasing sequence of
closed intervals [£•, Q c (a, <!;] with £J- -» £ — such that

(3) c»%4 n [£ ,£ ] ) / | K , U ] U > l - e , i = 1,2, — .

So by theorem 1.2 there exists a finite number of pairwise disjoint such intervals

0/i> £i], 0?2, £2], •••, [flN, £N] for which

(4) I?= 1 co*(PB n [//,., £]) > co*(PJ - en.

From (2), (3) and (4) we deduce

I * = , co*(A n [t,h Q) > (1 - e) • I ? = , | [t,b Q \o

(5) £ (1 - e) • Sf=, c»*(P. O [jfc, {J) > (1 - s) • [«*(?„) - e j

> (1 - £) • («„ - £n • £2)/£
2 = (1 - £)2 • k • I [ a , a j |ra.

Since the intervals {[»/„^]} are pairwise disjoint and a < >7,-< £, < a,,, we get
from (5),

(6) co*(^n[a,

Relation (6) implies that the upper right co-density of A at a is ^ (1 — E)Z • k.
Since e > 0 is arbitrary, it follows that the upper right co-density of A at a is ^ k.

Similar proofs hold in the other cases.

THEOREM 2.4. The functions um(x) and lm(x) are co-measurable on the
real line £1.

PROOF. The functions ua(x) and la(x) are denned on Q, with values in the
extended real number system.

Given any real number a, let us write

Ea = {x; ua(x) < a} and E" = {x; ua(x) ^ a}.

We define the sets A1,A2,--- by

An = {x; uj^x) < a - —}.

Then Ea = Un°L 1 An. Take a fixed n and write E = {x; xeA and (j>{x) > a — 1/n}.
Then by Theorem 2.2 it follows that no point of E" is a point of dispersion (cu)
of E. Hence by Theorem 2.1, £ has co-density unity at almost all points (co) of E",
while E has co-density 0 at each point of An. By Lemma 2.1 it follows easily that
E" has co-density 0 at almost all points (co) of A,,. Therefore E" has co-density 0 at
almost all points (co) of Ea. So by Theorem 3.3. [4] and Theorem 1.3 it follows
that the sets Ea and E" are co-measurable. Hence ua(x) is co-measurable on Q.
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An analogous proof holds for la(x).

COROLLARY 2.4.1. The functions u^(x), ««(*)> '«(*)> L(x) are a " w -
measurable on Q.

PROOF. By Theorem 2.3 ujx) = u^ (x) = M~ (X) a.e. (co) and /ra (x) = l*(x)

= /J(x) a.e. (oi). These observations in conjunction with Theorem 2.4 establish
the corollary.

COROLLARY 2.4.2. Let A be oi-measurable. Then c6(x) is a>-measurable on
A if, and only if, <j)(x) is co-approximately continuous a.e. (co) on A.

PROOF. Let <p(x) be co-approximately continuous a.e. (co) on A. Then
<f)(x) = wro(x) = Jm(x) a.e. (co) on .4. Since A is co-measurable, by Theorem 2.4
it follows that <j)(x) is co-measurable on A.

Conversely, let 4>(x) be co-measurable on A. Then using Theorem 1.4 it can
be proved in the usual way that c/>(x) is co-approximately continuous a.e. (co) on A,
remembering that 4>(x) is co-approximately continuous at each point of A n D
(Note 2.2.).

THEOREM 2.5. w^(x) ^ C(x)[u~(x) ^ l~(x)~\, if the upper right [left]
co-density of A at x is > 0.

These results follow easily from the definitions.

COROLLARY 2.5.1. If' ^ be not a point of dispersion (co) of A, then lm(£) < ua{£).

THEOREM 2.6. la(x) ^ c4(x) ^ um(x) a.e. (co) on A.

PROOF. Let E = {x; xe A and (j>(x) > um(x)}. For any two positive integers
n, k let us write

An,k = {x; xeE,cj>(x) - ujx) > — and 4>(x) > - k}.

Suppose, if possible, eo*(An,k) > 0 for some pair (n,k). Then An,k contains
a component P, every point of which is a point of density (co) of P and
co*(P) = co*(An,k). Now c6(x) > - k for all xeP, so that u j x ) ^ - k. Hence
(j)(x)>(lln)-k for all xeP. This implies, similarly, 4>(x) > (2jri) - k for all
xeP. Repeating the process we get <j)(x) > (mjn) — k for all x e P and for every
positive integer m. This contradicts that <f>(x) is a finite function. Thus u>*(An k) = 0
for all (n, k), and hence

©*(£)= CO*(Un
t°=lUr=l^nJ=0.

Similarly the co-measure of the set

{x; x e / 1 and $(x) < la(x)}

is zero. This proves the theorem.
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3. Approximate co-derivatives of functions in the class &

We denote by J^ the class of all finite functions /(x) defined on il such that
if x0 e D, then /(x) tends to finite limits as x tends to x0 + and x0 — over the
set S; these limits are denoted by /(x0 +) and f(x0 —) respectively. If fe &, we
define the function / as follows:

/(x) = f(x) i fxeS,

= *[/(* + ) + / ( « - ) ] ifxeD.

In this section we consider only the functions of the class ZF.

DEFINITION 3.1. For any given real number t, we define the function
£,*)by

f [/(*) - /(£>]/[<"(*) - «(£)] if co(x) * U5(0,

(̂ 0 otherwise.

The upper and lower approximate limits (co) of (/>(/; £, x) at £ are defined to be
the upper and lower approximate co-derivatives of / at £,, and are denoted by
ADfa(£,) and ADfJg) respectively. The right {left) upper and lower approximate
co-derivatives are defined in a corresponding way. They are denoted by
AD+fJ£), AD+fJiZ), AD-fatf) and AD.fJ® respectively. If ADfJt;)
= ADfJJ;), the common value is denoted by (ap)f'J£) and it is called the
approximate co-derivative of f(x) at £. If AD+fJJ;) = AD+fa(^), the common
value (ap)f'+(O(^) is the right approximate co-derivative. We define (ap)/lra(<J)
analogously.

The ordinary upper and lower right [left] co-derivatives of / (x) at c, are
respectively the upper and lower limits of ^ ( / ; £, x) as x -* t; + [x -» £, — ] .
These are denoted by D+/m(O and ! ) + / „ « ) [ / ) - / „ « ) and !>_/„«)]. If
D7«(fl = 0+/«(O [ £ " / • « ) = -D-/»(O] the common value is denoted by
/+o>(£)[/-co(£)]- If all the four co-derivatives at £ are equal to one another, the
common value is denoted by f^d) and it is called the co-derivative of /(x) at £,.

It is clear that f^(x) = 0 for every x e S 0 and fjx) = [/(x + ) - / ( x - )]/
[co(x + ) — co(x — )] for every xe D.

THEOREM 3.1.

(i) AD_fJx) ^ AD'Ux)

(ii) AD+fm(x) < AD+fa(x)

(iii) ADfJx) ^ ADJJx).
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THEOREM 3.2. Iff'SO exists, then (ap)f&) also exists and (ap)m) =/„«).

THEOREM 3.3.

(i) AD±(-f)a(x) = -AD^Jx)

(ii) AD^cfUx) = c-AD±f(O(x) if c > 0

(iii) ±

(iv)

equality holding in (iii) and (iv) if for at least one of the functions f(x) and
g(x) the upper and lower approximate co-derivatives on the appropriate side
are equal, it being assumed that the expressions on the right in (iii) and (iv)
are meaningful.

The proofs are straightforward and simple.

THEOREM 3.4. If f(x) be co-measurable on [a, b~\, then the approximate
co-derivatives of f(x) are also so on [a,b].

PROOF. We prove the theorem for AD+fa(x). The proofs in other cases are
analogous. Since | So u S2 \a = 0 and every subset of D is co-measurable, AD+fm(x)
is co-measurable on (So US 2 UD) n [ a , fo]. It is, therefore, sufficient to prove
that AD+fl0(x) is co-measurable on S'3 = [ a , 6 ] n S 3 .

Suppose, if possible, that AD+fa(x) is not co-measurable on S3. Then from
theorem 1.3 it follows that there is a real number r such that the sets

E, = {x;xeS'3 and AD+fa(x) < r}, Er = {x; xeS'3 and AD+fa(x) ^ r}

are not co-separated. So by the same theorem there exists £ > 0 such that any
set JEX C Er with co*(£j) > co*(£r) — 2e is not co-separated from any set E2 <= Er

with co*(E2) > co*(Er) - 2e. Let

An = {x;xeErz.n&AD+fm(x)<r-±), n = 1 ,2 , - .

Then AncAn+1 and Er = \J™=iAn. So co*(An)->co*(Er) as n->oo. Therefore
we can choose a positive integer JV such that co*(AN) > co*(Er) — e. For every n
we denote by Bn the set of points xeEr such that for each x e Bn the set

{x'; x'>x and [f(x') -/(x)]/[co(x') - co(x)] > r - ^ }

has upper right co-density > (1/n) at x. Then BncBn+1 and Er = \J™=lBn.
So there exists a positive integer m with co*(Bm) > co*(£r) — e. For each n, denote
by Cn the set of points x e AN for which
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(x') - " « ] < r - 1 ,

except possibly for a set {x'} with

co*({x'}n[x,x + /j]) 1 , . , ^ 1
(7) u , r

J ,_. J/ < -r— whenever 0 < h < —.
HXx + hlU 4m - n

Clearly Cn c Cn+1 and Xw = Un°°=1 Cn. So for some k,

co*(Q) > (o*(AN) - e > co*(Er) - 2e.

By the assumption made about the number e, it now follows that the sets Bm and
Ck are not co-separated. Hence by theorem 3.6 [4] the set of points of Bm at each
of which the co-density of Ck is 1 is of outer co-measure > 0. Also f(x) is co-ap-
proximately continuous a.e. (co) on [a, ft]. So we can find a point ^ £ Bm which is
a point of density (co) of Ck and at which f(x) is co-approximately continuous.
Then from the definition of Bm we see that the set

B = {x; x > !; and [/(x) -/(O]/[«(x) - co(£)] > r -

has upper right co-density > (1/m) at £,. So we can find h0 with 0 < /i0 <
such that

(8) co*(B n K, { + hol[) > 1 • | K,« + M |M.

Since £eS'3 we can find d with 0 < d < h0, £ + <5eS such that

(9) | [£ , * ]L<4^-- | [<^ + M L

for any x in [£,, £ + S]. Take an arbitrary but fixed point x of Ck n (^, c + ^) and
set

C = jx'; [/(x') - ^ r -

Then by (7) we have

.. . . co*(Cn[x,x + /i]) 1 , 1
(10) — r ? ^"Ti—— < T— w h e n 0 < /J < —.

Noting that £ + h0- x < (l//c) we get, using (9) and (10),

(11) co*(C n [ { , { + /i0]) = «*(C n [5, x]) + OJ*(C n[x,Z + h0])

I K ] | + | [ « + M |
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Write P = B \ C. Then from (8) and (11) we deduce

(12) J L • | [£§ + ho]\a < o,*(p n [ ^ + h0-]).

Also, using (9), we get

(13) co*(P n [£,£ + 8]) ^ | K,« + <5] U < ^ • | K,{ + M l * .

From (12) and (13) we conclude that there are points £'eP with £ + 3 < <f

< C + h0. For such a £' we have simultaneously

and

(15) [/(£') - / « ] / [ c o ( n - co(x)] <r--^-.

From (14) and (15) we get

/ (x —/(£) > r • [co(x) — co({)] + — • [co({') + co(^) - 2co(x)].

So we have, as x, t; e S,

(16) f(x) - / ({) > r • [coix) - coiO] + ^ ' [a*Z + S) + aK« - 2co(x)].

The right hand side of (16) tends to (1/2JV) • [co(£ + 8)- co(^)] as x - £ + . So
there is a (50 (0 < 80 < 8) such that

(17) fix) -fiO > ~ • [co(̂  + 8)- coiO] > 0

for all x e Q n ( ^ + ^0)- Since Q has co-density 1 at £, the relation (17) contra-
dicts that f(x) is co-approximately continuous at {. This proves the theorem.

THEOREM 3.5. / / f(x) be co-measurable on [a, b], then the co-derivatives of
f(x) are also so on [a, b].

PROOF. We prove the theorem for D+fw(x). The proofs in other cases are
analogous.

As remarked in Theorem 3.4 it is sufficient to show that D+fm(x) is co-meas-
urable on S3. Suppose, if possible, that D+fm(x) is not ro-measurable on S'3.
Then there is a real number r such that the sets

Er = {x; xeS'3 and D+fa(x) < r}, Er = {x; x e S j and D+fm(x) ^ r}
are not co-separated.

https://doi.org/10.1017/S1446788700019856 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019856


[11] On to-approximately continuous integrals 139

Let {c,} be a strictly increasing sequence of real numbers tending to r. Let
Eik denote the set of points £ e Er for which

cf whenever 0 < * < l .

Then for sufficiently large i and fc (henceforth fixed) the sets Eik and Er are not
co-separated. This in conjunction with a.e. (a>) co-approximate continuity of f(x)
and the Theorem 3.6 [4] gives that there is a subset E <= £ r with «*(£) > 0, at
each point of which /(x) is co-approximately continuous and Eik has co-density 1.
Let a e E and c be a real number with Cj< c < r. Since D +fa(<x) > c, there exists
h' with 0 < h' < (1/fc) such that

(19) / [ ( a + Ji') -/(a)]/[co(a + / , ' ) - tS(a)] > c.

Since a e S is a point of density (co) of Eik, a is a limit point of Eik on both
sides. We take any point £e(a,a + h') dEik and write h = a + /;' — £. Then
0 < h< (Ilk). The relations (18) and (19) give

/(a + h') - / ( a ) > c • [co(a + h') - co(a)]
and

/(£ + A) - / ( O < c, • [S(5 + /r) -

So we get, as% + h = <x + h' and a ^ e S ,

/ (O - / ( « ) > [« (« + / ' ' ) - « ( « ) ]

• {c - c; • [S(a + h') - CO(0]I[(O(OL + h') -

the right hand side of which tends to [co(a + h') — co(a)] • (c — c,) > 0, as
^ -»a + over £It. This contradicts the fact that /(x) is co-approximately con-
tinuous at a. This proves the theorem.

THEOREM 3.6. If f(x) is monotone on [a,fr], then /< (̂x) exists finitely
a.e. (co) on [a, fe].

This can be proved in the usual way.

THEOREM 3.7. Let f(x) be non-decreasing on each interval of (So U S2)
n[a,b~]. If AD+fa(x) ^ 0 on [a,b),AD_fJx) ^ 0 on (a,b\ then/(x) is non-
decreasing on [a, b].

PROOF. Let a,j8( > a) be any two p in t s in [a,£>]. Choose s > 0 arbitrarily.
Let

£ = {x; x ^ a and 1/4/; a,x) ^ — e}.

From the hypothesis it is clear that x 6 £ implies
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(20) /(x) - / ( « ) £ - « • [co(x) - «(«)].

Since AD+fm(ix) ^ 0, the set E has right co-density 1 at a. So there is a point
S,l > a of E such that

c o * ( £ n [ a , ^ ] ) ^ i - | [ a ^ 1 ] | 0 ) .
Now let

£, ={x;x£{1 and >K/;£i,x)^ - e}.

Then x e £ , implies

(21) /(*) - A^i) ^ - « • [<5(*) " ^ i ) l -

Taking x = Zi m (20) and t n e n adding with (21) we get /(x)-/(<x) ^ —e
• [co(x) - co(a)], which shews that E1 c E. Since AD/W(^i) ^ 0, the set £ has
right co-density 1 at £j. So there is a point £2 > <Si of £ such that

Proceeding thus we obtain a strictly increasing sequence {£„} from £ such that

L<P and

(22) co*(£n [£„_„£„])

By (20) we have

(23) /(£„) - /(«) ^ - e • [«K^) - co(a)].

Let ^ = lim,,.^ t;n. If ^ e D, making n -> oo in (23) we get

Also as fu(0 ^ 0, we have /(<* + ) ^ /(c; - ). We deduce that £ e E. Next suppose
that ^eS. Then using (22) we easily deduce that

co*(EKtfn,!;])^l-\tfn,Q\m, ,, = 1 ,2 , - .

This implies that the upper left co-density of E at £ is ^ ^. If c; £ £ we must have

Hence for all x e (a, ^) O £ we have

(24) /({) - /(x) < - £ • [S(f) - fij(x)].

Since £ has upper left co-density 2; \ at c;, the relation (24) contradicts that
AD-fa(£) ^ 0. Hence £e£.

If c; < P, we cover the interval [a, /?] by a Lebesgue chain and thus obtain

(25) /(/0 - /(a) ^ - e • [S(/0 - ©(«)] •
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Since £ > 0 is arbitrary the relation (25) gives /(/J) ^ / (a ) , which proves the
theorem.

THEOREM 3.8. Let E <= [a, b] \ So with | E\a = 0 and k be any given positive
number. Then there exists a non-decreasing function a(x) on Q such that
D+am{x) = + oo for every xeE\So and D_aa(x) = + oo for every xeE\S£
and d(b) = k, a(a) = 0.

PROOF. Clearly £ c S . Let {Gn} be a sequence of open sets containing E with
Gn+i <= Gn and | Gn\a < (1/4"). We define the functions nn{x) on Q by

and set
p(x)= X?=1JuB(x).

Then p(x) is finite and non-decreasing on Q. Let XOEE\SQ . For every n there is
an open interval /„ <= Gn with xoeln. Let N(h) denote the number of open sets
Gn which contain the interval [x o ,x o + K]. Then it is obvious that iV(/i)-> oo as
h -> 0 + . So for an arbitrary h > 0 we have

p(x0 + h)- p(x0) = Sn°°=12" • | Gn O [x 0 ) x 0 + K] \a

Hence it follows that for all x > x0,

p(x) - p{xQ) ^ [co(x) - »(x0)] • 2^*-*°\

which implies

D+pJxo) = + oo.

Similarly, if x e E \ S£, we can show that D_pm(x) = + oo. Then the function

,r(x) = k • [p(x) - p(a)]/[p(f>) - p(a)]

fulfills all the conditions of the theorem.

4. The co-approximately continuous Perron-Stieltjes Integral

DEFINITION 4.1. A function M(x) in 2? is called a major function of an
arbitrary function /(x) on [a, b~\ if

(i) M(a) = 0,

(ii) ADMa{x) > - oo for all x e [a, b],

(iii) AD_Ma(x) ^ /(x) for every x e (a, b] \ [So U (S O S^)]
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and AD+Ma(x) ^ f(x) for every xe[a,ft) \ [So U(S OSo)]>

(iv) M(x) is non-decreasing on each interval of [a, ft] n (So U S2).

A function m(x) in J^ is a minor function of f(x) on [a, ft] if

(i') m(a) = 0,

(ii') ADmw(x) < + oo for all xe[a,ft],

(Hi') AD -mjix) ^ f(x) for all x e (a, ft] \ [So u (S n Sj)]

and >1D + mm(x) ^ /(x) for all x e [a, ft) \ [So U (S n SQ )],

(iv') m(x) is non-increasing on each interval of [a, ft] n (So U S2).

NOTE. The existence of at least one major function and at least one minor
function of f(x) on [a, ft] guarantees that /(x) is finite on D n [a, ft].

THEOREM 4.1. If M(x) be a major function and m(x) be a minor function of
/(x) on [a,ft], then M—m is non-decreasing on [a,ft], and in particular
M(b) ^ m(b).

PROOF. Let g(x) = M(x) — m(x). Then ge&. By definitions of major and
minor functions, ADMJ^x) — ADmJjc) is well defined on [a, ft]. So, using
Theorem 3.3 we deduce that AD+gJ^x) ̂ 0 on [a, ft) and AD_gol{x) ^ 0 on
(a, ft]. Further g{x) is non-decreasing on each interval of [a, ft] O (So U S2).
Therefore by Theorem 3.7 g(x) = M{x) — m(x) is non-decreasing on [a, ft].
In particular M(b) — m(b) Si M(a) — m{a) = 0. This completes the proof of the
theorem.

DEFINITION 4.2. Given any function /(x) on [a, ft], we define the function
cof(x) on Q. as follows:

co^x) = /(x) • [>(x + ) - co(x - )] if x 6 D n [a, ft],
= 0 elsewhere.

DEFINITION 4.3. Let /(x) be any function defined on [a, ft] possessing at
least one major function M(x) and at least one minor function m(x) on [a, ft].
Then f(x) is said to be ^-approximately Perron-Stieltjes integrable, in short
(APS)-integrable, on [a, ft] if supmw(ft) = infMM(ft). The common value is
then denoted by (APS) - $b

afdco and is called the (APS)-integral of /(x) on
[a, ft].

Since there is no chance of confusion with other types of integrals we delete
the prefix (APS) from our notation of integrals that follow. It is obvious from
the definition that

THEOREM 4.2. A necessary and sufficient condition that jafdo* may exist
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is that for every e > 0 there is a major function M(x) and a minor function
m(x) of f(x) on [a, ft] such that M(b) — m(b) < s.

THEOREM 4.3. / / J*/ dco exists and if a < c < b, then each of the integrals
Ja

c/ dco and jb
cf dco exists and further

fi c fib fib

fdco+ fdco = fdco.
J a Jc J a

PROOF. Let e > 0 be given. Then there exists a major function M(x) and a
minor function m{x) of /(x) on [a, ft] such that

(26) M(ft) - m(b) < e.

Now M(x) and m(x) qualify as major and minor functions of /(x) on [a, c],
while M(x) — Af(c) and m(x) — m(c) serve for those on [c, ft]. Now by Theorem4.1
and relation (26) we get

M{c) - m(c) ^ M(b) - m(b) < e,
and

[M(b) - M(c)~] - [m(b) - w(c)] < e,

which imply the existence of jlfdco and J*/ dco respectively. Again, by definition
we have

m(c) g j fdco g M(c)
and Ja

m(ft) - m(c) ^ \ fdco ^ M(ft) - M(c),

which give on adding

(27) nl(b) g [Cfdco+ [fdco g M(b).

Also we have

r"
(28) m(b) g I fdco ^ M(b).

Ja

Relations (26), (27) and (28) give that

I f fdco + f fdco - J /rfco < e.
' Ja Jc J a

Since s > 0 is arbitrary, it follows that

V fdco + f fdco = f /do).
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This completes the proof of the theorem.

COROLLARY 4.3.1. / / $b
afda> exists, then for a g a < p <; b, jpjdco exists.

THEOREM 4.4. If \c
a fdco and /* fda> both exist, where a <c <b, then jb

a

fdoi exists.

PROOF. Let e > 0 be given. Then there is a major function Mt(x) and a
minor function m2(x) of/(x) on \_a,c] such that

(29) Mt(c) - rh^c) < e;

there are major and minor functions M2(x) and m2(x) on [c, b~\ such that

(30) M2(b) - m2(b) < e.

Let us define

M(x) = Mx(x) for i | c ,

= M2(x) + Mi(c) f o r x > c ;
and

w(x) = mt(x) for x ^ c,

= m2(x) + TM^C) for x > c.

Then clearly M, m e / . We can easily verify that M(x) and m(x) qualify as
major and minor functions respectively of /(x) on [a, b}. Now we have, using
(29) and (30),

2e.

M(b) - nl(b) = \_M2(b) +

= \_M2{b) -

Hence we conclude that §b
afdco exists.

DEFINITION 4.4. If j^fdco exists, we define the function F(x) by

F(x) =

X

0

if

if

if

if

a < x

X

X

X

VII

>

<

b,

b,

a,

a.

Then f(x) is called the indefinite (APS)-integral of/(x) on [a, 5].
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THEOREM 4.5. / / tf,fda> exists, then the corresponding indefinite integral
F e / . Specifically, F(x + ) = F(x) + $cof(x) and F(x - ) = F(x) - ico/x) if
xeD.

PROOF. It is sufficient to restrict our consideration to [a, ft] only. We have
F(a-) = - \caf{a) = F{a) - icof(a) and F(b + ) = F(b) + icof(b). Now
choose e > 0 arbitrarily. Then there is a major function M(x) and a minor func-
tion m(x) of f(x) on [a, ft] such that

(31) M(b) - \z < Fib) < m(b) + $e.

Suppose that asD. Then by definition 4.1, (iii, iii') we have m(a + ) — m(a —)
^ cof(a) <; M{a+) - M(a - ). But M(a) = m(a) = 0. Hence we deduce,

(32) m(a + ) g icof(a) g M(a + ).

If d > 0 be sufficiently small and xeS C\(a,a + S), then we have

(33) m(a +)-E< m(x) ^ M(x) < M{a +)+e

and

(34) m(x) ^ F(x) ^ Mix).

From (31), (32), (33) and (34) we deduce that

| F{x) - i<of(a) | < 3s for all x e S n (a, a + 8).
Hence

F(a+) = icofia) = F(a) + ^ a ) .

Next, suppose that beD. Then there is a sufficiently small h > 0 such that
for x E S n (6 - /i, 6),

(35) m(fe - ) - i e < m(x) ^ F(x) g M(x) < M(b -) + ±e.

Also we have

(36) m(b + )-m(b-)£ <of{b) S M{b + ) - M(b - ) .

From (31), (35) and (36) we deduce that

- \z < Fix) - [Fib) - ito/fe)] < ie for all x e S n {b - h, b).

Hence F(b - ) =

Now let ceD O(a, f t ) . Let f t (x) and F2(x) be respectively the indefinite

integrals of fix) on [ a , c ] and [c, b']. Then F(x) = F ^ x ) for x ^ c and

F(x) = F2ix) + Fie) for x 2; c. Hence by what has been proved above, we get

Fie - ) = F,ic - ) = F,(c) - icofic) = Fie) - ta>/c),

and
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F(c + ) = F2(c + ) + F(c) = icof(c) + F(c).

This completes the proof of the Theorem.

COROLLARY 4.5.1. F'w(c) = f(c) for every ceD r\[a,b~].

THEOREM 4.6. Let F(x) be the indefinite integral of f(x) on [a, b]. Then for
any major function M(x) and any minor function m(x) of /(x) on [a, b], the
functions M(x) — F(x) and F(x) - m{x) are non-decreasing on [a, b].

PROOF. Let a ^ xt < x2 g b. Then M(x) - Mix,) is a major function and
m(x) - wCxi) is a minor function of /(x) on [x1(x2]. Now the theorem follows
from the inequality

rh(x2) - m(Xl) g F(x2) - F(Xj) = f 'fd<o g M(x2) -
Jxi

THEOREM 4.7. T/ie (APS)-integral of an arbitrary function f(x) is zero on
each closed interval on So U S2 .

PROOF. Let [a,b~\ be an interval on S 0 US 2 . Then M(x) == 0 qualifies both
as a major function and a minor function of /(x) on [a, 6]. So J*/i/co = 0.

COROLLARY 4.7.1. If j°fda> exists, then the indefinite integral is constant on
each interval of (So U S2) n [a, b].

This follows from Theorems 4.3 and 4.7.

THEOREM 4.8. Let fe^. If (ap)f^(x) exists finitely on [a,b] and f(x) is
constant on the intervals of (So U S2) n [a, b~\, then J*(ap)/^(x)daj exists and
has the value f(b) —f(a).

PROOF. The function /(x) —/(a) qualifies both as a major function and a
minor function of {ap)f^{x) on [a,b~]. Hence the theorem follows.

THEOREM 4.9. Let $b
afdco exist and F(x) be the corresponding indefinite

integral. Then (ap)F'a(x) exists finitely a.e. (co) and {ap)F'<a(x) = f(x) a.e. (a>)
on [a, b~\.

PROOF. By Theorem 4.5 F belongs to the class & and by Corollary 4.5.1
F'JX) = f(O at every point £, e D O [a, b]. Now let

A = {x; x 6 (a, b) n S3 and ADFffi(x) </(x)}.

Choose e > 0 arbitrarily. For each positive integer n, let

4̂n = {x; xeA and ylD^Cx) </(x) - e/2"}.

There is a major function M(x) of /(x) on [a, b] such that

(37) M(b)-F(b)<£2/22 n + 1 .
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Write R(x) = M(x) — F(x). Then by Theorem 4.6 R(x) is non-decreasing on
[a, b] and hence by Theorem 3.6 R'dx) exists finitely a.e. (co) on [a, b]. If x e ^n,
,4DMra(x) - ADFJjx) = ^ ( x ) > (s/2") provided R'Jx) exists. Let E denote the
set of points of (a, b) n S3 where .R (̂x) exists finitely. Then

EnAn^Bn = {x;xeE and u;(x) > e/2"}.

To each point £,eBn we can associate a sequence of closed intervals {[{,<!;,.]}
with £,-£(a,l))nS and £(->^ + such that

(38) [«({,) - «(£)]/[>(£,•) - co(i)-] > yB) i = 1,2, - .

By Theorem 1.1 we can choose a finite number of disjoint such intervals
A^Aj,-"A f°r which

(39) !',_ x a>*(BB n A;) > co*(Bn) - el2"+1.

From (37), (38) and (39) we deduce that co*(Bn) < e/2", and hence co*(An) < e/2".
But /I = U r= I An • Therefore co*(A) < s. Since s > 0 is arbitrary, it follows that
<o*(A) = 0. _ _

If B = {x; x e (a, b) O S3 and ylDF,,,^) > /(x)}, we can show, by introducing
a minor function, that co*(B) = 0. Hence if x e (a, b) n S3 \ (A U B) then

iDi^Oc) ^ /(x) g ADFJx),

which gives that (ap)F^(x) exists and equals /(x). Since | So U S2 U ̂ 4 U B !„, = 0,
we conclude that {ap)F'a>{x) exists and equals f{x) a.e. (co) on [a, ft].

Now let i?(x) = M(x) - F(x) and r(x) = F(x) - m(x), where M(x) and
m(x) are major and minor functions of /(x) on [a, b]. Let C denote the set of
points in [a,b'\ at which [ap)F'Jx) exists and R'm{x), r'a{x) both exist finitely.
Then | C \o = | [a, b] !„,. If x e C, we have

^ = ADMJx) - «^(x) > - oo

and

(ap)F'Jx) = ADwM(x) + r;(x) = ADmm(x) + r^(x) < + oo .

So (ap)Fu(x) is finite on C. Hence the theorem follows.

THEOREM 4.10. / / J*/ da> exists then the corresponding indefinite integral
F(x) is (o-approximately continuous on [a, b].

PROOF. Let e > Obe given. Then there is a major function M(x) and a minor
function m(x) of /(x) on [a, b] such that for all x e [a, b],

(40) 0 ^ M(x) - F(x) < e and 0 g F(x) - w(x) < s.
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By Note 2.2 F(x) is co-approximately continuous at every point of D. Now
choose ce[a,fc] n S arbitrarily. Since ADMa(c) > — co and ADma(c) < + oo,
we can find K > 0 sufficiently large so that except for a set {x} with co-density 0
at c, we have

M(x) - Af(c) ^ - K • [co(x) - co(c)], x < c

M(x) - M(c) ^ - K • [ai(jc) - OJ(C)], x > c

w(x) — m(c) ^ K • [co(x) — co(c)], x < c

w(x) — m(c) ^ K • [co(x) — co(c)], x > c.

From (40) and (41) we deduce that

\F(x)-F(c)\<a + K-\co(x)-(o(c)\,

except for a set {x} with co-density 0 at c. Since co(x) -» co(c) as x -» c, it follows
that .F(x) is co-approximately continuous at c. Hence the theorem follows.

COROLLARY 4.10.1. Let f(x) be (APS)-integrable on [a,b\ Then f(x) is
necessarily co-measurable and finite a.e. (co) on [a, b~\.

This follows from Theorems 4.9, 4.10, 3.4 and Corollary 2.4.2.

COROLLARY 4.10.2. If f(x) be (APS)-integrable on [a,fo] then the major and
minor functions of f(x) possess finite approximate m-derivatives a.e. (co) on
[a,bl

THEOREM 4.11. / / $b
afda) exists and g(x) = / ( x ) a.e.(a>) on [a,b~], then

§b
agdoi exists and ^gdco = §bfda).

PROOF. Let E denote the set of points of [a, fc] \ So for which g(x) # fx).
Then | £ | m = 0. So given e > 0 there exists, by Theorem 3.8, a non-decreasing
function <j(x) with a(b) = e and d(a) = 0. There are major and minor functions
of / (x) on [a, £>] such that M(b) - m{b) < E. Then M(x) + cr(x) and m(x) - cr(x)
are major and minor functions of g(x) on [a, fo] such that [M(b) + ff(/>)]
— \_m(b) — o(b)~\ < 3s. Since e > 0 is arbitrary, it follows that J* gdco exists.
Finally, the relation m(b)-s = m(b)-a(b) g §b

agda> ^ M(b) + a{b) = M(b) + s
gives that $b

agdw = jbfdo>.

THEOREM 4.12. Let f(x) be Lebesgue-Stieltjes summable with respect to
co(x) on [a, fc]. Then (APS) - J* fdco exists and

(APS) - f fdto = (LS) f fdco - i[cor(a) + cof(b)l
J a Ja

THEOREM 4.13. If f(x) be non-negative and (APS)-integrabIe on [a, i>]
then it is (LS)-summable on [a, fc].
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Proofs of these two theorems are analogous to those of the corresponding
theorems 1 and 2 in [9] (p. 168-169).

5. AC - a> and ACG - u> functions belonging to the class J*"

DEFINITION 5.1. A function Fe & is said to be AC - co below, [AC - co
above] on a set £ if for every e > 0 there exists 8 > 0 such that for every finite
set of non-overlapping intervals {(xif xj)} with end-points on £ and with
Z | [x;, x,'] \m < S, we have

) -F^)} > - e, [Z{/"(x/) - F(x,)} < e].

F(x) is said to be ACG - w below [ACG - co above] on £ if £ is the union
of a countable number of sets on each of which f (x) is AC — co below [AC — co
above]. F(x) is ACG - co on £ if it icboth ACG - co below and ACG - co above
on £.

THEOREM 5.1. (cf. [8], lemma 4.1, p. 261). If ADFCi(x)> - co on E and
F(x) be non-decreasing on E nl for every interval I on which co(x) is constant,
then F(x) is ACG — co below on E.

THEOREM 5.2. (cf. [8], p. 263, lines 2, sqq.). The indefinite integral of
an (APS)-integrable function on [a, b] is ACG — co on [a, b~\.

THEOREM 5.3. (cf. [8], lemma 2.1, p. 254). A function F(x) which is
ACG - co on [a,b] necessarily fulfills the condition (Nco), that is | F[//] | = 0
for every set H c [a, b] with | H \a = 0.

The definitions adopted in this article are analoguos to those in Yoto Ku-
bota's paper [8]. The proofs of the Theorems 5.1-5.3 are also analogous to those
of the corresponding results in [8]. Kubota, with his notion of ACG, has defined
the AD-integral ([8], §2) by the method of Saks [11]. We show that the same
method leads us to the "w-approximately continuous Denjoy-Stieltjes Integral"
or "the (ADS)-integral".

THEOREM 5.4. Let F e^ and be such that

(i) F(x) = F(x) and F(x) is co-approximately continuous on [a, b],

(ii) F(x-)^F{x + )forallxeDr\[a,b~],

(iii) F(x) is non-decreasing on the intervals of (So U S2) O [a, £>],

(iv) F[£] contains no interval, where

E = {x; xe[a,b] \(S0 US2) and AD.FJx) ^ 0}

Then F(x) is non-decreasing on [a, b~\.
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PROOF. Suppose, if possible, that a ^ c0 < d0 ^ ft, while F(d0) < F(c0).
As F[£] contains no interval there is y0 such that F(d0) < yo< F(c0), y0 $ F[£].
Let A = {x; x e [c0,c/0] and F(x) > y0}. Then c0 e.4. As F(x) is non-decreasing
on the intervals of (So U S2) n [a, ft] and F(x) is co-approximately continuous
at every point of [a, ft], so A has right co-density 1 at every point of A. We can
therefore find cneAr\S such that

c0 < Cj < c2 < ••• < d0. Let cM->a. If aeD, then as F(cn) > y0 for all n, so
F(a - ) ^ y0 • SoF(<x) ^ y0. If F(a) = y0, then clearly F(<x - ) = F(a + ) = >>0.
This means f^(a) = 0, which contradicts that yo$F[E]. Thus F(a)> y0. If
a e S, then we have

co*(A n [cH, a]) ^ i • !?=,, | [cr, cr+ x] |ra ^ i • | [cn, a] |m

for all n = 1,2,3, •••. So the upper left co-density of A at a is > 0. We assert
again that F(a) > y0. Suppose that F{u) = y0. Then for all xeAC\[c0,a] we
have

[F(a) - F(x)]/[co(a) - co(x)] < 0,

so that /ID-F^a) <; 0, which contradicts that yo$F[E~]. If F(a) < y0, then as
F(x) is ca-approximately continuous at a, the set A should have co-density 0 at a,
which is not the case. Thus in all cases cceA. If a < d0, covering [c0,d0] by a
Lebesgue chain of intervals we get F(d0) > y0, leading to a contradiction. This
final contradiction establishes the theorem.

This theorem enables us to enunciate the following.

DEFINITION 5.2. Let f(x) be any function defined on [a, ft] and suppose that
there exists a function F e & such that

(i) F(x) is co-approximately continuous on [a, ft], F(x) = F(x) on D O [a, ft],
(ii) F(x) is ACG -co on [a, ft] and F(x) is constant on the intervals of

(So U S2) n [a, ft],
and

(iii) (ap)Fa(x) exists finitely a.e. (co) on [a, ft] and (ap)F^(x) = /(x) a.e. (co)
on [a, ft].

Then f(x) is said to be integrable in the co-approximately continuous Denjoy-
Stieltjes sense or (ADS)-integrable and we write

(ADS) - | fdw = F(ft) - F(a).
J a

The function F(x) is said to be an indefinite (ADS)-integral of /(x) on
[a, ft].

https://doi.org/10.1017/S1446788700019856 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019856


[23] On co-approximately continuous integrals 151

Definition 5.2 requires a uniqueness theorem which is furnished below.

THEOREM 5.5. / / Fx(x) and F2(x) are any two indefinite (ADS)-integrals
of f(x) on [a, ft], then F2(b) - F2(a) = Ft(b) - F^a).

PROOF. Let e > 0 be given. Consider the function F(x) = Ft(x) - F2(x)
+ e • co(x). Then F(x) = F(x) is co-approximately continuous on [a, b~] and
(ap)F'm(x) = e > 0 a.e. (co) on [a, b~\. So the set

E = {x; xej>,&] and AD_FJx) ^ 0}

is of co-measure zero. But F(x) is ACG - ca on [a,b]. So by Theorem 5.3
I FlEl\ ~ °- Hence F[£] contains no interval. At the points of D n [a, fc], we have
F'a(x) = £ > 0 • So F(x + ) > F(x - ). Also F(x) is non-decreasing on the inter-
vals of (S,, u S2)r> [a,b]. Hence by Theorem 5.4 we have

Ft(b) - Ft(a) 2: F2(b) - F2(a) - e • [co(fc) - co(a)].

Since e > 0 is arbitrary, it follows that

(42) F.ib) - F^a) ^ F2{b) - F2(a).

Interchanging Ft and F2 we get,

(43) F2(b) - F2(a) ^ F^b) - F^a).

Combining (42) and (43) we get the required result.

We note that an (APS)-integrable function is necessarily (ADS)-intergrable
and the two integrals have equal value. It is easy to verify that the ADS-integral
possesses all the usual fundamental properties of an integral.

In conclusion I express my gratitude to Dr. P. C. Bhakta for his kind sug-
gestions in the preparation of this paper.
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